TCT-243

Comparison of Neointimal Coverage of Everolimus-Eluting Stents and Sirolimus-Eluting Stents: Optical Coherence Tomography Subanalysis from the RESET Trial

Takashi Akakasu1, Takashi Koh1, Yoshinaka Nakagawa2, Keiichi Inagashi1, Kengo Tanabe1, Yoshihiro Morino1, Masashi Inubuchi1, Kazuo Kimura2, Ken Kosumi1, Takashi Kimura1

1Wakayama Medical University, Wakayama, Japan, 2Tenri Hospital, Tenri, Japan

Background: Confirming complete neointimal coverage after implantation of a drug-eluting stent is clinically important because incomplete stent coverage is responsible for late thrombosis and sudden cardiac death. Optical coherence tomography (OCT) is emerging as a promising endovascular imaging tool for the evaluation of neointimal response after drug-eluting stent implantation. This study used OCT to compare neointimal response between Everolimus-eluting stents (EESs) and Sirolimus-eluting stents (SESs).

Methods: RESET trial was a prospective dual-arm randomized trial of EESs and SESs in 3197 patients with coronary artery disease. From the RESET trial, 90 patients (EES = 54, SES = 55) with 1-year follow-up OCT were investigated. Image analysis was performed at 1-mm intervals.

Results: OCT identified 9591 stents in EESs and 9425 stents in SESs. The frequency of stent struts with neointimal coverage was significantly higher in EESs compared with SESs (89% vs. 83%, p < 0.001). The frequency of malaposed strut was significantly lower in EESs compared with SESs (0.01% vs. 1%, p < 0.001). Averaged neointimal thickness (128 +/- 53 μm vs. 124 +/- 73 μm, p = 0.751) and neointimal volume (25.71 +/- 14.11 mm³ vs. 23.90 +/- 17.56 mm³, p = 0.555) was similar in EESs and SESs. Thrombus was observed in 2% of EESs and 11% of SESs (p = 0.113).

Conclusions: In this OCT subanalysis from RESET trial, neointimal coverage was incomplete in both EESs and SESs at 1-year after stent implantation. Uncovered struts and malaposed struts were less observed in EESs compared with SESs.

TCT-244

Impact of Intensive Statin Therapy on Plaque Characteristics as Assessed by Serial Optical Coherence Tomography

Takashi Akakasu1, Kenichi Komukai2, Takashi Koh1, Atsushi Tanaka1, Hiroshi Kitahata1, Yoshihiko Matsumoto1, Yasushi Iino1, Koshi Ishibashi1, Takashi Tanimoto1, Takashi Ymano1, Tomoyoshi Yamaguchi1, Makoto Oyri1, Kimito Shimamura1, Yasutoshi Shiono2, Kiyoko Uno1, Takahiro Tanaka1

1Wakayama Medical University, Wakayama, Japan, 2Tenri Hospital, Tenri, Japan

Background: Recent clinical trials have demonstrated that intensive lipid-lowering therapy by statins could prevent recurrent cardiac events after acute coronary syndrome (ACS). Optical coherence tomography (OCT) is capable of estimating fibrous cap thickness (FCT) of coronary atherosclerotic plaques, which might be associated with plaque instability. This study was a prospective, randomized, open-label, multi-center study to compare the effect of intensive vs. moderate statin therapy on FCT by using OCT.

Methods: A total of 56 ACS patients with dyslipidemia [low-density lipoprotein cholesterol (LDL-C) levels >100 mg/dL] were enrolled in this study. After percutaneous coronary intervention (PCI), the patients were randomly assigned to two groups: intensive statin therapy (atarvastatin 20 mg/day) or moderate statin therapy (atorvastatin 5 mg/day, n=25). OCT was performed to measure FCT in non-culprit intermediate lesions at baseline and 12-month follow-up. Serum profiles of LDL-C, high density lipoprotein cholesterol (HDL-C), high sensitive C-reactive protein (hs-CRP), malondialdehyde LDL (MDA-LDL) and metalloproteinase-9 (MMP-9) were measured before PCI and at 12-month follow-up.

Results: Serum LDL cholesterol levels were significantly decreased in patients with intensive statin therapy (132.7 +/- 28.2 to 70.5 +/- 13.4 mg/dL, -45.4 +/- 13.0%) compared with moderate statin therapy (129.3 +/- 31.3 to 84.9 +/- 23.8 mg/dL, -33.2 +/- 18.8%, p = 0.002). FCT was significantly increased in patients with intensive statin therapy (119.4 +/- 46.9 to 193.0 +/- 76.0 μm, 66.2 +/- 40.9% vs. 45.8 +/- 18.7%, p = 0.002). The change of FCT showed a significant negative correlation with the changes in hs-CRP (r = -0.40, p = 0.001), MDA-LDL (r = -0.32, p = 0.02), while there was no correlation between the changes of FCT and HDL-C (r = 0.06, p = 0.68). Furthermore, the change in FCT showed a negative correlation with the changes in in hs-CRP (r = 0.30, p = 0.03) and MMP-9 (r = -0.57, p < 0.001).

Conclusions: This OCT study suggests that the intensive lipid-lowering therapy with 20 mg/day of atorvastatin might be more helpful to stabilize coronary atheromas.

TCT-245

IMPACT OF STATIN THERAPY ON PLAQUE MICROSTRUCTURES ON OPTICAL COHERENCE TOMOGRAPHY

Yu Katoaka1, Julie Thornton1, Kathy Wolski2, Riichi Parry1, James Harvey1, Kyoko Uno1, Samir Kapadia1, E. Murat Tuzcu1, Steven Nissen1, Stephen Nicholls1

1Cleveland Clinic, Cleveland, OH; 2Cedars Sinai Medical Center, Los Angeles, CA

Background: Favorable effects on progression of coronary atherosclerosis contribute to the ability of statins to reduce cardiovascular events. While statins have been proposed to also stabilize atherosclerotic plaque by lowering LDL-C level and various pleotropic effects, this has not been well established in vivo. High resolution imaging with optical coherence tomography (OCT) enables visualization of microstructures related to plaque vulnerability. Therefore, the current study investigated the impact of statin therapy on plaque microstructures by using OCT imaging.

Methods: 102 patients with coronary artery disease underwent OCT imaging of non-culprit lipid-rich plaques. Patients treated with (n = 44) and without (n= 58) a statin were compared with regard to clinical characteristics and OCT-derived features of plaque vulnerability including fibrous cap thickness and microchannels. The impact of low (n=18) and high-dose (n=26) statins on OCT measures was also compared.

Results: Statin-treated patients were more likely to be male (84% vs. 66%, p=0.009) and demonstrated lower leukocyte counts (7731 +/- 2906 vs. 9142 +/- 3788, p=0.004) than patients without statin therapy. OCT demonstrated that statin-treated patients were less likely to exhibit microchannels (46% vs. 68%, p=0.03), in association with a greater fibrous cap thickness (80.6 +/- 49.8 mm vs. 72.9 +/- 43.0 mm, p=0.06). Especially, patients treated with high-dose statin therapy were less likely to demonstrate microchannels than patients treated with lower doses (39% vs. 59%, p=0.01).

Conclusions: In the current study, use of statin therapy is associated with less vulnerable plaque features on OCT imaging. Greater OCT evidence of plaque stabilization with high-dose statin therapy is consistent with their favorable effects on cardiovascular outcomes.

TCT-246

Comparison of intravascular ultrasound versus angiography guided drug-eluting stent implantation: a meta-analysis of randomized trials and observational studies involving 17,570 patients

Yaojun Zhang1, Christos Bourantas2, Shaoqiang Chen3, Vastam Faruqui4, Hector Garcia-Garcia5, Patrick Serruya6

1Thoraxcenter, Rotterdam, Rotterdam, 2Thoraxcenter, Rotterdam, Netherlands, 3Nanjing First Hospital, Nanjing, Nanjing, 4Thoraxcenter, Rotterdam, Rotterdam, 5Thoraxcenter, Erasmus MC, Rotterdam, Rotterdam

Background: The impact of intravascular ultrasound (IVUS) guided coronary drug eluting stent (DES) implantation on clinical outcomes remains controversial. A meta-analysis of the currently available clinical trials investigating IVUS guided DES implantation was undertaken.

Methods: We searched Medline, the Cochrane Library and other internet sources, without language or date restrictions for published articles comparing clinical outcomes between IVUS- and angiography-guided DES implantation. Clinical studies with both adjusted and unadjusted data were included.

Results: Nine studies were identified and included in the meta-analysis with a weighted follow-up time of 21.7 +/- 11.8 months. Compared with angiography-guidance, IVUS-guided DES implantation was associated with a reduced incidence of death (hazard ratio [HR]: 0.58, 95% confidence interval [CI]: 0.47-0.71, p<0.001), major adverse cardiac events (HR: 0.85, 95% CI: 0.76-0.95, p<0.005) and stent thrombosis (HR: 0.62, 95% CI: 0.46-0.83, p=0.002). The incidence of myocardial infarction (HR: 0.80, 95% CI: 0.59-1.07, p=0.134), target lesion (HR: 0.97, 95% CI: 0.76-1.23, p=0.782) and target vessel (HR: 0.94, 95% CI: 0.79-1.11, p=0.455) revascularization were comparable between the angiography and IVUS-guided arms. Repeat analyses in which the IVUS guided and the angiography guided groups had similar baseline characteristics (apart from older patients and more renal insufficiency in the angiography guided arm) (n=9049), and analyses with studies that were propensity matched (n=4,128), yielded broadly similar results in terms of clinical outcomes.

Conclusions: IVUS-guided coronary DES implantation is associated with a significant reduction in death, MACE and stent thrombosis compared to angiography guidance. Appropriately powered randomized trials are necessary to confirm the findings from this meta-analysis.