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If P is a stochiastic matrix corresponding to a stationary, irreducible, positive persistent Markov 
chain of period (d > 1, the powers P” will not corverge as n --, 00. However, the subsequences 
P d4k for k = 0, 1,. . . , d - I, and hence Cesaro av.:rages x;.., P”/n, will converge. In this paper 
we determine classes of nonstationary Markov cnains for which the analogous subsequences 
and/or Cesaro averages converge and consider the rates of convergence. The resuilts obtained are 
then applied to the anallysis of expected average cost. 
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1. Notation, deftnitiom, and the stationary case 

If A = [a,] is a real matrix defined on S x S where S = { 1,2,. . .), we define the 
n.orm 11 l 11 of A as follows: 

IIAIj = sup C l%l= 
iES jES 

The convergence 
addition to being 

(a) IIA~ll+J 
(b) ((PI)= 1 fox 

L 

results in tlhis paper will be given in terms of II l 11, whit 
a norm, satisfies the following two conditions (slee [3]): 
11 II B 11 for all matrices A and B ; 
any stochastic matrix P. 

These two properties will be used repeatedly in this paper. 
Let {X,,}T’l be a Markov chain with transition matrices (P,}L defined on the 

countable state space S = (1,2,. . . }. We will talk interchangeably about !X$+ and 
{ P,}r& wher’e {P } t TsI will be denoted by simply P when the Rlarkov chain is 

stationary. For M 20 define the product 0 * .q+l P,,,+2 l l l En+” by Pmm+“ (or by P” 
when the Markov chain is stationary). Next, define a “constant” matrix Q to be a 
matrix each row of which is the same. Then the sequence {P,)‘J”L is said to 
strongly ergo&c (with constant stochastic matrix Q) if for every 
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In [2] is studied the rate of convergence of P m*m+n to Q for certain stationary and 

nonstationary Markov chains. in this paper we will consider the convergence and 

rates of convergence of subsequences P m* m +“d +’ and Cesaro averages xF= 1 Pm* m+‘/n 
for certain Marksv chains for which Pm+@‘ does not necessarily converge. In the 

remainder of athis section, we will consider the stationary ca:e. In section 2 and 
section 3 we will consider certain nonstationary Markov chaim Finally, in section 4 
we will give alr:lplications to the analysis of expected average cost. 

Irl order to f:sta,blish notation, recall that an irreducible stctchastic matrix, f, of 
period d (d B 1) partitions the state space S into d disjoint subspaces 

CU, C,, , . . p cd_.l and that the matrix pd yields d stochastic matrices { x}fZ& where x 
is defined on C,. If the irreducible periodic matrix P is finite, then each Tl is 
automatically strongly ergodic, but if P is infinite the strong ergodicity of each T, is 
not guarimntecd. Cn f.his paper we will deal only with an irreducible stochastic matrix, 
P, of period cd in which z is strongly ergodic for I =z 0, 1, _. . , d - 1; we henceforth 
refer to this, type cf stochastic matrix as a periodic strongly ergodic (or simply 
“PSI?‘) matrix, 

We note that, if any one of iT;1, TI, . . . , Td+ is strongly ergodic, then the others are 
also strongly et-godic. This can be shown as follows. The matrices T, ha.ve the cyclic 
structure 

where each Z? is a possibly non-square stochastic matrix and where Pj gives one 
step transitLjn probabilities from Cj to Cj+l for J = O,, 1,. . . , d - 2, and Pd-1 gives 
one step trsnsitiorr probabilities from Cd-l to Cb. Next, if R = [rij] is a possibly 
non-square stochastic matrix, define &(R) by 

By [3] it ~0110~s that 
(a) S(AB) s 8(A)A(.B) and S(A) s 1 for possibly non-square: stochastic mat- 

rices A and B : 
(b) 3 stationary Markov chain P i- d strongly ergodic if and on@ if there exisfs a 

finite integer n such that 8(P) < 1. 
Assuming, then, tha.t To = POP, l l . &.-l is strongly ergodic, there exists an no s’uch 

that S((PJ’, u l l &-$))< 1, &nce, for i = 1,2,. . . , d - 1, 

which implies that 7; is strongly erg,r,dic. 
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Lemma 1.1. Eet P be a PSE matrix of period d, and let Q be the matrix each row of 
which is the eigenvector ((, = (&, &, . . .) of 1”, which solves unique/y fhe system of 
equations $P = I/J and IZitfs @i = 1. Then, / 

(a) for k = 0, 1,. . . , d - 1 there exist finite constants Co and PO (0 C i,, < 1) anId a 
matrix Qk, with & Qk = dQ, such that 

w 1 im,,,, 11 XY=, P’ ln - Q II = 0. 

Proof. Since P is a PSI3 matrix, for I = 0, 1, . . . 9 d - 1, x is strongly ergodic, and 
hence by [2] there exist constants a1 and & (0 < 15~ C 1) and a constant matrix L, 
such that: 

llT;--L,[1~ ar6; for n 3 1. (1.1) 

Since the non-zero elements of Pnd can be grouped into the blocks TY, part (a) 
follows for k = 0. Moreover, part (a) also follows with Qk = QOPk, since 

lip nd+k - Q,P”II G 11 PI”“ -- @0ll 11 Pk 11 

By using properties of the norm 11 l 11, part (b) easily follows from part (a). For the 
details see [l]. 

Whereas the rate of convergence in part (a) of Lemma 1.1 is geometric, the rste 
of the convc:rgence in part (b) is only guaranteed to be “l/U, as the following 
example shows. 

Example 1.H. Let P = [?i,j. In this case, 
4 $ 0 if n is even, 

Q= 

$ f l/n if n is ode?. 

2. ‘The convergent case 

In view of the results given in Lemma 1.1 for a stationary Markov chain described 

by :a PSE matrix, we will consider in this section a nonstationary IVIarkov chain 

(P 1” f j t =: ‘I such that lim,,,~~ P, -A P II= 0, w ere i h P is a PSE matrix. For such .a 

nonstationary chain it is natural to first consider rhe convergence of s~b,~~uences 
of the form PunVm+ti+k= Pm+lF’&+t l l l Pm+~~+ as pt. -+a. If these 
coriverge for k := 0, 1, . . . , d - 1, t&en Cesaro avesages Crmr Pl”*“lc”fn 
If ‘we make the restrictive asumption that the matrices of the sequ 
have hf”s in the same positions for d 3 T* c: m, then under the: a 

lirl t--rao II P, - P 11 = 0, P a PSE matrix, it can be shown (see [ 11) that th$ 

‘:ip 
m.m+d+ m 

‘) n=P converge unift mnl;y in m for I = 0, I, . . . 9 d -* 1 (and 
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Lemma 2 .l it also follows by applying a result in [2] that the rate at which 
subsequences converge is the slower of a certain geometric rate and the rate at 
which P, converges to P). However, if we dloj not mak.e the above restrictive 
assumption, subsequences may not converge, as the following example shows. 

Exs:s;iple 2.1, ConstriuCt a sequence of stocihsrstic matrices {P~}~& using the matrices 

0, = 

Noting that 

0 1 

[ I l-1 1 l 

t t 

it can be shown that {Q,R,J~~ L is strongly ergodic with #constant matrix [ 8 :]. Noting 
that 

1 0 
SA = c J 9 

!_i 1 
1 1 

-7 

it can similarly be shown that (S,A’&, is strongly ergoclic with constant matrix [: g]. 

Hence, by letting P, = RI for 1 even and by appropriate selection of PI for t odd, the 
sequence (P&)(P&) l l l (&,.&,,) can be made to oscillate from near [ 8 :] to near 
[ : X] as n --) 00. Therefore, even though lim,,, 11 P, - [y A] II= 0, the sequence 
1” F 1 2 . . l P2” can be made not to converge as n -+ 00. 

Fortunately, in spite of the fact that subsequences do not in general conv#ergz, 
Cesaro averages do ia genieral converge. Theorem 2.1 yields not only tfx”e 
convergence of the Cesaro averages but also an upper bound on the rate at which 
they converge. In proving Theorem 2.1 we will need the following lemma. 

Lemma 2.1. Let {l?}TS1 be a sequence uf stochastic matrices. Then, if k is a fixed 
integer, for n 23 0, 

The proof follows1 by in uction and using properties of 11 l II. In particular, for 
k EZ 2, 

II Pn+*P,+z - P’II s II I~“*lpn+z - P,,Jq + p?eI~ - P’II 
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Theorem 2.1. Let {P,}yzl be a nonstationary Marknv chain and let P be a b;‘sE 
matrix with left eigenvector +, and Q the matrix each row of which is t,b. 

(a) If likn,_., llPt - P/l = 0, then 

lirn sup 2 PmDrrr”‘/n - Q = 0. 
II n-em m*O f=l II . 

(b) lf there exists a finite constant G such &at 

then : 
(1) If CY > jl there is, ;bor any E > 0, a D’(E ) such that 

(2) if cy E (l&l], there is, for every E > 0: a D(E) such that 

s,:! 2 Pm*m+‘Jn - Q s na_S II II Do for n 2 1. t-1 
b&f. We first establish an inequality important for proving both parts (a) and (b). 
To this end let L = L(n) -= [n/d] (i.e., n = Ld + r, 0 G r c cd), and write 

n Jd+r 

c Im.m+t P - nQ z c (pm-+* _ Q) 
t=l t-1 

+ 2 (Pm-m+t - Q), (2:.2b) 
t==Jd+r+l 

(2.2a) 

the three useful features of this partition being that J is to be small enough, for 
(2.2a) to contain substantially fewer terms than (2.2b), that (2.2b) contains a number 
of terms that is a multiple of d, and that all terms PmBm+* of (2.2b) contain enough 
factors (i.e., at least Jd + t + 1) to allow factoring out the matrices Sj below. 

In view of (2.2), we now write 

c 
“P 

Jd+r 
m. m -W -nQ 

II II s 2 (pm~m+t - 
*=I t=l 

+ ‘f i pm.m+H+k+r_ ,dQ II 1-J k=l II 
(2.3a) 

(2.3b) 

and proceed to cut down the unmanageably large number of factors of the terms 
P m*m+jd +k+r of (2.3b) ro no more than M + d - 1, where A4 is eventually to be chosen 
appropriately under the restriction that 6 .M. This cutting down is done by 
writing Q = SjQ in the jth term of (2. , where S* is the stochastic matrix 
P m,m+jd+l+r-M 

, and then factoring out Sj. Using the properties of il.II cited in secti 
1, we are thereby led to the assertion that (2.2b) is no greater than 

m+jd+l+r-M.m+jd+k+r 
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The terms P m+w+l+‘-M*m+jd+k+’ of (2.4) now contain M -I- k - 1 factors, and we add 

and subtract c;fzl PM+&-’ iin order to create two terms1 intended, respectively, to 

exploit our assumptions albout the behavior of 11 P, - P 11 and Lernms 1.1, thus 
bounding (2.4) by 

d 

c 
k=l 

j-J 

(P m+jd+l+r-M,m+jd+k+t -P M+k-1 
+ 

(2 3 . 

II 

d 

2 
P M+lc-I 

-a? 
k *= 1 II 

L-l M+d--1 

6 d C x ()pm+jd+l+r-M+o- PII 
/==*I v-1 

+[L--J) II 2 PM+'-'-dQ 9 Ir = 1 II 

where we have used Lemma 2.1 in going from (2.5) to (2.6). 
Finally, since (2.6) boundls (23b), 

II P m,m+r_ 

I==1 Q)ll 
+ t x Mgel I[ Pm+jd+l+r-Mtv- p 11 

v= 1 

d 

c 
P M+k-l -_ dQ . 

k=l II 

(2 6) . 

(2.7a) 

WV 

(2.7~) 

To prove part (a), let q > 0 be given. We first choose, by part (a) of Lemma 1.1, 
an M large enough so that IIE&l PMck-’ - dQ II G q. Then choose J large enough so 
that Jd > .M and 11 Pt - P 11 s q/M + d - 1 for t > Jd - M, which we can do since we 
are assuming that lim,,, 11.~~ - PII = 0. Finally, choose N large enough that 
2(J + l)d/N s q. Then, for n > IV, each of the three terms) of (2.7) do not exceed 7, 
establishing part (a). 

To prove (2) of part (b), we note from part (a) of Lemma 1.1 that there are 
constants C and p, C > 0 and 0 c p c 1, such that 

II 
d 

c P M+k-l __ dQ :g ,@“9 

k=l II 
so that, when M = M(Q) = [ - a in nJln /3] + 1, 

II 
d 

c 
P M+k-1 -dQ II 3s Cn-“, 

k=l 

and (2.7~) is of order no great!er than n? Next, staying with M(n), and also letting 
J = J(n) = M(n)+ 1, we have, for any E > 0, that, for large enough n2, 

L-l M+d-1 

lip m+jd+l-*r-M+v -PII” 
v=l 
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in view of assumption (2.1). 
But 1M + d is of order In n and ET=, j-” is of order n’-“, and thus (2.7b) is of order 

“less than nea+‘. 
Finally, since J is of order In n, (2.7a) is of order no greater than PI-““. 
Our three order assertions concerning (2.7) establish (2j of part (b). (1) follows in 

similar fashion. 

If the results in (a) or (b) of Theorem 2.1 hold for a certain Markov chain, we thus 
recognize that the left eigenvector 4 = (G1, &, . . .) of P serves as the “Cesaro 
long-run distribution” of the Markov chain, so Theorem 2.1 can be interpreted as a 
statement iabout robustness. It says that if the transition matrices (&}y=l of a 
nonstationary Markov chain {N,, d = 0, 1, . . . } converge as t -+ 30 to a PSE matrix P 
descriibing some stationary Markov chain {S,, t = 0, 1, . . .}, then #JI, t = 0, 1, . . .) has 
the same Cesaro long run distribution as {S,, t = 0, 1, . . . }. 

3. The cyclic case 

Another nonstationary Markov chain {P,}L for which subsequences converge 
even though the chain is nnt strongly ergodic is thz chain in which the P,‘s repeat 
themselves in a cyclic fashion, that is, &+, = P, for i = 1,. . . , d and t = 0,1,2,. . . . 

This situation is studied in Theorem 3.1. 

Theorem 3.1. Let {P,}T=, be a nonstationary Markov chain such that Ffd ,, = Pa for 
I= l,..., d and t = 0, 1,2, . . . . . Assume that R: = PIP2 l l l Pd is strongly ergo&c 

with constant matrix Q,. Moreover, for j = 2,3,. . ., d let Qi = Q1 nil: Pi and define 
0 = (l/d)~~~zl Qr. Then 

(a) if&= PJ+*PdPl,...,Rd = PdPl.* 9 P+ ,, there exist finite constants C and 
p (0 < p .< 1) such that for n 3 2: 

DEW-- Q+ CP", (34 

l\fi!;-QJ~Cfl~-* forj=2,...,d; (3.2) 

(b) for f G I G k: s~p~~~ll Pm*m+nd+‘- Qkcr JIG Dh” for n 3 1; where k(& m) is 
appropriately chosen from {1,2, . . . , d} and 0 < A < 1. 

(c) there exists a finite constant g such that 

sulk 2 Pm*m+r/n - 6 S g/n 
II mrb r-1 II 

for n > 1. 

roof. First, since R 1 is strongly ergodic, (3.1]1 follows by a result in [ 

follows since for j = 2,. . . , d, 



s 11 R :-’ - Qlll s c/Y’ for n 3 2. 

Next, part (b) follows from part (a) by consideration of the cyclic order in which the 
(finite number of) matrices PI, &, . . . , kd are assumed by {P,}ymI. Finally, part (c) 
fol”lows from part (b). 

Before leaving this section, let us consider modifying the situation in Theorem 
3.1 by assuming, instead of p,d+r = P,, that lira,,, 11 Pfd+, - P, II = 0 for 1 = 1,. . . , d. In 
this case, the quantities in Parts (b) and (c) still converge (see [I]). Moreover, by a 
result in [a], the rate of colrlvergence of t:he quantities in jb) can be shown to be the 
slower of a certain geometric rate and a iSunction of the rate that Ptd+, converges to 
8. Rate results of the type obtained in Theorem 2.1 also apply to the quantity in 
part (c). 

4. Applications to analysis of the expected average cost 

The following theorem considers she “expected average cost” of a Markov chain 
which incurs a cost C,(j) if the state of the Malkov chain at time t is j. 

Theorem 4.1. Consider a Afarkov chain {?L, t = 0, 1, . . .} having transition matrices 
(P,}T’, defined on a countable state space S = { 1,2, . . . } where there exists a constant 
matrix Q, each row of which we denote by $J = (&, &, . . .I, such that 

lim sup $ PmVm-“/n - Q = 0. 
n4= ma0 II I == 1 II (4 1) . 

Moreover, assume that fair each j E S there exists a sequence {G (/), t 2 0) of 
uniformly bounded numbers and a constant C(j) such that 

where C, and c are column vectors ‘with jth elements of, respectively, C,(j) and C(j). 
Thee letting 

lim II C, - C II := 0, I400 (4 2) . 

m+n 

4 
m,m+n * 

0 q 1 
I =: , 1; Ct(Xt)/n lXm =i foreachiES, 

#==??I+1 

d, m*ri’+n be a column vector with ith element Q”*“‘“(i), and 0 be a column vector with 
elements all equal to X&S Co)$j, the following results hold. 

()I a im,~msup,,o~~~~‘“~m+“- 4II= 0. 
(b) If there exist con!stanI!s such that for any E > 

II 
n 

sup 
Ii 

for: Tc 2 1 
ma0 r-l 
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amd 
IIC, - Cl16 M*/t’+yS >O) for t 3 1, 

then there exists a constant M3 such that 

sup ~~&“~“+“- +IIS MS/n’-” for n 3 I. 
m;rO 

Proof. Letting A (< 00) be the uniform bound of the C,(j)‘s and C(j)‘s, we have 
that: 

SUP ~~~“~“+“- @iI = SUP 2 Pm’m+‘Cm+t/n - QC 
ms0 I! ma0 t=l I 

s sup 2 Pm*m+‘(cr?l+r 
I! 

- C)/n + sup 2 Pmsm+’ 
ma0 r=1 I! !I( m;bO t=l 

In - 0) C!! 

Si SUP 2 llCrn+t -C(l/n-+h sup 2 Pm*m+r/n-C? 
ma0 f=l ma0 I! r=1 II 

for any E > 0 for sufficiently large n, by assumptions (4.1) and (4.3, thus proving 

0 a ; or 

6 sup 2 (M&n + t)‘+‘)/n + AMJn’-” = M&P, 
ma0 r=l 

for an appropriately chosen constant M3, under the assumptions in (b), thus 
proving (b). 

Before proceeding to an example, it should be noted that by a more complicated 
proof than that just given (see [1]) the result in (a) holds under assumption (4.1) and 
the assumption that for each i E S: lim,,, Cfl (i) = C(i), which\ is a weakening of the 
assumption (4.2!9. 

Note also, in connection with the example, that, when lim,,., 4”*“(i) exists for 
each i E S, we call this limit the expected average cost of {X,, t = 0, 1, . . . }. 

Example 4.1. Assume {Ar,, t = 0, 1, . . D } is a nonstationary Markov chain with 
transition matrices { Pf = [Pi (i, j)]}rzl defined on. a countable state space S = 

{ 1,2, . . . }, such that lim,,, II Pt - P II = 0, where P =s [pi]] is a PSE matrix describing 
the stationary Markov chain (S,, t = 0, I,. . .}. Assume {N,, t = 0,l.. . . .} and {St, t = 

0, 1, . . . } both incur a cost C(i, j) in making a one step transition at any timle from 
state i to state j, where the C(i, j)‘s are uniformly bounded by A (<a). Then 
C(i) = XjEs C(i, j)p, (i, j) and C(i) = IZloS C(i, j)pij are the expected costs incurred 
by7 respectively, {P&, t = 0, 1, . . .} and {S,, t = 0, I,. . .} landing in state i, and it 
foEtows that 

l[C~C~l~hI(&-P(l+0 as t--,~~ (4 3) . 
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