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Abstract

Uniform designs have been widely used in computer experiments, as well as in industrial
experiments when the underlying model is unknown. Based on the discrete discrepancy, the
link between uniform designs, and resolvable packings and coverings in combinatorial theory is
developed. Through resolvable packings and coverings without identical parallel classes, many
in6nite classes of new uniform designs are then produced.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The study of uniform designs (UDs) was motivated by projects in system engineering
in 1978 (see, [5,24]). In the past 20 years, uniform designs have been widely used in
computer experiments, as well as in industrial experiments when the underlying model
is unknown.
To establish a uniform design, as one of space 6lling designs, one needs to 6nd

suitable design points so that they are scattered uniformly on its experimental do-
main. A number of criteria such as star Lp-discrepancy, centered Lp-discrepancy and
wrap-around Lp-discrepancy, which serve as a benchmark of uniformity, have been
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proposed in the literature (see, for example, [15]). A design is referred to as a uniform
design if it is optimal under a certain criterion. If we restrict the experimental domain
of a uniform design to certain lattice points, then it can be thought of as one kind
of fractional factorial designs under a nonparametric regression model [8]. We use
notation Un(qm) to denote a uniform design with n runs and m q-level factors.
Generating a uniform design is generally diHcult. Several known methods such as

the good lattice method in quasi-Monte Carlo methods, the Latin square method, and
optimization heuristic threshold accepting method (see, for example, [7]) involve a
heavy computing search. In fact, it is an NP hard problem to search a Un(qm) when
(n; q; m) increase.
Recently, Hickernell and Liu [16] proposed a criterion called discrete discrepancy

(DD for short). Under the discrete discrepancy, Fang et al. [6] constructed many in6nite
classes of uniform designs via combinatorial con6gurations. The designs they obtained
are all U-type. The number of runs in such a design is a multiple of the number
of levels of each factor where each factor takes q levels equally often. In this paper
the notion of a nearly U-type design is introduced and used to construct UDs whose
number of runs are not necessarily a multiple of their number of levels.
Given the parameters n; m and q, a fractional factorial design with n runs and m

q-level factors corresponds to a n×m matrix X . If we regard its rows as points in Qm,
where Q={1; 2; : : : ; q}, then to search a uniform design Un(qm) is equivalent to 6nding
n points in the domain Qm as even as possible. A nature way is to 6rst select these
points uniformly distributed in every one dimension. When n is a multiple of q, it is
a U-type design. In this case, each column of X takes values from Q equally often.
When n is not divisible by q, let n= qt + r (0¡r¡q). In this case, we arrange the
design X so that q− r values of Q occur t times, while the remaining r values occur
t + 1 times in every column of X . This guarantees that every value in Q appears in
each column of X as equally as possible. We will call such a design a nearly U-type
design and denote it by NU(n; qm). For completeness, we admit r = 0. An NU(n; qm)
with n= qt is nothing else than a U-type design.
The remainder of this paper is organized as follows. In Section 2, we will give a

detailed discussion about the discrete discrepancy. In Section 3, the connection between
uniform designs in the sense of discrete discrepancy and resolvable packings/coverings
in combinatorial theory is developed. Through resolvable packings and coverings with-
out identical parallel classes, many in6nite classes of new uniform designs are then
produced. These are presented in Section 4. Finally Section 5 contains some remarks.

2. The discrete discrepancy

According to Hickernell [15], the discrete discrepancy is de6ned by way of a ker-
nel function. Let X be a measurable subset of Rm. A kernel function K(x;w) is a
symmetric, non-negative de6nite and real-valued function de6ned on X ×X, i.e.,


K(x;w) =K(w; x) for any x;w∈X;

n∑
i; j=1

aiajK(xi ; xj)¿ 0 for any ai; aj ∈R; xi ; xj ∈X:
(1)
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Let F∗ denote the uniform distribution function on X, P ⊆ X be a set of design points
and Fn denote the empirical distribution of P, where

Fn(x) =
1
n

∑
z∈P

1{z6x}:

Here z = (z1; : : : ; zm)6 x = (x1; : : : ; xm) means that zj6 xj for all j and 1A is the
indicator function of A. Then given a kernel function K(x;w), the discrepancy of P
[15] is de6ned by

D(P;K) =
{∫

X2
K(x;w) d[F∗(x)− Fn(x)] d[F∗(w)− Fn(w)]

}1=2

=

{∫
X2

K(x;w) dF∗(x) dF∗(w)− 2
n

∑
z∈P

∫
X

K(x; z) dF∗(x)

+
1
n2

∑
z;z′∈P

K(z; z′)

}1=2

: (2)

From the above de6nition, it is clear that the discrepancy measures how far apart
the empirical distribution Fn is from F∗. The lower the discrepancy, the better the
uniformity of the design is.
For a factorial plan of m q-factors, the domain X = {1; 2; : : : ; q}m is formed by

all possible level combinations of the m factor, F∗ is the discrete uniform distribution
on X. Let

K̃j(x; w) =

{
a if x = w

b if x �= w
for x; w∈{1; : : : ; qj}; a¿b¿ 0

and

K(x;w) =
m∏

j=1

K̃j(xj; wj); for any x;w∈X; (3)

then K(x;w) is a kernel function and satis6es conditions (1). And the corresponding
discrete discrepancy, denoted by D(X ; a; b), can be used for measuring the uniformity
of design points [16].

D2(X ; a; b) =−
m∏

j=1

[
a+ (q− 1)b

q

]
+

1
n2

n∑
�;�=1

m∏
j=1

K̃j(x�j; x�j): (4)

Let X = (x1; x2; : : : ; xm) be a nearly U-type design NU(n; qm) de6ned in Section 1.
De6ne a matrix

Z = (Z (1); Z (2); : : : ; Z (m));

where Z (j) = (z( j)l� ) is an n× q sub-matrix with

z( j)l� =

{
1 if factor xj takes level � in run l;

0 otherwise:
(5)
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Z is called the induced matrix of X . Suppose (�ij) =ZZ
′. Then �ij(i �= j) represents

the number of coincidences between any two distinct rows of X .
Fang et al. [9] gave an analytical expression and the lower bound of the discrete

discrepancy in the case of U-type designs. A similar lower bound for nearly U-type
designs can also be obtained. To present this, we 6rst give the following lemma.

Lemma 2.1. Let a¿ 1 be a constant number and c be a positive integer. Let
Y be a set of s-dimension vectors of non-negative integers. Suppose for any
y= (y1; y2; : : : ; ys)∈Y ,

∑s
l=1 yl = c and

f(y) =
s∑

l=1

ayl

is a function over Y . Then for any y∈Y , f(y)¿ (s + st − c)at + (c − st)at+1, and
the minimum value of f(y) over Y can be achieved at ŷ if and only if s + st − c
coordinates of ŷ take the value t and c − st coordinates of ŷ take the value t + 1,
where t = �c=s	.

Proof. By de6nition, Y is a 6nite set. So the minimum of f over Y can be achieved
at some ŷ= (ŷ 1; ŷ 2; : : : ; ŷ s). We claim that

|ŷ i − ŷ j|6 1 for all i �= j: (6)

Otherwise, there exist some i �= j such that ŷ i − ŷ j ¿ 1. Let y∗ = (y∗
1 ; y

∗
2 ; : : : ; y

∗
s )

be obtained from ŷ, where y∗
i = ŷ i − 1, y∗

j = ŷ j + 1, and y∗
l = ŷl, for l �= i and j.

Obviously, the coordinates of y∗ are all non-negative integers and satisfy
∑s

l=1 y
∗
l = c.

But f(y∗)¡f(ŷ), which is a contradiction.
Since

∑s
l=1 ŷl=c, (6) guarantees that there are s+st−c coordinates of ŷ taking value

t and c− st coordinates of ŷ taking value t+1. So f(ŷ)= (s+ st− c)at +(c− st)at+1.
The proof is then complete.

Now we can prove that

Theorem 2.2. Let n, m and q be positive integers and n=qt+r, 06 r6 q−1. Let X
be a fractional factorial design of n runs and m q-level factors, and Z be its induced
matrix. Suppose (�ij)=ZZ

′, $=mt(n−q+r)=n(n−1) and %=�$	, where �x	 denotes
the integer part of x. Then

D2(X ; a; b) =−
m∏

j=1

[
a+ (q− 1)b

q

]
+

am

n
+

bm

n2

n∑
i; j=1; i �=j

(a
b

)�ij
; (7)

D2(X ; a; b)¿−
m∏

j=1

[
a+ (q− 1)b

q

]
+

am

n
+

bm(n− 1)
n

×
[
(%+ 1− $)

(a
b

)%
+ ($ − %)

(a
b

)%+1
]

(8)
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and the lower bound of D2(X ; a; b) on the right-hand side of (8) can be achieved if
and only if all the o:-diagonal entries of ZZ ′ take the same value %, or take only
two values % and %+ 1.

Proof. The conclusion comes from (4) and Lemma 2.1. Note that Z is the induced ma-
trix of X and (�ij)=ZZ

′, so �ij’s are all non-negative integers and satisfy
∑n

i=1

∑n
j=1; j �=i

�ij = mt(n− q+ r).

From Theorem 2.2, an NU(n; qm) is a uniform design if the lower bound in (8)
is achieved. As in Section 1, we write Un(qm) for an NU(n; qm) which is a uniform
design under the discrete discrepancy, in which n is not necessarily a multiple of q.

3. The connection between uniform designs and resolvable packings and coverings

Let n and � be positive integers. A packing (resp. covering) of pairs of points is an
ordered pair (V;B) where V is an n-set (of points), and B is a collection of subsets of
V , called blocks, such that each pair of points of V occurs at the most (resp. at least)
� times in the blocks. If |B| ∈K for any B∈B, then the packing (resp. covering) is
often written as a P(K; �; n) (resp. C(K; �; n)).

From the graph theoretic terms, a P(K; �; n) (resp. C(K; �; n)) is a decomposition of
the complete multigraph �Kn, each of its edges having multiplicity �, into its cliques
(blocks) of order k (k ∈K), in which some of its edges are allowed to be used less
than (resp. more than) � times. For any edge e={x; y} of �Kn, let m(e) be the number
of cliques containing e. The leave (excess) of the P(K; �; n) (resp. C(K; �; n)) is the
multigraph spanned by all pairs e of points with multiplicity �−m(e) (resp. m(e)−�).
A packing or a covering is called resolvable if its block set admits a partition into

parallel classes, each parallel class being a partition of its point set V . In what follows,
the notation RP(K; �; n; m) (resp. RC(K; �; n; m)) is adopted for a resolvable P(K; �; n)
(resp. C(K; �; n)) with m parallel classes. Whenever K = {k}, we omit the braces.
Resolvable packings and coverings arise in the study of resolvable pairwise balanced

designs (RPBDs). An RPBD, RB(K; �; n), is a pair (V;B) where V is an n-set (of
points), and B is a collection of subsets (called blocks) of V . Each block has size
k ∈K and each pair of distinct points of V occurs in exactly � blocks of B. And
B admits a partition into parallel classes. Thus, an RB(K; �; n) is both an RP(K; �; n)
and RC(K; �; n). However, the converse is clearly not true. Therefore, we can think of
resolvable packings and coverings as a generalization of RPBDs. It has been proved
(see [6]) that RPBDs are very useful in construction of optimal factorial designs under
various criteria. To ensure that the derived factorial designs from RPBDs contain no
fully aliased column, that is, each of its column cannot be obtained from another
column by a permutation of levels, it is natural to require the RPBDs used to contain
no identical parallel classes.
Resolvable packings and coverings without identical parallel classes can be used di-

rectly to obtain uniform designs, which are nearest to U-type designs. For simplicity,
here we develop the relationship between RP(K; �; n; m)’s=RC(K; �; n; m)’s and Un(qm)’s
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for the case n = qt + r with r ∈{0; 1; q − 1}. To this end, the resolvable packings
and coverings under our consideration are mainly for the case where the block sizes
are restricted to be in K = {k − 1; k; k + 1}. Throughout the remainder of this pa-
per, we use notation R̃MP(k; �; n; m) (resp. R̃MC(k; �; n; m)) to indicate an RP({k −
1; k; k + 1}; �; n; m) (resp. RC({k − 1; k; k + 1}; �; n; m)) which satis6es the following
properties:

(1) n ≡ k − 1; 0 or 1 (mod k);
(2) it contains the maximum (resp. minimum) possible number m of parallel classes,

which are mutually distinct;
(3) each parallel class consists of �(n − k + 1)=k	 blocks of size k and one block of

size n− k�(n− k + 1)=k	;
(4) its leave (resp. excess) is a simple graph, that is, �−m(e)6 1 (resp. m(e)−�6 1)

for any pair e of distinct points.

In the particular case where the R̃MP and R̃MC are exact, namely, an
RB({k − 1; k; k + 1}; �; n) satisfying the above properties exists, we simply write
R̃B(k; �; n; m) for both R̃MP(k; �; n; m) and R̃MC(k; �; n; m).

It is easily calculated that the number m of parallel classes in an R̃MP(k; �; n; m) is
upper bounded by

⌊
�n(n− 1)

k(k − 1)t + (n− kt)(n− kt − 1)

⌋
;

while the number m of parallel classes in an R̃MC(k; �; n; m) is lower bounded by

⌊
�n(n− 1)− 1

k(k − 1)t + (n− kt)(n− kt − 1)

⌋
+ 1;

where t = �(n− k + 1)=k	.
In the literature, an R̃MP(3; 1; n; m) is called a Kirkman school project design (KSPD)

introduced in a paper by QCernRy et al. [3]. Further investigation into KSPDs was done
by a number of authors (see, for example, [4,1,20]
Now given an R̃MP(k; �; n; m) (or R̃MC(k; �; n; m)), (V;B). Without loss of gener-

ality we assume that V = {1; 2; : : : ; n} and B =
⋃m

j=1 Pj, where each Pj stands for a
parallel class of blocks which contains �(n− k +1)=k	 blocks of size k and one block
of size n− k�(n− k + 1)=k	. Then we can construct a factorial design as follows.

1. Let q= �(n− k + 1)=k	+ 1. Give a natural order 1; 2; : : : ; q to the q blocks in each
parallel class Pj(j = 1; 2; : : : ; m);

2. For each Pj, construct a q-level column dj = (dij) such that dij = u, if point i is
contained in the uth block of Pj of B(j = 1; 2; : : : ; m).

The m columns constructed from Pj of B(j=1; 2; : : : ; m) form a factorial design with
n runs and m factors of q-level.
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Further, we can prove that

Theorem 3.1. Suppose n, k, � and m are positive integers, and n ≡ r (mod k) where
r ∈{0; 1; k − 1}. Then the factorial design derived from an R̃MP(k; �; n; m) (or R̃MC
(k; �; n; m)) as above is a uniform design Un(qm), where q= �(n− k + 1)=k	+ 1.

Proof. Let X be the factorial design derived from the given R̃MP(k; �; n; m) (or R̃MC
(k; �; n; m)) and Z is the induced matrix of X . Since each parallel class in the
R̃MP(k; �; n; m) (or R̃MC(k; �; n; m)) has �(n − k + 1)=k	 blocks of size k and one
block of size n− k�(n− k + 1)=k	, in any column of design X �(n− k + 1)=k	 levels
appear k times and one level appears k−1; k or k+1 times depending on n ≡ k−1; 0
or 1 (mod k). Hence, it is a nearly U-type design. Now suppose (�ij)=ZZ

′; by Theo-
rem 2.2, we need to show that all the oS-diagonal entries of ZZ ′ take the same value
%, or take only two values % and %+ 1, i.e. the numbers of coincidences between any
two distinct rows of X can only take two values, whose diSerences do not exceed
1. In fact, the elements in rows ri and rj in X are coincident if and only if the pair
e = (i; j) is contained in the same block of the R̃MP(k; �; n; m) (or R̃MC(k; �; n; m)).
But by de6nition, in an R̃MP(k; �; n; m), the pair (i; j) is contained in either � or �− 1
blocks; in an R̃MC(k; �; n; m), the pair (i; j) is contained in either � or � + 1 blocks.
Therefore, the uniform property of the design follows from Theorem 2.2.
Finally, the parallel classes in the R̃MP(k; �; n; m) (resp. R̃MC(k; �; n; m)) are all

mutually distinct, which guarantees that there are no fully aliased columns in X .

4. New uniform designs

Theorem 3.1 enables us to obtain uniform designs from R̃MPs and R̃MCs. The
latter has been studied thoroughly for certain cases in combinatorial design theory. In
particular, we have the following known results.

Lemma 4.1. There exist:

1. an R̃B(3; 1; n; (n− 1)=2) when n ≡ 3 (mod 6) [21];
2. an R̃B(3; 2; n; n− 1) when n ≡ 0 (mod 3) and n¿ 9 [23];
3. an R̃MP(3; 1; n; (n − 2)=2) and an R̃MC(3; 1; n; n=2) when n ≡ 0 (mod 6) and

n �= 6; 12 [22,17];
4. an R̃MP(3; 1; n; (n− 4)=2) when n ≡ 4 (mod 6) and n �= 4; 10 [4];
5. an R̃MP(3; 1; n; (n − 3)=2) for n ≡ 1 (mod 6) and except for n∈{1; 7; 12} and
possibly except for n∈{19; 55; 61; 67; 73; 85; 109} [4,20];

6. an R̃MC(3; 1; n; �(n− 1)=2	) when n ≡ 1 (mod 3) and n �∈ {13; 16; 67} [20];
7. an R̃MP(3; 1; n; �n=2	) when n ≡ 2 (mod 3) and n �= 5; 11 [2];
8. an R̃MC(3; 1; n; �(n+ 1)=2	) if n ≡ 2 (mod 3) and n �∈ {5; 11} [20];
9. an R̃B(4; 1; n; (n− 1)=3) when n ≡ 4 (mod 12) [14].
10. an R̃MP(4; 1; n; (n− 3)=3) when n ≡ 0 (mod 12) and n �∈ {264; 372} [11];
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11. an R̃MC(4; 1; n; �(n + 1)=3	) for n ≡ 0; 8 (mod 12) and except for n = 12 and
possibly except for n∈{104; 108; 116; 132; 156; 164; 204; 212; 228; 276} [18].

As an immediate consequence of Theorem 3.1 and Lemma 4.1, we have

Theorem 4.2. A uniform design Un((t + 1)m) exists if the parameters satisfy one of
the following:

1. n ≡ 0 (mod 6), t=(n−3)=3, m∈{�(n−1)=2	; �n=2	; n−1} and (n; m) �∈ {(6; 2); (12; 5);
(6; 3); (12; 6); (3; 2); (6; 5)};

2. n ≡ 1 (mod 3), t=(n−4)=3, m∈{�(n−3)=2	; �(n−1)=2	} and (n; m) �∈ {(10; 3); (7; 2);
(13; 5); (19; 8); (55; 26); (61; 29); (67; 32); (73; 35); (85; 41); (109; 53); (13; 6); (16; 7);
(67; 33)};

3. n ≡ 2 (mod 3), t = (n − 2)=3, m∈{�n=2	; �(n + 1)=2	} and (n; m) �∈ {(5; 2); (11; 5);
(5; 3); (11; 6)};

4. n ≡ 0 (mod 12), t=(n−4)=4, m∈{(n−3)=3; n=3} and (n; m) �∈ {(264; 87); (372; 123);
(12; 4); (108; 36); (132; 44); (156; 52); (204; 68); (228; 76); (276; 92)};

5. n ≡ 4 (mod 12), t = (n− 4)=4, m= (n− 1)=3;
6. n ≡ 8 (mod 12), t=(n−4)=4, m=(n+1)=3 and (n; m) �∈ {(104; 35); (116; 39); (164; 55);

(212; 71)}.

Now we present some more new in6nite classes of R̃MPs and R̃MCs. To begin
with, we state some terminology and related results from combinatorial design theory,
which will be used later.

De#nition 4.3. Let n be a positive integer, K be a set of positive integers. A group
divisible design of index �, denoted by (K; �)-GDD is a triple (V;G;B), which satis6es
the following properties:

1. V is a set of n points;
2. G is a partition of set V into subsets (called groups);
3. B is a collection of subsets of V with sizes from K (called blocks), such that a

group and a block contain at most one common point;
4. every pair of points from distinct groups occurs in exactly � blocks.

The group-type (or type) of a GDD is the multiset {|G| : G ∈G}. Usually, an “expo-
nential notation” is used to describe the type of a GDD: A GDD of type
tu11 tu22 · · · tull is a GDD where there are ui groups of size ti for 16 i6 l. When K={k},
the notation (k; �)-GDD is used. A transversal design TD(k; �; n) is a (k; �)-GDD of
type nk . If for all i=1; 2; : : : ; l, ti=1, then a (K; �)-GDD of type 1n is called a pairwise
balanced design, or a B(K; �; n).
For the existence of pairwise balanced designs, the following result is known (see

[12,2]).

Lemma 4.4. Let K = {5; 9; 13; 17; 29}. Then for any n ≡ 1 (mod 4) and n �= 33, there
exists a B(K; 1; n).
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De#nition 4.5. Let k and � be positive integers. A (k; �)-frame is a triple (V;G;B),
where V is a set of cardinality n, G is a partition of V into subsets (called groups),
and B is a collection of k-subsets of V (called blocks), which satis6es the following
properties:

1. B can be partitioned into partial parallel classes, where each partial parallel class
forms a partition of V \ G for some G ∈G;

2. each unordered pair {x; y} of V which does not lie in some group G of G occurs
in precisely � blocks of B;

3. no unordered pair {x; y} of elements of V which lies in some group G of G also
lies in a block of B.

The type of the (k; �)-frame is the multiset {|G| : G ∈G}. As with GDDs, if G
contains a1 groups of size g1, a2 groups of size g2, etc., where n=a1g1+a2g2+· · ·+asgs,
then the exponential notation ga1

1 ga2
2 · · · gas

s is used.
The following recursive method is frequently used in constructions of frames. Its

proof can be found in Furino et al. [10].

Lemma 4.6. Let m be a positive integer. If there exist a (K; 1)-GDD of type
tu11 tu22 · · · tuss and an “ingredient” (k; �)-frame of type mg for any g∈K , then there
exists a (k; �)-frame of type (mt1)u1 (mt2)u2 · · · (mts)us .

Now we employ both direct and recursive constructions to establish a number of
new in6nity classes of R̃MPs and R̃MCs.

Theorem 4.7. Suppose n ≡ 4 (mod 6)¿ 16 and n �∈ {28; 34; 40; 46; 58; 70; 82; 94; 142}.
Then both an R̃MP(3; 2; n; n− 3) and an R̃MC(3; 2; n; n− 2) exist.

Proof. The proof splits into two cases depending on the values of n modulo 12.
Case 1: n ≡ 4 (mod 12)
In this case, we 6rst note that a (3; 2)-frame of type 12u for any integer u¿ 4 has

been constructed by Hanani [13]. Let (Zu × Z12;G;A) be such a frame, where Zm

stands for the residue ring of integers modulo m, and G= {{i}×Z12 : i∈Zu}. For any
group {i} × Z12 (i∈Zu), we write A1(i);A2(i); : : : ;A12(i) for the 12 partial parallel
classes of blocks, each of which partitions Zu × Z12 \ {i} × Z12. We then add four
in6nite points {∞1;∞2;∞3;∞4} to the group {i} × Zn for any i∈Zu and construct a
resolvable P({3; 4}; 2; 16) over ({i}×Z12)∪{∞1;∞2;∞3;∞4} with 12 distinct parallel
classes. The following 5 blocks form a parallel class of the desired packing:

{∞1; (i; 6); (i; 11)};
{∞2; (i; 2); (i; 7)};
{∞3; (i; 8); (i; 10)};
{∞4; (i; 4); (i; 5)};
{(i; 0); (i; 1); (i; 3); (i; 9)}:



34 K.-T. Fang et al. / Discrete Mathematics 274 (2004) 25–40

Cycling the blocks in the second components modulo 12, under the rule ∞j + x=∞j,
gives its 12 distinct parallel classes. Obviously, these 12 parallel classes of blocks over
({i} × Z12) ∪ {∞1;∞2;∞3;∞4} and Aj(i)(j = 1; 2; : : : ; 12) can be matched into 12
parallel classes over (Zu × Z12) ∪ {∞1;∞2;∞3;∞4}.

It is important to point out that the leave of the packing over {i} × Zu consists of
the following 4 vertex-disjoint K3s (triples) and two identical K4s (quadruples):

{(i; 0); (i; 4); (i; 8)};
{(i; 1); (i; 5); (i; 9)};
{(i; 2); (i; 6); (i; 10)};
{(i; 3); (i; 7); (i; 11)};
{∞1; ∞2; ∞3; ∞4} (twice):

Thus, the desired R̃MP({3; 4}; 2; 12u+4; 12u+1) over (Zu×Z12)∪{∞1;∞2;∞3;∞4}
can be formed if we take all triples and one quadruple in the leave of the packings
over {i} × Z12 ∪ {∞1;∞2;∞3;∞4} (i∈Zu) as one more parallel class. Furthermore,
we can obtain an R̃MC({3; 4}; 2; 12u + 4; 12u + 2) by adding one more parallel class
to the packing as follows:

{(i; 0); (i; 1); (i; 2)};
{(i; 3); (i; 4); (i; 5)};
{(i; 6); (i; 7); (i; 8)};
{(i; 9); (i; 10); (i; 11)};
{∞1; ∞2; ∞3; ∞4};

where i runs over Zu.
Case 2: n ≡ 10 (mod 12)
In this case, we will 6rst construct a (3; 2)-frame of type 12u181 with u¿ 7 and

u �= 10. Take a TD(5; 1; u), which is known to exist for all u¿ 7, u �= 10 (see [3]), and
delete all but 6 points in one group. Suppose x is a certain deleted point. Then treat the
truncated blocks and group originally containing x as groups and treat the untruncated
groups of the TD(5; 1; u) as blocks to form a {4; 5; u}-GDD of type 4u61. Now give
weight 3 to every point of the GDD, and apply Lemma 4.6 to get a (3; 2)-frame of type
12u181. Here the ingredient (3; 2)-frames of types 34, 35 and 3u required in Lemma
4.6 all exist (see [13]).
Now let ((Zu × Z12) ∪ ({u} × Z18);G;A) be a (3; 2)-frame of type 12u181, where

G = {{i} × Z12 : i∈Zu} ∪ ({u} × Z18). Add four in6nite points {∞1;∞2;∞3;∞4} to
each group of this frame. For any group {i} × Z12(i∈Zu), we construct a resolvable
P({3; 4}; 2; 16) as in case 1 over ({i}×Z12)∪{∞1;∞2;∞3;∞4}. For the group {u}×
Z18, we construct a resolvable P({3; 4}; 2; 22) over ({u} × Z18) ∪ {∞1;∞2;∞3;∞4},
whose blocks are obtained by cycling the following blocks in the second components
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modulo 18 under the rule ∞j + x =∞j:
{∞1; (u; 3); (u; 15)};
{∞2; (u; 4); (u; 12)};
{∞3; (u; 8); (u; 9)};
{∞4; (u; 6); (u; 10)};
{(u; 5); (u; 7); (u; 14)};
{(u; 1); (u; 11); (u; 16)};
{(u; 0); (u; 2); (u; 13); (u; 17)}:

The leave of this packing consists of 6 disjoint K3s (triples) and two identical K4s as
follows:

{(u; 0); (u; 6); (u; 12)};
{(u; 1); (u; 7); (u; 13)};
{(u; 2); (u; 8); (u; 14)};
{(u; 3); (u; 9); (u; 15)};
{(u; 4); (u; 10); (u; 16)};
{(u; 5); (u; 11); (u; 17)};
{∞1; ∞2; ∞3; ∞4} (twice):

Thus, we can employ the same procedure as that in case 1 to obtain the desired R̃MP
and R̃MC.
It remains to prove both an R̃MP(3; 2; n; n− 3) and an R̃MC(3; 2; n; n− 2) exist for

n= 16 or 22.
When n = 16, an R̃MP(3; 2; 16; 13) can follow from the resolvable P({3; 4}; 2; 16)

over {i}×Z12 for some i∈Zu constructed in case 1 by adding one more parallel class,
which consists of all triples in its leave together with a quadruple of four in6nite points.
An R̃MC(3; 2; 16; 14) can be obtained by adding one more parallel class to the

R̃MP(3; 2; 16; 13):
{(i; 0); (i; 1); (i; 2)};
{(i; 3); (i; 4); (i; 5)};
{(i; 6); (i; 7); (i; 8)};
{(i; 9); (i; 10); (i; 11)};
{∞1; ∞2; ∞3; ∞4}:

Similarly, an R̃MP(3; 2; 22; 19) and R̃MC(3; 2; 22; 20) can be obtained from the resolv-
able P({3; 4}; 2; 22) constructed in Case 2.

Applying Theorem 3.1 to Theorem 4.7 gives the following new uniform designs.
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Table 1
U16(514)

Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 5 1 3 5 3 2 1 4 4 5 2 5 1 1
1 5 5 1 3 5 3 2 1 4 4 5 2 2 1
2 2 5 5 1 3 5 3 2 1 4 4 5 3 1
3 5 2 5 5 1 3 5 3 2 1 4 4 4 2
4 4 5 2 5 5 1 3 5 3 2 1 4 1 2
5 4 4 5 2 5 5 1 3 5 3 2 1 2 2
6 1 4 4 5 2 5 5 1 3 5 3 2 3 3
7 2 1 4 4 5 2 5 5 1 3 5 3 4 3
8 3 2 1 4 4 5 2 5 5 1 3 5 1 3
9 5 3 2 1 4 4 5 2 5 5 1 3 2 4
10 3 5 3 2 1 4 4 5 2 5 5 1 3 4
11 1 3 5 3 2 1 4 4 5 2 5 5 4 4
∞1 1 1 1 1 1 1 1 1 1 1 1 1 5 5
∞2 2 2 2 2 2 2 2 2 2 2 2 2 5 5
∞3 3 3 3 3 3 3 3 3 3 3 3 3 5 5
∞4 4 4 4 4 4 4 4 4 4 4 4 4 5 5

Theorem 4.8. A uniform design Un(((n − 1)=3)m) exists if n ≡ 4 (mod 6)¿ 16,
m∈{n − 3; n − 2} and (n; m) �∈ {(28; 25); (28; 26); (34; 31); (34; 32); (40; 37); (40; 38);
(46; 43); (46; 44); (58; 55); (58; 56); (70; 67); (70; 68); (82; 79); (82; 80); (94; 91); (94; 92);
(142; 139); (142; 140)}.

As an illustration of Theorem 4.7, we provide the following example.

Example 4.9. The R̃MC(3; 2; 16; 14) constructed in the proof of Theorem 4.7 gives us
a uniform design U16(514) by Theorem 3.1, which is listed in Table 1.

Before we present another construction, we 6rst establish the following lemma.

Lemma 4.10. For any u∈{5; 9; 13; 17; 29}, there exists a (4; 2)-frame of 3u, whose
partial parallel classes are mutually distinct.

Proof. For these frames, our constructions are as follows.
When u∈{5; 13; 17; 29}, we take point set V = Zu × Z3 and group set G = {{i} ×

Z3: i∈Zu}. For the required blocks, we 6rst develop (mod 3) the (u − 1)=2 blocks
listed below in the second components to form two initial partial parallel classes. Then
we develop (mod u) the blocks in these two initial classes in the 6rst components to
get 2u desired partial parallel classes.

u= 5:

{(1; 0); (2; 2); (3; 2); (4; 0)}; {(1; 0); (2; 1); (3; 1); (4; 0)}:
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u= 13:

{(1; 0); (5; 2); (8; 2); (12; 0)};
{(2; 0); (3; 2); (10; 2); (11; 0)};
{(4; 0); (6; 2); (7; 2); (9; 0)};

{(1; 0); (5; 1); (8; 1); (12; 0)};
{(2; 0); (3; 1); (10; 1); (11; 0)};
{(4; 0); (6; 1); (7; 1); (9; 0)}:

u= 17:

{(1; 0); (4; 2); (13; 2); (16; 0)};
{(2; 0); (8; 2); (9; 2); (15; 0)};
{(3; 0); (5; 2); (12; 2); (14; 0)};
{(6; 0); (7; 2); (10; 2); (11; 0)};

{(1; 0); (4; 1); (13; 1); (16; 0)};
{(2; 0); (8; 1); (9; 1); (15; 0)};
{(3; 0); (5; 1); (12; 1); (14; 0)};
{(6; 0); (7; 1); (10; 1); (11; 0)}:

u= 29:

{(1; 0); (2; 2); (27; 2); (28; 0)};
{(3; 0); (13; 2); (16; 2); (26; 0)};
{(4; 0); (8; 2); (21; 2); (25; 0)};
{(5; 0); (10; 2); (19; 2); (24; 0)};
{(6; 0); (12; 2); (17; 2); (23; 0)};
{(7; 0); (14; 2); (15; 2); (22; 0)};
{(9; 0); (11; 2); (18; 2); (20; 0)};

{(1; 0); (2; 1); (27; 1); (28; 0)};
{(3; 0); (13; 1); (16; 1); (26; 0)};
{(4; 0); (8; 1); (21; 1); (25; 0)};
{(5; 0); (10; 1); (19; 1); (24; 0)};
{(6; 0); (12; 1); (17; 1); (23; 0)};
{(7; 0); (14; 1); (15; 1); (22; 0)};
{(9; 0); (11; 1); (18; 1); (20; 0)}:

When u=9, we take point set V ={(Z3×Z3)×Z3} and group set G={{(i; j)}×Z3 :
(i; j)∈Z3 × Z3}. As above, we 6rst develop (mod 3) the following 4 blocks in the last
components to form 2 initial partial parallel classes. Then we develop them (mod (3; 3))
in the 6rst two components to get 18 partial parallel classes as desired.

{((0; 1); 0); ((1; 2); 2); ((2; 1); 2); ((0; 2); 0)};
{((1; 0); 0); ((1; 1); 2); ((2; 2); 2); ((2; 0); 0)};
{((0; 1); 0); ((1; 2); 1); ((2; 1); 1); ((0; 2); 0)};
{((1; 0); 0); ((1; 1); 1); ((2; 2); 1); ((2; 0); 0)}:

Theorem 4.11. If n ≡ 4 (mod 12) and n �= 100, then an R̃B(4; 2; n; (2(n−1))=3) exists.

Proof. For each stated value of n, we write n = 3u + 1. It is known from Lemma
4.4 that a PBD, B({5; 9; 13; 17; 29}; 1; u), exists whenever u ≡ 1 (mod 4) and u �= 33.
Regard such a PBD as a ({5; 9; 13; 17; 29}; 1)-GDD of type 1u and apply Lemma 4.6
with m = 3, where the ingredient frames required are provided in Lemma 4.10. This
yields a (4; 2)-frame of type 3u.
Now we add one in6nite point ∞ to each group G of a (4; 2)-frame of type 3u. Take

two copies of quadruple G∪{∞} twice. Then we use them and the two partial parallel
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classes of this frame which partition V \G to form two parallel classes over V ∪{∞},
where V is the point set of this frame. This creates an R̃B(4; 2; 3u+ 1; 2u).

Remark. The R̃B(4; 2; 3u+ 2; 2u) constructed in the proof of Theorem 4.11 does not
contain identical parallel classes. Though an RB(4; 1; n) for any n ≡ 4 (mod 12) is well
known to exist, we cannot take its two copies to obtain an RB(4; 2; n), since its derived
uniform design will be fully aliased.
Applying Theorems 3.1 to 4.11, we obtain the following new uniform designs.

Theorem 4.12. A uniform design Un((n=4)m) exists if n ≡ 4 (mod 12), m=2(n− 1)=3
and (n; m) �= (100; 66).

To obtain further classes, we need the following lemma.

Lemma 4.13. If there exists an R̃MP(k; �; n; m) (resp. R̃MC(k; �; n; m)) with n ≡
0 (mod k), then there exists an R̃MP(k; �; n− 1; m) (resp. R̃MC(k; �; n− 1; m)).

Proof. Suppose that (V;B) is an R̃MP(k; 1; n; m) (resp. R̃MC(k; 1; n; m)) with n ≡
0 (mod k). Since n ≡ 0 (mod k), all blocks in B have the same size k by de6nition.
So we can take V? =V \ {x} and B? = {B \ {x}|B∈B} to get an R̃MP(k; 1; n− 1; m)
(resp. R̃MC(k; 1; n− 1; m)), (V?;B?), where x is an arbitrary 6xed point in V .

Making use of Lemmas 4.13, 4.1 and Theorem 4.11, we have the following result.

Theorem 4.14. There exist:

1. an R̃B(3; 2; n; n) if n ≡ 2 (mod 3) and n¿ 8;
2. an R̃B(4; 1; n; n=3) if n ≡ 3 (mod 12);
3. an R̃MP(4; 1; n; (n− 2)=3) if n ≡ 11 (mod 12) and n �∈ {263; 371};
4. an R̃MC(4; 1; n; �(n + 2)=3	) if n ≡ 7; 11 (mod 12) and n �∈ {11; 103; 107; 115; 131;

155; 163; 203; 211; 227; 275};
5. an R̃MP(4; 2; n; 2n=3) if n ≡ 3 (mod 12) and n �= 99.

Applying Theorem 3.1 to Theorem 4.14, we obtain the following new uniform de-
signs.

Theorem 4.15. A uniform design Un((t +1)m) exists if the parameters satisfy one of
the following:

1. n ≡ 2 (mod 3), t = (n− 2)=3, m= n and (n; m) �= (5; 5);
2. n ≡ 3 (mod 12), t = (n− 3)=4, m∈{n=3; 2n=3} and (n; m) �= (99; 66);
3. n ≡ 7 (mod 12), t = (n − 3)=4, m = (n + 2)=3 and (n; m) �∈ {(103; 35); (115; 39);

(163; 55); (211; 71)};
4. n ≡ 11 (mod 12), t=(n−3)=4, m∈{(n−2)=3; (n+1)=3} and (n; m) �∈ {(263; 87); (371;

123); (11; 4); (107; 36); (131; 44); (155; 52); (203; 68); (227; 76); (275; 92)}.
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5. Concluding remarks

All the existing uniform designs Un(qm) are constructed based on U-type designs,
which require the number of experimental runs n to be a multiple of the number
of factor levels q. In the present paper, we develop a general construction method
for uniform designs via resolvable packings and coverings, which works for the case
where n is not a multiple of q. Several series of new uniform designs are then given.
It is hoped that some more in6nite classes of new uniform designs can be produced
by means of resolvable packings and coverings.
It is known that (t; m; s)-nets proposed by Niederreiter [19] have a good structure

and can be utilized to construct uniform designs. A further study is encouraged. A
(t; m; s)-net in base b involves bm points. When the number of runs n �= bm, we have
to employ other ways to generate uniform designs.
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