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If P is a stochastic matrix corresponding to a stationary, irreducible, positive persistent Markov
chain of period d > 1, the powers P" will not corverge as n —» <. However, the subsequences
P™** for k =0,1,...,d — 1, and hence Cesaro av:rages 2;., P*/n, will converge. In this paper
we determine classes of nonstationary Markov cnains for which the analogous subsequences
and/or Cesaro averages converge and consider the rates of convergence. The resuits obtained are
then applied to the analysis of expected average cost.

|:§eriodic rates of convergence
strongly ergodic expected average cost
nonstationary Markov chain

1. Notation, definitioiis; and the stationary case

If A = [a;] is a real matrix defined on 5 % § where S ={1,2,...], we define the
norm ||| of .4 as follows:

Al = sup Z lay |-
ies jEs

The convergence results in this paper will be given in terms of ||-||, which, in
addition to being a norm, satisfies the following two conditions (see [3]):

(@) |[AB|<||A|||B]| for all matrices A and B;

(b) [|P||=1 for any stocaastic matrix P.
These two properties will be used repeatedly in this paper.

Let {X.}7-1 be a Markov chain with transition matrices {P.};-, defined on the
countable state space S ={1,2,...}. We will talk interchangeably about {X,}i., and
{P.};-,, where {P.};-, will be dencted by simply P when the Markov chain is
stationary. For m =0 define the produci P..;Pm.2°** Pn.n by P™™"" (or by P"
when the Markov chain is stationary). Next, define a “‘constant” matrix Q to be a
matrix each row of which is the same. Then the sequence {P.}:-, is said to be
strongly ergodic (with constant stochastic matrix Q) if for every m =0:

lim | P~ Q|| =0.

*Now: Departnznt of Business Analysis, Miami University of Ohio.
** Also: Departnent of Mathematics.
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In [2] is studied the rate of convergence of P™™*" to Q for certain stationary and
nonstationary Markov chains. In this paper we will consider tne convergence and
rates of convergence of subsequences P™™*"** and Cesaro averages 2/-, P™"*!/n
for certain Markov chains for which P™™*" does not necessarily converge. In the
remainder of this section, we will consider the stationary case. In section 2 and
section 3 we will consider certain nonstationary Markov chains Finally, in section 4
we will give applications to the analysis of expected average cost.

In order to establish notation, recall that an irreducible st¢<hastic matrix, P, of
period d (d =1) partitions the state space S into d disjoint subspaces
Co, Cy, ..., Cys-1 and that the matrix P? yields d stochastic matrices {T;}{=J, where T;
is defined on C,. If the irreducible periodic matrix P is finite, then each T, is
automatically strongly ergodic, but if P is infinite the strong ergodicity of each T; is
net guaranteed. in this paper we will deal only with an irreducible stochastic matrix,
P, of period d ini which T, is strongly ergodic for / = 0,1,...,d — 1; we henceforth
refer to this type of stochastic matrix as a periodic strongly ergodic (or simply
“PSE”’) matrix.

We note that, if any one of Ty, T},. .., Ts-, is strongly ergodic, then the others are
also strongly ergodic. This can be shown as follows. The matrices T; have the cyclic
structure

T;,;:: PoP,-:- Py, T,= P\Py--- P, P,

T;= Py P\ PoPy, ..., Tyoy = Py PoPy - - Py,

where each P is a possibly non-square stochastic matrix and where P; gives one
step transitiun probabilities from C; to G, for y =0,1,...,d -2, and P,-, gives
one step frensition probabilities from C,-, to Co. Next, if R =[r,] is a possibly
non-squéare stochastic matrix, define 8(R) by

6Ii’ 23“?2 lr,, rk,-’.
ik jE

By [3] it follows that
(a) 6(AB)<6(A)6(B) and 8(A)=<1 for possib]y non-square stochastic mat-
rices A and B;

(b) a stationary Markov chain P i3 strongly ergodu if and only if there exists a
finite integer n such that §(P") < 1.

Assuming, then, that T, = PoP, - - - P,_, is strongly ergodic, there exists an n, such
that §({PoP,-- - Ps_,)»)< 1. Hence, for j =1,2,...,d - 1,

S(T}™")= 6((P; - Pra)™)

= § (( "h: _n) (PoPy- -+ Pa_y)® (’ﬂl P.-)}

=< j}j’ S(P,')éi((PmH Pd l)"a) [:!) 9 P)< 1

which implies that 7} is strongly ergodic.
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Lemma 1.1. Let P be a PSE matrix of period d, and let (Q be the matrix each row of
which is the eigenvector ¢ = (Y, ¥, ...) of P, which solves uniquely the system of
equations YP = and Z.-s¢ = 1. Then, '

(@) fork =0,1,...,d — 1 there exist finite constants Co and 3, (0 < Bo <Vanda
matrix Q., with 2, Qx = dQ, such that

|P™* - Q.| < CoBZ forn=1
(b) limn—.w“E::l P‘ /n - O ” = O

Proof. Since P is a PSE matrix, for [ =0,1,...,d -1, T is strongly ergcedic, and
hence by [2] there exist consiants a; and & (0< 8, <1) and a constant matrix L,
such that:

||T?—L,"sa,4"? forn=1. (1.1)

Since the non-zero elements of P™ can be grouped into the blocks T7, part (a)
follows for k = 0. Moreover, part (a) also follows with Qx = Q,P*, since

[P™** = QoP*|| < || P™ ~ Qoll| P* |
< GBo forn=1.
By using properties of the norm || - ||, part (b) casily follows from part (a). For the
details see [1].
Whereas the rate of convergence in part (a) of Lemma 1.1 is geometric, the rate

of the convergence in part (b) is only guaranteed to be “1/n”, as the following
example shows.

Example 1.1. Let P =[{;]. In this case,
I3 i 0 if niseven,

o=\, | [Zrm-d-

1
2

1/n if n is odd.

1
2

2. The convergent case-

In view of the results given in Lemma 1.1 for a stationary Markov chain described
by a PSE matrix, we will consider in this section a nonstationary Markov chain
{P,)7.. such that lim,_.]P. - P]]=0, where P is a PSE matrix. For suck a
nonstationary chain it is natural to first consider the convergence cf subsequences
of the form P™™*™** =P \Pnir'* Pninas @3 n—>o. If these subsequences
converge for k =0,1,...,d — 1, then Cesaro averages 20, P™™"n alsc converge.
If we raake the restrictive as:uraption that the matrices of the sequence {P,};.; all
have (I's in the same positions for ¢ = T* < », then under the assumpticn that
litl—w | P, — P| = 0, P a PSE matrix, it can be shown (qee [1]) that the subsequences

m,rm +nd -+

‘p m=i cOnverge umtnrmly in m for 1=0,1,...,d -1 (and by pari (a) of
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Lemma 1.1 it also follows by applying a result in [2] that the rate at which
subsequences converge is the slower of a certain geometric rate and the rate at
which P, converges to P). However, if we do not make the above restrictive
assumption, subsequences may not converge, as the following example shows.

Example 2.1. Constract a sequence of stochastic matrices {P,}-, using the matrices

1,1 0 1 0 1
o.=[t t], R = L s=|, 1 1]
1 0 10 r

Moting that

-1 11
QR = t tJ )
0 1

it can be shown that {Q,R.};-. is strongly ergodic with constant matrix [91]. Noting

that
[l : ]
SR, =11 1y,
it 1 t

it can similarly be shown that {S, R, }i-, is strongly ergoclic with constant matrix [3].
Hence, by letting P, = R, for t even and by appropriate selection of P, for t odd, the
sequence (PyP;)(PsP.) - - * (Pau-11%,) can be made to oscillate from near [§1] to near
[18) as n—o. Therefore, even though lim,..||P.—[75]|=0, the sequence
PP, --- P,, can be made not to converge as n—>®,

Fortunately, in spite of the fact that subsequences do not in general converge,
Cesaro averages do i general converge. Theorem 2.1 yields not only tlie
convergence of the Cesaro averages but also an upper bound on the rate at which
they converge. In proving Theorem 2.1 we will nieed the following lemma.

ek

Lemma 2.1. Let {P.}7., be a sequence of stochastic matrices. Then, if k is a fixed
integer, for n =0,

k
|B~— P) < 3 [P, - P
Proof. The proof follows by induction and using properties of || - || . In particular, for
k == 2’ ‘

"Pn+1 n+2 " PZ" = "Pn+1 n+2 = PnHP" + "P"“P - P2“
< || Pasa= P|| +]| Pous — P
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Theorem 2.1. Let {P,}7., be a nonstationary Markov chain and let P be a FSE
matrix with left eigenvector ¥, and Q the matrix each row of which is .
(@) If limy_||P,— P| =0, then

litn sup

n-+o ma(

$ prvin-f =

=1
(b) If there exists a finite constant G such thaat
|P.—Pl|l<G/t* fort=1, (2.1)

then:
(1) If a >1 there is, for any £ >0, a D(g} such that

S P - Q

t=1

sup

m =0

< %(%2 forn=1,

@) if a €(0,1), there is, for every ¢ >0. a D(¢) such that
< %_5,2 forn=1.

2 Pm.mﬂ/n - Q

t=1

sup

m >0

Prcof. We first establish an inequality important for proving both parts (a) and (b).
To this end let L = L(n)=[n/d] (i.e., n=Ld+r, 0<r<d), and write

Jd+r

> Pmm—nQ = 3 (P - Q) (2.22)
* !=Jdi¥r+1 (Pm‘m” - Q)’ (2:°2b)

the three useful features of this partition being that J is to be small enough for
(2.2a) to contain substantially fewer terms than (2.2b), that (2.2b) contaias a number
of terms that is a multiple of d, and that all terms P™™** of (2.2b) contain enough
factors (i.e., at least Jd + r + 1) to allow factoring out the matrices S; below.

In view of (2.2), we now write

n Jd+r .
"2:! Pm’m“ _ no < '-21 (Pm.m-n _ Q)ll (?"33)
L-1 d
+ 2 2 prmtidrker 40 (2‘3b)
=1 | k=1

and proceed to cut down the unmanageably large number of factors of the terms
pmmidtktr of (2.3b) .0 no more than M + d — 1, where M is eventuaily te be chosen
appropriately under the restriction that M < Jd. This cutting down is done by
writing Q = S;Q in the jth term of (2.3b), where S; is the stochastic matrix
pmm*ia+1+r-M and then factoring out S;. Using the properties of || - || cited in section
1, we are thereby led to the assertion that (2.2b) is no greater than

L-1 d

m+jd+1+r—M m+jd+k+r
P — d{Q
k=1

I . (2.4)

i=J
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The terms Pm*id+1+r-Mmridtksr of (2.4) now contain M + k — 1 factors, and we add
and subtract 2i., PM**™" in order to create two terms iintended, respectively, to

exploit our assumptions about the behavior of |P,— P|| and Lernma 1.1, thus
bounding (2.4) by

L-1 d
Z (Pm+,'d+|+r—M.m+,'d+k+y_ PMH:—I) l +
ji=J ll k=1
(2.5)
L;l d .
+ 2 z PM+1:-1__dO“
i=J |l k=1
L-1 M+d-1
Z DZI IIPm+jd+l+r—M+v—P||
4 (2.6)
+(L - J)" > pM1_doll,
k=1
where we have used Lemma 2.1 in going from (2.5) to (2.6).
Finally, since (2.6) bounds (2.3b),
Jd+r
l Pm m-H/n -~ Ol‘ 2 (Pm m+g__ Q)" (2.78)
d - ME ‘
o g 2 I Prmsiarier-peo= P|| (2.7b)
L- . N M+k-1 __ )
+{=; > P do| . (2.7¢)
k=1

To ;Srove part (a), let n >0 be given. We first choose, by part (a) of Lemma 1.1,
an M large enough so that || 2{_, PM**"' — dQ || < u. Then chocse J large enough so
that Jd > M and | P, — P||<n/M +d — 1 for t > Jd — M, which we can do since we
are assuming that lim,..[ P, — P||=0. Finally, choose N large enough that
2(J +1)d/N = ;. Then, for n > N, each of the three terms of (2.7) do not exceed 7,
establishing part (a).

To prove (2) of part (b), we note from part (a) of Lemma 1.1 that there are
constants C and B, C >0 and 0< 8 <1, such that

d

2 M+k1_

< B,

so that, when M =M(n)=[-alnn/lng]+1,

=< Cn™°

d
2 PM+k—l _ dQ’

k=1

and (2.7¢) is of order no greater than n~°. Next, staying with M(n), and also letting
J =J(n)=M(n)+ 1, we have, for any ¢ >0, that, for large enough n,

d 5o} M1
; 2 2 "Pm+jd+1-»;—M+.,"'P|| =
v=1

=

~
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S|

ij (M +d)(G)(jd - M) " < _@LA:J-QI . ’Z' j

in view of assumption (2.1).

But M + d isof order In n and Z[.,j“ is of order n'™®, and thus (2.7b) is of order
less than n™"",

Finally, since J is of order In n, (2.7a) is of order no greater than n™'*".

Our three order assertions concerning (2.7) establish (2) of part (b). (1) follows in
similar fashion.

If the results in (a) or (b) of Theorem 2.1 hold for a certain Markov chain, we thus
recognize that the left eigenvector ¢ = (¢, ¥2,...) of P serves as the “Cesaro
long-run distribution” of the Markov chain, so Theorem 2.1 can be interpreted as a
statement about robustness. It says that if the transition matrices {P.};-, of a
nonstationary Markov chain {N,, ¢ =0,1,...} converge as ¢t —> « to a PSE matrix P
describing some stationary Markov chain {S,,t =0, 1,...}, then {N,¢t=0,1,...} has
the same Cesaro long run distribution as {S,,t =0,1,...}.

3. The cyclic case

Another nonstationary Markov chain {P.};-, for which subsequences converge
even though the chain is not strongly ergodic is thz chain in which the P,’s repeat
themselves in a cyclic fashien, that is, Py = P fori=1,...,d and t =0,1,2.....
This situation is studied in Theorem 3.1.

Theorem 3.1. Let {P.};-, be a nonstationary Markov chain such that P.., = P, for
I=1,...,d and t =0,1,2,..... Assume that R,= P\P,--- Py is ;trongly ergodic
with constant matrix Q,. Moreover, for j = 2,3,...,d let Q; = Q,II\Z\ P. and define
Q = (1/d)2}., Q. Then

(@) if R,= P,Ps--- P,P,,..., Ry = PsP, -+ - Py, there exist finite constants C and

B (0< B <1) such that for n =2:
|[Ri- Qi< CB", (3.1)
IR~ QllsCB"" forj=2,...,d; (3.2)

(b) for i<I<k: supmso[|P™"™*"™*"' = Que.m)|| < DA™ for n =1; where k(l,m) is
appropriately chosen from {1,2,...,d} and 0<A <1.
(c) there exists a finite constant g such that

i Pm.mﬂ/n - G

t=1

sup

ma>0

<g/n forn=1.

Proof. First, since R, is strongly ergodic, (3.1) follows by a result in {2]. Next. (3.2)
follows since for j =2,...,d,
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() re (T 7)- (1 7)o ()

i=1

IR} - Q=

I

I
<||Ry'-Qif|sCB"" forn=2.

Next, part (b) follows from part (a) by consideration of the cyclic order in which the

(finite number of) matrices Py, P,,..., Py are assumed by {P.}i.,. Finally, part (c)

foliows from part (b).

Before leaving this section, let us consider modifying the situaticn in Theorem
3.1 by assuming, instead of Py.; = P, that lirlu | Pass — P|=0for I=1,...,d. In
this case, the quantities in parts (b) and (c) still converge (see [1]). Moreover, by a
result in [2], the rate of convergence of the quantities in (b) can be shown to be the
slower of a certain geometric rate and a function of the rate that P,., converges to
P.. Rate results of the type obtained in Theorem 2.1 also apply to the quantity in
part (c).

4. Applications to analysis of the expected average cost

The following theorem considers ihe “expected average cost” of a Markov chain
which incurs a cost C,(j) if the state of the Maikov chain at time ¢ is j.

Theorem 4.1. Consider a Markov chain {X,,t = 0,1, ...} having transition matrices
{P.}:-1 defined on a countable state space S ={1,2,...} where there exists a constant
matrix Q, each row of which we denote by ¢ = (Y, ¥»,...), such that

n

z:l Pm,m-»r/n — Q

f==

lim sup

n—sx m>»0

= 0. @.1)

Moreover, assume that for each j € S there exists a sequence {C, (j),t =0} of
uniformly bounded numbers and a constant C(j) such that

lim [, =0, @2)

where C, and C are column vectors with jih elemenis of, respectively, C,(j) and C(j).
Then, letting

m+n

™" (i) = E { S C(Xm | X = i} foreachi €S,
&™ """ be a column vector with ith element ¢™™*"(i), and ¢ be a column vector with
elements all equal to 2.;cs C(j)y, the following results hold.

(@) limuoSUpmao]d™™*"— || =0.

(b) If there exist constants M, and M, such that for any € >0,

sup

mz=0

3 prntin- 0 < Mt forr =1

t=1
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and
I|C — C|l< M,/t'%(8 >0) fort=1,

then there exists a constant M, such that

sup o™ "~ p|<Msn'* forn=1.

Proof. Letting A (<«) be the uniform bound of the C,(j)’s and C(j)’s, we have
that:

3 PG - oc”
(2 P™m™ g 0) c"

2 Pm.m+l /n - O“

sup [|¢™"*"~ || = sup

m3»0

> P™™*Cpsi— C)n

=1

< sup

m=0

+ sup

m=0

<sup D, |Curi = C|l/n+A sup

m=20 t=1|

=

for any £ >0 for sufficiently large n, by assumptions (4.1) and (4.2), thus proving
(a); or

< sup O, (My/(m + 1)'*®)/n + AMy/n'~* = My/n'"",
m=0 t=1
for an appropriately chosen constant M;, under the assumptions in (b), thus
proving (b).

Before proceeding to an example, it should be noted that by a more complicated
proof than that just given (see [1]) the result in (a) holds under assumption (4.1) and
the assumption that for each i € S: lim,—.. (i) = C(i), which is a weakening of the
assumption (4.2).

Note also, in connection with the example, that, when lim,_... ¢*"(s) exists for
each i € S, we call this limit the expected average cost of {X,¢=0,1,...}.

Example 4.1. Assume {N,t=0,1,...} is a nonstationary Markov chain with
transition matrices {P, =[p.(i,j)]};-: defined on a countable state space S =
{1,2,...}, such that lim,...| P, — P|| = 0, where P = [p;] is a PSE matrix describing
the stationary Markov chain {S, ¢t =0,1,...}. Assume {N,¢t=0,1....} and {S,t =
0,1,...} both incur a cost C(i,) in making a one step transition at any time from
state i to state j, where the C(i,j)’s are uniformly bounded by A (<). Then
C.(i)=Z,esC(i, j)p. (i, j) and C(i) = Z;es C(i, j)p; are the expected costs incurred
by, respectively, {N,t=0,1,...} and {S,t=0,1,...} landing in state i, and it
follows that

IC.-C|<A|P.-P||—=0 ast—>x 4.3)
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Now, by (4.3) and the fact that (by Theorem 2.1) {N,¢t=0,1,...} and {S,¢t =
0,1,...} have the same Cesaro long run distribution it follows by part (a), which
holds for {N, t = 0,1,...} and {S, ¢ = 0,1,...}, that both Markov chains possess the
same expected averagye cost — another robustness conclusion. Moreover, if
|P.— P|=G/t'" (6 >0)for t 21, then by (4.3) and Theorem 2.1 the assumptions
and hence conclusions of part (b) of Theorem 4.1, in addition to holding for
{S,t=0,1,...}, also hold for {N,t=0,1,...}.

It should also be noticed that from Theorem 4.1 the expected average cost for
both S, and N, equals 2,csC(j)¥y, where ¢ = (1, ¢s,...) is the unique lett
eigenvector of P.
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