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Let {X,: j 3 I} be a real-valued stationary process. Recursive kernel estimators of the joint probability 

density functions, and of conditional probability density functions of X,, given past behavior, are 

considered. Their strong consistency, along with rates, are given for process {X,; jz I} satisfying 

(cu, P)-mixing conditions. Here, we improve the rates of as. convergence in Masry (1987, 1989) without 

imposing considerably faster rate of decay on the mixing coefficients. 

conditional probability density estimate * as. covergence rates * (q P)-mixing stationary process 

1. Introduction 

Let {X,;ja 1) be a real-valued stationary process on a probability space (0, 9, P). 

Given a single realization {X,; 1 Cj s n} of the process, inferences are to be made 

about the process. Of particular interest is the nonparametric estimation of the finite 

dimensional probability density functions of the process, and conditional probability 

density function of the process given past behavior. Many authors discussed the 

limit behavior, for instance, the weak consistency and asymptotic normality of such 

estimators were given by Robinson (1983, 1986), and strong consistency and rates 

of such recursive estimators were established by Masry (1987, 1989). But a.s. 

convergence rates of the estimators for p-mixing processes in Masry (1987, 1989) 

were much lower than those in Wegman and Davis (1979) for i.i.d. observations. 

The purpose of this paper is the establishment of strong consistency and almost 

sure convergence rates for recursive estimators of joint and conditional probability 

density functions for stationary (cu, P)-mixing processes. The work improves there- 

fore some results of Masry (1987, 1989) but differs method of analysis. Our almost 

sure convergence rates for (a, @)-mixing processes are very close to those in Wegman 

and Davis (1979) for independent data. Here it is worth pointing out such a fact 

that we obtain a useful inequality for the maximum of the partial sum of the process. 

Our main method bases on the inequality. 
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For each integer d 2 1 and integers 1s i, < i,< - * . < id, let &(x) = 

f(xi,....~d;i~,..., id) be the joint probability density function of the random 

variables Xi,, X,, . . . , X,,, which is assumed to exist. For any integer p, 1 <p < d, 

the conditional probability density function of XJ = (Xj+i,+, , . . . , Xj+i,) given Xy = 

txj+il 3. . . 9 Xj+,) is denoted by 

f(xZIxl)=f(x;il,...,id)/f(xl;il,...,ip) 

where x2 E [Wdmp and x = (x,, x2) E Rd, put ft(x,) =f(x, ; i,, . . . , ip). 

Theestimatorsfn(x) andj;,(x 1 ) 2 x1 are defined in Section 2, their strong consistency 

and a.s. rates are stated and discussed therein. Meanwhile, some technical lemmas 

are given without proof, and an inequality for the maximum of the partial sum for 

(n, /?)-mixing processes is given and proved. The derivations are given in Section 3. 

2. Main results 

Throughout the paper, we assume that for each 1~ 1, K,(x) is a real nonnegative 

function on R’ satisfying 

I K,(x) dx = 1, 
R’ 

(2.la) 

SUP (I+ IIXII’)I&b)I~ Ml 
x&Q 

(2.lb) 

for some positive number MO < 00. Let { hj; j 2 1) be a sequence of positive numbers 

such that 

h,\O asj+a and nhd,/loglogn+ac asn+co (2.2) 

and put 

K,,j(x) = hJ’K,(x/h,). (2.3) 

On the basis of a single realization {X,; 1 --J < ‘s n}, we estimate fd(x), d 2 1, by 

L(x) = 1°C &j(x-XT), 

d j=l 
(2.4) 

where Xj* = (X,,,, , . . . , X,,,,) = (X;, Xy) and it is naturally assumed that n > id. It 

is easy to see that 

f”(X) = 
n-id-l 1 

n _ id fn-l(x)+& Kd,n-rd(X-X?~id)* 
d 

(2.5) 

The conditional probability density function f(x, 1 x1) is estimated by 

?Jx*IxJ =&x)lJ;l(xr), (2.6) 

where 

~(t)=ln~l~Kp,j(t-X;), fEW. 
n-ip j=l 

(2.7) 
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Let 3; be a v-algebra of events generated by {Xj; i c j =G k} and L,( 3:) denote 

the collection of all t-order random variables which are %$-measurable. For 0 G a, 

p s 1, CY + p = 1, the stationary process {Xi; j 3 l} is said to be (a, @)-mixing (see 

Bradley and Bryc, 1985; Shao, 1989) if 

sup l~57)-~5~77l~~(~)~ll5ll~,~ll~II~,~ 
6=L,.,(&) 

rlCL,@(flFqD,“) 

where A(n) IO as n +a, which are called the (a, @)-mixing coefficients. It is not 

difficult to see that (1, 0)-mixing is uniform mixing (q-mixing), and (i, $-mixing is 

usual p-mixing (see Shao, 1989). 

2.1. Joint density estimators 

The main results for the variance-like term f,(x) -Efn(x) are given below. First, 

some notations are given, put 7, = nhz/log log n, n 2 1, and let f be a function on 

R’, Ia 1, set C(f) = {x; f is continuous at point x} and y = min{cY’, p-l}. 

Theorem 2.1. Let {X,; j 3 1) be a stationary (a, /3)-mixing process. 

(a) Zf there exists a positive number S > 5 such that 

hY(~~)=O(log-Sn) asn+oo 

then, we have for all XE C(fd), 

tm(x)-fd(x)+O asn+co 

almost surely. 

(2.8) 

(2.9) 

(b) If there exist two real numbers 6>0 and T> 5 such that 

p” = (nhf/(log log n)1+s)1’2 f 00 as n+cO 

and 

(2.10) 

AY(~U,)=O(log-rn) asn+co 

then, for all XE C( fd ) we have 

(2.11) 

(nhf/(loglog n)““)““(j‘,(x)-E~“(x))~O 

as n + Co almost surely. 

(2.12) 

Remark 2.1. For the i.i.d. case (and d=l) we have (see Wegman and Davis, 1979) 

lims~p((nh,/loglogn)“~)(~~(x)-Efn(x)) 
.+cc 

= t+(x) I, K2(u) du)l” (2.13) 

almost surely, if x E C(f) and 0 is a positive constant depending on { hj; j 2 1) only. 

A comparison of (2.12) of Theorem 2.1 (with d = 1) and (2.13) shows that our a.s. 

convergence rate for (a, /3)-mixing processes is very close to that in (2.13) for 

independent data. 
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Remark 2.2. The consistency of fn(x,), needed in Subsection 2.2, if x, E C(f,*), 

follows immediately from (2.9) by replacing d by p, id by i,, and x by x, in (2.9). 

Remark 2.3. If r,, = O(nO) or j_~,, = O(nU) for some LY > 0, it is obvious that we only 

require the rate of decay of the p-mixing coefficients O(log-” n) for some 0 > 2 in 

Theorem 2.1, then our conditions are weaker than those in Masry (1987, 1989). 

2.2. Conditional density estimator 

For brevity we only present the corresponding results to Theorem 2.1. 

Theorem 2.2. Let {X,; j 2 l} be a stationary (o, /3)-mixing process. 

(a) lfthereexistsanumber6>5suchthat(2.8) holds, thenwehaveforallxEC(fd) 

and x, E C(f,*) with fz(x,) > 0, 

?n(x21xI)-f(xZlxI)+O asn+a (2.14) 

almost surely. 

(b) Ifthere exist two real numbers S>O and r > 5 such that (2.10) and (2.11) hold, 

and assume that fd(x) and ff(x,) are twice diflerentiable and their second partial 

derivatives are bounded and continuous on Rd and W’, respectively. Again, assume 

that the kernel functions Kd and K,, satisfy (2.1) and 

J R’ 
ujK,(u)du=O, j=1,2 ,..., 1, (2.15a) 

(2.15b) 

for l=p, d. The bandwidth parameter {hi; j 2 l} is assumed to satisfy I,?, h? = 00, then 

=o ; ( j=l by/n 
> 

+O((nhz/(loglog n)1ts))“2) asn+~ (2.16) 

almost surely. 

Remark 2.4. If h,,-n~“(4+d), then (2.16) becomes 

(n4’(4+d)/(loglog n)‘+‘)“2(~~(x21x1)-f(xZIx1))~0 

as n + 03 almost surely. 

(2.17) 

Remark 2.5. A comparison of our results and those of Masry (1987, 1989), shows 

that this work improves that of Masry’s papers. 

Throughout the paper, we shall use the denotation that C is a positive number 

but it can denote different values in different places. We will use the following result 

(see Sun, 1984, Theorem 1). 
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Lemma 2.1. Assume that K(x) is an integrable function on Rd (d 3 1) satisfying the 

assumption (2.1). Then, for any integrable function g(x) on Rd, if g is continuous at 

point x, we have 

lim 
I h+O & 

h-dK((x-u)/h)g(u) du =g(x). 0 

Lemma 2.2. Let {X,; j 2 1) be a (a, P)-mixing process. Assume that p, q 2 1, p-’ + 

4 -‘= 1, then for all [E L,,(9:) and 77~ L,(dT+,,) we have 

l~5r)-~5~~I~~~Y~~~~llSllp~l17711y 

where yO= min{(ap)-‘, (Pq)-‘I. 

Proof. See Shao (1989, Lemma 2.3.1) or Bradley and Bryc (1985, Theorem 4.1). 0 

Lemma 2.3. Let {X,; j 2 l} be a sequence of (a, P)-mixing random variables with 

EX, =O, EIX,lp <CO (ps2), j = 1,2,. . . , for any kz0 and n 2 1, put T,(n) = 

CJk_+kn+, X,. Then there exists a positive constant C = C( p, A (. )) such that 

Proof. See Shao (1989, Lemma 5.3.3). 0 

The following theorem establishes a useful inequality of the maximum of the 

partial sum S, with S,, = CT=, X,, S, = 0. 

Theorem 2.3. Let {X,; j 2 l} be a sequence of (a, /3)- mixing random variables satisfy- 

ing EX, = 0, n = 1,2,. . . , and CF=, hY”(2”) COO. Assume that there exist three 

sequences of positive constants {a,}, {b,} and {c,} such that 

(a) 

(b) max EX: s c,, , 
*sjrsn 

(c) max EX~G a,, 
,c-,S” 
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for all n 2 1. Let {p,; n z l} and {q,,; n 2 l} be two sequences of positive integers 

satisfying 1 =G qn s p,, , p,, + qn S n, for all n 2 1, and again let { (~2,; n 2 1) be a sequence 

of positive numbers satisfying a: + ~0 as n +OO. Then, for any real numbers 0 < e0 < 4 

and x satisfying 

ip,,b, <x <2eO(C*nc, + ~~a:)/((1 -4eo)pnb,) (2.18) 

it follows that there exist two positive constants C independent of n (n a 1) and C( eO) 

such that 

p 15zn IS,lzx 1 I s C{exp{-C(qJx2/(C*nc,+~oa’,)> 

+xm2nc,h y(q,) log4(4n) 

+ qi4n(a, +pnc2n)AY(qn) log4(4n)) (2.19) 

for all n 3 1, where C” is a positive constant independent of n. 

3. Proofs 

Proof of Theorem 2.3. Set p=pn, q=qn and K=K,=[n/(p+q)], n-1,2,..., 

where [x] denotes the integer part of x. Define, for all i = 0, 1,. . . , K - 1, 

YK = i x,, 
i(p+q)+p (i+lKp+q) 

r;= c Xj and 2, = C Xi. 
j=l+K(q+p) j=l+z(p+q) j=l+i(p+q)+p 

Obviously, S, =CE, r;+CE;’ Z, and one has by (2.18) that 

(3.1) 

Let 9; denote the cT-lagebra of events generated by {Xi; 1 sjsp + i(p+ q)] for 
i=O,l,..., K-l and E,={0,@}. Define 

&=Y,-E(Y,Igi-,) and U,= i I$ j=O 
forO~i~K,thenclearly{Vi,~i;O-~ < ’ c K} is a martingale difference sequence, and 

(3.2) 
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As in the proof of (2.3.58) in Shao (1989), it follows by Lemma 2.2 and Lemma 2.3 

that there exists a positive constant C such that 

E( “? E(?19-,))2~ C{ mq~~(q) Iog2(2m) ,<~y_ EY;} (3.3) 
j=u+l 

for all 0 G u < K and 1 G u + m G K. Using Corollary 4 of M6ricz (1982), we obtain 

s cmqhY(q) log’(4m) max EY; (3.4) isjSi+m 

for all 0 G i =Z K and 1 G i + m s K. Hence, one has by Lemma 2.2 and the Chebyshev’s 

inequality that 

14s Cx-*nc,AY(q) log4(4n). (3.5) 

By (3.2), it follows that 

Z,<P m:5 Ui>($-2&(Jx 
{ I 1 

+P max (-U,)>((~-~E~)X aIs+16. 
o<i< K I 

(3.6) 

In order to estimate Is, set 

and 

I,=P 
{ 

,zc”, +E(Y:19,_,)-EY;)zE,u2, . 
._ 

.I = I 
Clearly, 

I5 < I, + I,. (3.7) 

As in the proof of (3.5), one has by Lemma 2.2, the Chebyshev’s inequality and 

Corollary 4 of M6ricz (1982) that 

I* s Cnu,4A ‘( q> log4(4n)( a, +p,c’,>. (3.8) 

SetnowC,(n)=2p,b,andforA>O,m=1,2 ,..., K, 

AU,-iA*(l+$CJn)A) 5 E(Vj]Fj_1) , 
j=O > 

To= 1. 

ThUS 
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almost surely, it follows by Lemma 2.3 that there exists a constant C* > 0 such that 

Z,sP ,riaxK T>exp(h(i-2&,)x-h2/2(1+~C,(n)A)(nC*c,+~,cr2,)) 
i 

. 
. . 

(3.9) 

By Lemma 4.5.1 of Stout (1974, P.299), if C,(n)A s 1, we know that { T,,,, S,,,; 0s m G 

K} is a nonnegative supermartingale. Using well-known supermartingale inequality, 

by (2.18) and (3.9) for A = (~-2e,)x/(C*nc,+~,a2,), we have 

Z, G exp( -&( 1 -4.5$x2( C*nc2, + ~a’,))‘). (3.10) 

Similarly, the estimator of Z6 can be obtained. Combining (3.2), (3.5)-(3.8) and 

(3.10), we have 

I, G C{exp(-&(l-4e,)3x2(C*nc2,+ ~(~2,))r) 

+ncri4AY(q) log4(4n)(a,+pc;)+x~2nc,AY(q) log4(4n)}. 

Since A(n) J, 0 as n + a, we can also show that the estimator of I2 is as same as that 

of I,. This, jointly with (3.1), completes the proof of (2.19). Cl 

Proof of Theorem 2.1. Assume that x is a continuous point of_&. First, fix x and put 

5(x)= K,,j(x-XP)-EK4j(X-X~) 

forj=1,2,...,n-i, and 

n-i, 

sn(x)= C 5jCx). 

j=l 

Obviously, one has by (2.1) and (2.4) that 

and 

St(x) = (n - k,)(_itin(x) - Ehx)) (3.11) 

max 
ISjSn-id 

IQ(x)1 < 2M0Zrid 

almost surely. By Lemma 3.1, there exist two positive constants C,(x) and C,(x) 

such that 

max El;(x) s C,(x)hid 
,sjGn--id 

and 

max E&,4(x) s C2(x)Zri3”. 
IGjSn-id 

Set b, = 2M,,hid, u,, = C2(x)h;3d, c, = C,(x)hid. For an arbitrary O< F < 1, put 

1 
&0=8, u’, = nhid, 

X = F((Tl - id)2h,d(10g10g .)‘+s/n)1’2 
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and 

qn = b-4, Pn= PPnl, 

y(n) = ((n - id)2h,d(log log n)‘+‘/rr-I’*. 

It is easy to show that there exists a positive constant C such that 

P{ r(n) ,mrn Is,(x)1 z &} 

G C{exp(-C(log log n)‘+‘)+log~’ n(log log n)-‘-’ 

+n-’ log_’ n(h,d+2&J} 

by Theorem 2.3. Hence, for n sufficiently large we have 

P y(n) max Is,(x)lZ F G C log-’ n(log log n))m6. 
1 IG,S;n 1 

Putting nk = 2k, k = 1,2, . . . , by the Borel-Cantelli lemma, one has 

‘Y(Q) ,n$, J&(X)/+0 as k+a 

almost surely. For n sufficiently large, there exists k such that nk_, < n s nk and 

max dfi)/dnk)s4. 
n~-,sHs”l. 

Hence 

This, jointly with (3.1 l), suffices to prove (2.12). Similarly, we can show by Theorem 

2.3 that 
A ,. 

fn(x) - EL(x) + 0 asn+co 

almost surely. We obtain (2.9) by Lemma 2.1. Thus, we have completed the proof 

of the theorem. 0 

Proof of Theorem 2.2. (a) Under the assumptions of this part, for all XEC(&), we 

have 

j‘n(x)-fd(x)+O as n+‘c 

almost surely. It follows by Lemma 2.3 that for all x, E C(fz), 

Sn(xl) -fF(x,) + 0 as n + cc 

almost surely. Thus, (a) follows by using the identity 

~/;/--/b=((a^-a)-a(~-b)/b)/~ 

with 

a^ =j_,(x), a =fd (x), 6=“z?(x,), b =fX%). 
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(b) Under the assumptions of this part, by Theorem 2.1 it suffices to show that 

(nh~/(loglogn)‘+s)“2(a^-Ea*)+0 asn+cc (3.12) 

almost surely and 

(nW,/(10g10gn)‘+~)“*(~-EbA)+0 asn+co (3.13) 

almost surely. Since 

c+a/b=((&a)-a(&b)/b)/6 

=((a^-E+a(&E&/b)/b^+((E&a)-a(E&b)/b)/& 

(3.14) 

Also, under the assumptions of this part, it follows by Lemma 2.1(b) of Masry 

(1989) that for n sufficiently large, 

Eii-a=0 (3.15) 

and 

E&b=0 

Now (b) follows by (3.12)-(3.16). Thus, we have completed the proof of the 

theorem. q 
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