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Given a set S of n red and blue points in the plane, a planar bichromatic minimum spanning
tree is the shortest possible spanning tree of S , such that every edge connects a red and
a blue point, and no two edges intersect. We show that computing this tree is NP-hard
in general. For points in convex position, a cubic-time algorithm can be easily designed
using dynamic programming. We adapt such an algorithm for the special case where the
number of red points (m) is much smaller than the number of blue points (n), resulting in
an O (nm2) time algorithm. For the general case, we present a factor O (

√
n ) approximation

algorithm that runs in O (n log n log logn) time. Finally, we show that if the number of
points in one color is bounded by a constant, the optimal tree can be computed in
polynomial time.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let S be a set of n points in the plane, where every point has one of two possible colors (red or blue). In computational
geometry, several papers have discussed problems that concern such a bichromatic input, like red-blue intersection ([2,19]
and many more), red-blue separation (e.g. [4,8,10,11,15]), and red-blue connection problems (e.g. [1,3,5,14]). See Kaneko and
Kano [16] for an overview. This paper discusses red-blue, or bichromatic, spanning trees. We obtain a spanning tree T of
S by finding a set of n − 1 edges that connect pairs of points of different colors (“color conforming” or “bichromatic”) and
form an acyclic connected component. If T does not contain intersections it is a planar spanning tree. In this paper we
assume that no three points are collinear, otherwise a planar bichromatic spanning tree does not always exist.

A minimum (weight) spanning tree (MST) of S is a spanning tree of minimum total length. Note that an MST needs not be
unique. It is well known that the (monochromatic) MST of a set of points in the plane can be found using a greedy algorithm
like Kruskal’s [17]. Kruskal’s algorithm adds edges in the order of increasing length, and discards edges that would create
a cycle in the graph built so far. The (monochromatic) MST of a set of points or line segments in the plane cannot contain
intersections [9,14].

Regarding the bichromatic version, it has been shown that a set of non-intersecting, bichromatic line segments can
always be extended to a planar bichromatic spanning tree [13,14]. If loose points occur as well, then no planar bichromatic
spanning tree may be possible. It has also been shown that the bichromatic MST of a given point set S may contain
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Fig. 1. An example set of bichromatic vertices and the bichromatic edges that are selected by the greedy planar algorithm, an augmented version of Kruskal’s
algorithm. Once the algorithm reaches this situation it is not possible to continue because r0 cannot be connected to any blue point.

Fig. 2. An instance of planar 3-SAT where variables are shown as circles and clauses as rectangles.

intersections if one uses a greedy algorithm like Kruskal’s [12]. Modifying Kruskal’s algorithm to check for intersections
and discarding an edge if it causes an intersection, leads to a greedy algorithm which we will refer to as the greedy planar
algorithm; it does not always yield the optimal planar solution [12], and can even be a linear factor off. The problem of
finding a superlinear bound for the ratio of the weight of the greedy planar solution to the weight of the optimal planar
solution was left open. Actually, in some cases a greedy algorithm may not find any planar bichromatic spanning tree at all,
because at some stage there might be points that cannot be connected to any point of the other color anymore. An example
of a point set that results in this situation is shown in Fig. 1. After several steps of the greedy planar algorithm, the red
point r0 cannot be connected to any blue point anymore. More details on the construction of such a point set are given in
[7]. Another problem left open in [12] is finding an approximation algorithm for the planar bichromatic MST of S .

In this paper we show that the planar bichromatic minimum spanning tree problem is NP-hard in the general case.
However, for points in convex position it can be computed in cubic time using dynamic programming. We adapt this
approach, for points in convex position, to the special case where the number of red points (m) is significantly less than
the number of blue points (n), resulting in an O (nm2) time algorithm. Then we present an approximation algorithm that
computes an O (

√
n )-approximation in O (n log n log log n) time. Finally, we discuss computing optimal planar bichromatic

minimum spanning trees with only few red points and n blue points. For two red points and n − 2 blue points we give an
O (n log n) time algorithm, and for k > 2 red points and n −k blue points, for a constant k, we give an nO (k5) time algorithm.

2. Computing the planar bichromatic minimum spanning tree is NP-hard

We prove that the general planar bichromatic minimum spanning tree problem is NP-hard by reduction from planar
3-SAT [18]. Planar 3-SAT is an NP-complete variant of 3-SAT, where there is the additional constraint that the dependency
graph is planar. This graph has the variables and clauses of the formula as nodes, and there is an edge between a variable
node and a clause node if the variable occurs in the clause (see Fig. 2).

We base our construction on pairs of one red and one blue point that are very close together. We call such a pair a site.
We place a lot of these sites in the plane, together with a number of single red points. The shortest bichromatic spanning
tree that we could hope for in this situation is the classical minimum spanning tree of this set of sites (plus some small
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(a) (b)

Fig. 3. (a) Input points of a variable chain. (b) If the red (open) point of the leftmost site is chosen for the connection to the next site, then there is only
one way to connect the whole chain.

(a) (b)

Fig. 4. (a) The input for a variable. (b) One of the two possible states of the variable, say true, propagates through some of the connected chains.

(a) (b)

Fig. 5. (a) Input points of a clause gadget. (b) If all three chains have their fixed edges propagated towards the clause, the red center point cannot be
connected anymore using the desired distance.

overhead, which we can make as small as we want). However, this may not be realizable as a planar spanning tree, because
connections between pairs can interfere with each other. The idea is that in our construction, this is possible exactly when
a given 3-SAT formula can be satisfied. We will also include pairs of sites at equal distance, so the classical MST will not be
uniquely defined, but of course its value will.

Given a planar embedding of a 3-SAT instance (see Fig. 2), we will construct gadgets to represent the different variables
and clauses of this instance.

The main gadget we need in the construction is the variable chain, see Fig. 3(a). This gadget consists of a “chain” of sites,
where the distance between all consecutive sites is equal and the distances between any other two sites is larger. Now,
between every two consecutive sites, there are two possible edges to connect them: we either connect the blue point of
the first site with the red point of the second site, or the other way around. The chain is constructed in such a way that if
we choose a certain connection at a given point, this forces the choice of connections in one direction along the chain, see
Fig. 3(b).

The next thing we need are variable gadgets. We represent variables by a circular chain, with one single red point and
red/blue pairs elsewhere, see Fig. 4(a). Here the distances between all consecutive sites are equal, but the distance from the
single red point to its neighboring sites is larger (e.g., twice as large). This means that, in an optimal solution, we need all
connections between consecutive sites and exactly one of the two connections to the red point. If we choose any of the two
possibilities, this choice propagates through the chain and the whole tree is fixed, see Fig. 4(b). This means that there are
only two possible ways to connect this gadget, which will correspond to the true and false states of a variable in the
3-SAT instance. Now we can ‘tap off’ the state of this variable towards any clause where we need it by connecting chains
to the inner sites (of course the variable gadget can contain more sites if we need the variable more often), see Fig. 4(b).
Depending on where and how we connect the chains to the variable, it will propagate only when the variable is in the
true state or only when the variable is in the false state.

Then we need a clause gadget. We make these by taking a single red point, and three red/blue pairs at a fairly large
distance from it, with the red point of the pair towards the central red point (see Fig. 5(a)). We connect these sites with
chains to their respective variables. In an optimal spanning tree, the central red point will be connected to exactly one of
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Fig. 6. Example of the input (a) and output (b) for a set of bichromatic points in convex position. Any edge of a minimum spanning tree partitions the
plane into two independent subproblems.

the three sites. However, it cannot connect to a site if the respective chain is in the wrong state. If the variable gadget is
set to one state, the forced edges are propagated through some of the chains, and when it is set to the other state, it is
propagated through the other chains. So, we just need to propagate the true value to the clauses where the variable is
used as false, and vice versa.

Finally we need to connect all variables to each other by some fixed part of the tree, because the whole construction
needs to be a tree and not a forest. The variables of any planar 3-SAT instance can always be laid out as in Fig. 2, and by
the design of variable gadgets, these connections can easily be made. Also, we need to make sure that the distance between
different parts of the construction is large enough to avoid shortcuts.

Now we have a situation where a planar bichromatic spanning tree of the same length (plus some arbitrarily small
overhead) as the classical, monochromatic minimum spanning tree of the set of sites and single red points exists, if and
only if the 3-SAT instance is satisfiable.

Theorem 1. The problem of computing a planar bichromatic minimum spanning tree of a set of red and blue points is NP-hard.

3. Dynamic programming for points in convex position

If we have a set of n red and blue points in the plane that are in convex position, then we can compute the planar
bichromatic minimum spanning tree in O (n3) time. This is because in this case, any edge of the tree partitions the plane
into two independent subproblems, see Fig. 6. The following result can be obtained by a straightforward application of
dynamic programming (details can be found in [7]).

Theorem 2. A planar bichromatic minimum spanning tree of a set of n red and blue points in convex position can be computed in
O (n3) time.

When the number of red points (m) is much smaller than the number of blue points (n), we can use a more involved
dynamic programming algorithm in order to reduce the running time to O (nm2). The details are explained next.

Let S be a point set of points in convex position with m red points and n blue points, where m is considerably smaller
than n, that is, m � n. The points are assumed to be ordered cyclicly counterclockwise. Let Ti, j be the planar bichromatic
minimum spanning tree of the points {pi, . . . , p j} (in counterclockwise order). We will only compute Ti, j if at least one
of pi, p j is red. Furthermore, as an auxiliary problem we will define Ri, j as a pair of disjoint, planar bichromatic spanning
trees of the points {pi, . . . , p j} of minimum total length, such that pi and p j are in different trees. We will only compute
Ri, j if both pi and p j are red. Note that the table used to compute T has O (nm) entries and the table for R has O (m2)

entries.
Notice that for Ri, j , disjointness implies that there is a gap between two consecutive points pk and pk+1 in pi, . . . , p j so

that Ri, j is the union of Ti,k and Tk+1, j . So if all trees T within pi, . . . , p j are known, then Ri, j can be determined in O (n)

time by trying all j − i possibilities of the gap.
To compute the entries of the table for T , we observe the following cases for a given pair of points pi and p j , at least

one of which is red. The base cases are all trees Ti, j where pi is red and pi+1, . . . , p j are blue, or p j is red and pi, . . . , p j−1
are blue. These cases can easily be solved in O (n) time in total. The general cases are the following.

• pi and p j are both red. Then either there exists a blue point pb between pi and p j such that Ti, j = Ti,b ∪ Tb, j , or
Ti, j does not exist. We try all the possible blue points in O (n) time. Notice that this is done only for the red-red
combinations, and there are only O (m2) of them in total.

• pi is red and p j is blue, or vice versa, and they are not directly connected. Then there exists a red point pr between pi
and p j such that Ti, j = Ti,r ∪ Tr, j . We try all the possible red points in O (m) time.

• pi is red and p j is blue, and they are directly connected. We consider two possibilities. (1) p j is not connected to any
other red point than pi in Ti, j . Then Ti, j = Ti, j−1 ∪ pi p j . (2) p j is connected to at least one red point in pi+1, . . . , p j−1.
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Fig. 7. (a) A set of red and blue points. (b) The points divided by a grid. (c) Core regions are shaded and bounded by fat edges. (d) The Voronoi regions of
a maximal independent subset of the core regions.

Then there is such a red point pr with the lowest index, and Ti, j = Tr, j ∪ pi p j ∪ Ri,r . The first possibility is a single
option, and the second possibility gives O (m) choices for r.

• pi is blue and p j is red, and they are directly connected. This case is completely analogous to the previous case.

We observe that none of the subproblems requires a solution to Ti, j where both pi and p j are blue. The final answer
can be found in Ti+1,i , where at least one of pi, pi+1 is red. The table for T has m rows and n + m columns, each red-blue
entry is filled in O (m) time, and each red-red entry is filled in O (n) time. The table for R has m rows and m columns, and
each entry is filled in O (n) time. Therefore the total running time is O (nm2).

Theorem 3. A planar bichromatic minimum spanning tree of a set of m red and n blue points in convex position, given in cyclic order,
can be computed in O (nm2) time.

4. An O (
√

n )-approximation

In this section we present an approximation algorithm that computes a planar bichromatic spanning tree that is at most
O (

√
n ) times larger than the optimal one, in polynomial time. We start by taking a tight axis-parallel bounding square

around the input point set, and scale the square and the input so that the bounding square has unit size.

Lemma 1. The length of the optimal planar bichromatic spanning tree of the scaled point set is at least 1.

Proof. There are two points on opposite borders of the bounding squares, so they are at least 1 away from each other. �
Next, we create a grid by dividing the unit square into

√
n × √

n square cells, of side 1/
√

n. The point set is also divided
by the grid, see Fig. 7(b).

Lemma 2. If m of the n grid cells contain at least a point, then the length of the (optimal) planar bichromatic minimum spanning tree
is at least �(m/

√
n ).

Proof. If m grid cells contain a point, then at least 1
4 m cells that are not vertex- or edge-adjacent contain a point. To connect

these points with any spanning tree, a connection of length at least 1/
√

n is needed per grid cell. �
We classify the cells according to what points are inside them. There are three possibilities. Each grid cell is either empty,

or contains only points of one color, or contains points of both colors.
We will now define a set of core regions as follows. A core region is either a single grid cell, or two adjacent grid cells, or

four grid cells adjacent to a grid vertex. Each core region contains both red and blue points. Apart from that, the following
two properties should hold for a set of core regions.

Distance Property: Every point is either a distance of at most O (1/
√

n ) (a constant number of grid cells) away from a core
region in the set, or a distance of at least 1/

√
n (one grid cell) away from the closest point of the other color.

Separation Property: Every two core regions in the set are at least 1/
√

n apart.

The Distance Property guarantees the approximation factor: points in the first category will be connected by an edge
of O (1/

√
n ) length, so the sum of these lengths will not be more than O (

√
n ). Points in the second category will be

connected by an edge of length at most O (1), but in the optimal solution they are connected by some edge of at least
length �(1/

√
n ), so they are at most a factor O (

√
n ) too long.
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We start by computing a set of non-overlapping candidate core regions that has the Distance Property, but does not
necessarily have the Separation Property. From this set we select a subset that satisfies the Separation Property, while not
violating the Distance Property. We compute a set of candidate core regions iteratively as follows.

• Every grid cell that contains points of two colors is a core region.
• For every grid cell that contains only points of one color and that is not adjacent to a core region, do the following: if

it has an adjacent grid cell that contains points of the other color, make a new core region out of those two grid cells
(and possibly two more if they were vertex-adjacent), otherwise do nothing.

This procedure results in a set of candidate core regions that are non-overlapping and have the Distance Property. Note
that the set of candidates is not uniquely defined. Fig. 7(c) gives an example.

To satisfy the Separation Property, we compute a maximal independent set of the core regions with respect to the
adjacency (edge or vertex) relation. After this we have a smaller set of core regions, with the property that the regions are
separated by a band at least one grid cell wide. Furthermore, the discarded core regions are all adjacent to a core region
that belongs to the independent set, so the Distance Property still holds.

Next, we compute the Voronoi diagram of the centers of the core regions. This is a subdivision of the plane into convex
cells that all have one core region inside them, because any point inside a core region is at most

√
2/

√
n away from the

center of its own region, and at least 1.5/
√

n away from the center of any other region, see Fig. 7d.
Inside each Voronoi cell we compute a factor O (

√
n ) approximation planar bichromatic spanning tree as follows. If we

pick any point p inside a core region, we can list all other points q1,q2, . . . ,qk in the Voronoi cell of this core region
according to their distances to p. We add those points in the listed order. Let BSTi be the bichromatic spanning tree
constructed after qi is added (note that BSTi is not a tree if p,q1,q2, . . . ,qi are all the same color). When qi+1 is added,
suppose we can always find a point q j among p,q1,q2, . . . ,qi such that the edge qi+1q j added to BSTi forms a new
bichromatic spanning tree BSTi+1. Then we have following lemma:

Lemma 3. BSTk is O (
√

n ) factor approximation of the optimal solution for {p,q1, . . . ,qk}.

Proof. When we add qi+1, consider a circle with center p and radius |qi+1 p|. All points of p,q1,q2, . . . ,qi are inside this
circle, one of which is q j . Therefore |qi+1q j | � 2|qi+1 p|. If qi+1 is a point of the first category in Distance Property, then
|qi+1 p| = O (1/

√
n ) which means |qi+1q j | = O (1/

√
n ). If qi+1 is a point of the second category in Distance Property, then

|qi+1q j | = O (1). But in the optimal solution qi+1 is connected by some edge of at least length �(1/
√

n ), so it is at most a
factor O (

√
n ) too long. �

Next we show that we can always construct BSTi+1 from BSTi by adding a bichromatic edge. Suppose p is red and qh
(1 � h � k) is the first blue point in the list. Then BSTh = pqh ∪ q1qh ∪ · · · ∪ qh−1qh which is a star-shaped tree. We divide
the Voronoi cell into convex cells as follows: for the first added edge pqh , we cut it with the line through p and qh . For
all other edges qiqh with 2 � i � h − 1, we cut with a ray from qh in the direction of qi until it hits the boundary of the
Voronoi cell. This way, the Voronoi cell is partitioned in h + 1 convex cells with the property that each cell has at least one
red point and one blue point on its boundary (see Fig. 8(a)). Then we add the remaining points qh+1, . . . ,qk one by one. We
will maintain a convex partition CPi with the properties that all spanning tree edges of BSTi are in the boundaries of cells,
and each cell has a red and a blue point from {p,q1, . . . ,qi} on the boundary. We maintain CPi in a point location structure
that allows insertions of vertices and edges [6].

Suppose that we have added all points up to qi , and we wish to compute BSTi+1 from BSTi . To add qi+1, perform a
planar point location query to determine the cell it is in. Take the point q j with different color on its boundary, and add the
edge qi+1q j to BSTi+1. Since the cell is convex, no crossings can be created. Now we need to compute the convex partition
CPi+1 from CPi and update the point location structure. The cell of CPi containing qi+1q j must be split into two by the line
through qi+1 and q j . One of the intersection points is q j , the other we find by a tandem walk along the boundary of the
cell, starting at q j and in both directions. Let this point be t . We add t as a vertex to CPi , and add the edges qi+1q j and
qi+1t as well, resulting in CPi+1. Since qi+1 and q j are on the boundaries of both new cells, they both have a red point and
a blue point on their boundaries.

The dynamic planar point location structure of Baumgarten et al. [6] supports point location and insertions in
O (log n log logn) time. For the tandem walk, we alternatingly take one step clockwise and one step counterclockwise from
q j in the boundary of the cell. The total number of steps is at most twice the number of edges in the smaller of the two
new cells that result after the split. If a walk takes more than O (log n) steps, then we charge each edge of the smaller new
cell O (1) time cost for the walk. Since these edges end up in a cell that is at most half the size as before, each edge is
charged at most O (log n) times for walking along it throughout the whole algorithm.

After building the trees inside all Voronoi cells, we combine them and extend them to one tree using the O (n log n)

time algorithm described in [14]. The length of the edges used by the algorithm to connect each component does not
matter, because the number of Voronoi cells is at most the number of grid cells with points inside them, m, and even if
all these connections are as bad as possible, we still only have a length of at most m. By Lemma 2, this is a factor O (

√
n )

approximation of the optimum.
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(a) (b)

Fig. 8. (a) An example of convex cells. (b) After inserting a new point, we subdivide its cell using a tandem walk.

Theorem 4. An O (
√

n )-approximation of a planar bichromatic minimum spanning tree of a set of n red and blue points can be
computed in O (n log n log logn) time.

5. Planar bichromatic minimum spanning trees with k red points

In this section we present an algorithm to compute a planar bichromatic minimum spanning tree of k red points and
n − k blue points. The special case when k = 2 can be solved by a simple algorithm in O (n log n) time [7]. For the general
case with k > 2 red points we present a more involved algorithm that runs in polynomial time when k is constant. Any
straightforward algorithm seems to take time exponential in n.

First, we argue that the k red points will be connected to each other in the optimal tree via a number of blue points, at
most k − 1. These are the blue points of degree at least 2 in the optimal tree. We call this subtree of the optimal tree the
skeleton tree. There are a total of k(n − k) edges between red and blue points, and any skeleton tree is a subset of at most
2k − 2 of them, so the total number of possible skeleton trees is O ((nk)2k−2). We try all of them (ignoring the non-planar
ones).

Given a skeleton tree of the k red points and O (k) blue points, and a set of O (n) unconnected blue points, we want
to compute the optimal spanning tree of all points. For all unconnected blue points, we are interested in the set of red
points that are still visible from that point, and also in the order of the red points by distance. We compute the set of lines
through any pair of points in the given skeleton tree, of which there are O (k2), and the set of bisectors of any pair of red
points, of which there are also O (k2). These lines together form an arrangement of complexity O (k4).

Lemma 4. Within any cell in the arrangement, the ordered list of visible red points is the same for any blue point in that cell.

Proof. Suppose there are two points p and q in the plane such that some red point r is visible to p, but not to q. This
means that there is some fixed edge st between r and q that is not between r and p. Therefore either st passes between p
and q, or the line through r and s or t passes between p and q. In both cases, p and q are not in the same cell.

Suppose two red points r and s are visible to both p and q, but for p r is closer than s, while for q s is closer than r.
Then p and q are on different sides of the bisector of r and s, and therefore not in the same cell. �

Now, we would like to connect the blue points within one cell κ directly to the closest red point. However, this may
cause intersections with edges for different cells, so some points will need to be connected to other red points. In the
optimal solution, the set of points inside each cell will be partitioned into groups that connect to the same red point. These
groups are not necessarily convexly separated (at least not given a fixed connection of the red points). In Fig. 9 we see a
cell with four blue points in it, one of which is connected to the closest red point and three of which are connected to the
second closest red point. However, they cannot be separated by a straight line.

Given a cell κ , let Bκ be the blue points inside κ . We will define r = 〈r1, r2, . . . , rk′ 〉 (where 1 � k′ � k) as the ordered
list of visible red points from within κ , where r1 is the closest red point for all blue points in Bκ . We will show that the
subset of Bκ that is connected to r1 in the optimal solution can be defined by using only three (or fewer) red-blue edges.

Lemma 5. Assume that no three points are collinear. Consider an optimal spanning tree T , a cell κ in the arrangement induced by the
skeleton tree of T , the set Bκ of blue points inside κ , and the ordered list of visible red points r = 〈r1, r2, . . . , rk′ 〉 (where 1 � k′ � k).
Then r1 is connected to one point of Bκ , or to a subset of Bκ that are exactly those points in the intersection of two or three halfplanes.
Two of these halfplanes are bounded by a line through r1 and a blue point in Bκ , while the third halfplane, if present, is bounded by a
line through a different red point and a different blue point not necessarily from Bκ .
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Fig. 9. The fat edges show the fixed spanning tree of the five red points and four of the blue points. The thin edges show the optimal minimum planar
spanning tree of the given fat tree and the six remaining blue points. The shaded area is a cell of the arrangement.

(a) (b) (c)

Fig. 10. Cases (i) and (ii) of the proof of Lemma 5. The grey regions show the intersection of κ with the three halfplanes.

Proof. Assume that r1 is connected to at least two blue points of Bκ in the optimal spanning tree T . Then, seen from r1,
one blue point b1 is most counterclockwise of these, and another blue point b2 is most clockwise of these. Obviously, all
other points from Bκ that are connected to r1 are in the wedge W defined by the intersection of two halfplanes defined by
r1 and b1, and r1 and b2.

Observation 1. No red point lies inside W . The reason is that lines between all pairs of red points define the arrangement
of which κ is a cell, so no line through r1 and another red point can intersect κ .

Consider all edges of T that intersect W ∩ κ . We analyze how these can lie.

Case (i): If the extensions
−→

r1b1 beyond b1 and
−→

r1b2 beyond b2 hit the same edge e of T first and inside κ (see Fig. 10(a)),
then the supporting line of e defines a halfplane (to the side of r1), and all points of Bκ in W and in this halfplane are
connected to r1 in T . If this were not the case, we have a contradiction with the choice of e as the first edge hit, or the
planarity of T .

Case (ii): If one or both of the extensions reach the boundary of κ before hitting any edge of T , then we follow the
boundary of κ inside W until we find the first edges e1 and/or e2 of T that intersect W ∩ κ (see Fig. 10(b)). So from the

intersection point of
−→

r1b1 and the boundary of κ we go clockwise and from the intersection point of
−→

r1b2 and the boundary
of κ we go counterclockwise. If e1 and e2 do not exist, then only two halfplanes define the subset of Bκ of blue points
connected to r1, and we are done. If e1 = e2 (see Fig. 10(b)), then we need the following observation.

Observation 2. For any edge e of T that intersects κ , that has its blue endpoint be in W , and its red endpoint is not r1,
there must be another edge e′ in T that intersects the line segment ber1. The reason is that |ber1| < |e|, because e intersects
κ and for any point inside κ , r1 is the closest visible red point. Furthermore, the red endpoint of e′ must be outside W by
Observation 1.

If we apply this observation to any edge br j (with j > 1) in T for which b ∈ W ∩ κ , but br1 does not intersect e1, then
one or more edges exist in T that intersect br1. Let e′ be the one that intersects br1 closest to r1 (see Fig. 10(c)). Since e′
must cross the boundary of κ (since the red endpoint of e′ lies outside W ∩ κ ) without intersecting any of r1b1, r1b2, and
e1 = e2, we get a contradiction with the definition of e1 and e2. Hence, if b lies as specified, then it is connected to r1 in T .

It follows that we are in a case similar to case (i). The same two or three halfplanes define the subset of points of Bκ

that must be connected to r1 in T .
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(a) (b) (c)

Fig. 11. Case (iii) of the proof of Lemma 5.

Case (iii): e1 �= e2, where edge e1 is the first edge hit in κ by
−→

r1b1, or the first edge intersecting the boundary of κ

from the point where
−→

r1b1 hits it in clockwise direction, and edge e2 is defined similarly with respect to
−→

r1b2, but by going
counterclockwise.

By Observation 2, the blue endpoint be1 of e1 is not in W , or at least one edge e′
1 in T exists that intersects be1 r1. In

the latter case, let e′
1 be that edge of T whose intersection with be1 r1 is closest to r1. Similarly, we apply the observation

to e2, and if be2 lies inside W , we define edge e′
2 in T analogously.

Assume that be1 and be2 are both not in W (see Fig. 11(a)). Then we immediately get a contradiction with the definition
of e1 and e2, or with the planarity of T . So at least one of be1 and be2 is in W ; assume without loss of generality that it is
be1 . Then e′

1 exists by Observation 2 (see Fig. 11(b)).
We claim that the blue endpoint be′

1
of e′

1 lies in W and be′
1
r1 does not intersect any edge of T . The red endpoint re′

1

does not lie in W (Observation 1), and if be′
1

would also lie outside W , edge e′
1 contradicts the definition of e1. So be′

1
lies

in W . Now assume that be′
1
r1 intersects an edge of T . Then we immediately have a contradiction with the definition of e1

or e′
1, because the red endpoint of such an edge must again lie outside W (Observation 1). So the claim is true.

Observation 3. The angular interval of W , with r1 as center, is contained in the union of the angular intervals of e1 and e′
1.

This follows from the fact that be1 r1 intersects e′
1, and re′

1
is outside W so e′

1 intersects
−→

r1b2. The only possible configuration
for e1 and e′

1 is shown in Fig. 11(b).

Since e′
1 intersects

−→
r1b2, it must do so further from r1 than e2 by definition of e2 (as shown in Fig. 11(c)). But then be2

must also be in W . This implies that e′
2 exists by Observation 2, and hence Observation 3 must hold for e2 and e′

2 as well.

By symmetry e′
2 intersects

−→
r1b1 further from r1 than e1 by definition of e1, and hence the existence of e′

1 and e′
2 and the

way they lie by Observation 3 leads to a contradiction with the planarity of T .
Since all subcases of case (iii) lead to a contradiction, we conclude that e1 = e2. We already concluded in cases (i) and

(ii) that if e1 = e2, the lemma is true. �
Lemma 5 can be used to generate all possible assignments of subsets of Bκ to the red points. We will guess the at most

three edges for T that define the subset of points that are connected to r1, remove the corresponding blue points from Bκ ,
then guess the at most three edges for T that define the subset of points that are connected to r2, and so on. In total, we
need to make O (k) guesses of edges in T to connect all points in Bκ to some red point. The collection of edges to choose
from are the O (nk) red-blue edges. Hence, we will try O (nk)O (k) = nO (k) partitions of Bκ .

The whole algorithm to compute the planar bichromatic minimum spanning tree is as follows. Choose the skeleton tree
with all red points, and all blue points of degree at least 2, by trying all possible subsets of at most 2k − 2 edges from the
collection of O (nk) red-blue edges. Choices that do not give a possible skeleton tree are ignored. Every other choice induces
a partition of the plane by O (k2) lines into O (k4) cells. For each cell, we try all possible assignments of subsets of Bκ to red
points, as in Lemma 5. Each resulting spanning tree is tested for planarity and if this is the case, its length is determined.
The overall shortest one is the final answer.

We test O (nk)O (k) = nO (k) skeleton trees in nO (k5) time each, so the total algorithm takes nO (k5) time.

Theorem 5. A planar bichromatic minimum spanning tree of k red points and n − k blue points can be computed in nO (k5) time.

6. Conclusions and open problems

In this paper we presented several results related to computing a planar bichromatic minimum spanning tree of a set
of n red and blue points in the plane. An interesting open problem is whether a constant factor approximation algorithm
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for the general problem exists that runs in polynomial time. Another open problem is computing the planar bichromatic
minimum spanning tree for a constant number of red points and n blue points much more efficiently.
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