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Abstract

We give a general theorem that provides examples of n-random reals à la Chaitin, for every n ≥ 1; these are halting probabilities
of partial computable functions that are universal by adjunction for the class of all partial computable functions, The same result
holds for the class functions of partial computable functions with prefix-free domain. Thus, the usual technical requirement of
prefix-freeness on domains is an option which we show to be non-critical when dealing with universality by adjunction. We also
prove that the condition of universality by adjunction (which, though particular, is a very natural case of optimality) is essential in
our theorem.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Partial computable functions with prefix-free domain have been considered to get deep relations between Martin-
Löf randomness and algorithmic information theory; namely,

• Schnorr’s characterization [15] of random sequences of 2ω via the prefix-free (also called self-delimited) variant
K : 2<ω

→ N of Kolmogorov complexity (Chaitin [5] and Levin [11]).
• Chaitin’s Omega numbers as significant random reals (Chaitin [5]; cf. Theorem 1.6 below).

The role of prefix-freeness in these results is that of a key technical tool, but one can argue that there is no decisive
conceptual argument in favor of the prefix-free restriction on domains: recently, Miller and Yu [13] have obtained
a plain Kolmogorov complexity characterization of random sequences. In this short paper, we give examples of
n-random reals à la Chaitin, for every n ≥ 1, namely, the probability ΩU [A] that U maps into a given Σ 0

n -complete
set A (or simply non-empty Σ 0

1 in the case of n = 1); cf. Theorem 2.4. Their significance is twofold. Firstly, unlike
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the classical Chaitin Omega numbers, these reals are the halting probabilities of universal functions with no prefix-
free condition on their domains. Secondly, there were no known examples of n-random reals arising from halting
probabilities other than the classical Chaitin Omega numbers of optimal partial functions recursive in oracle ∅

n−1, for
n ≥ 1. However, the price to pay is that:

(a) though the notion of optimality we use—the so called universality by adjunction—is most usual, it is more
restrictive than the classical notion; and

(b) the probability ΩU [A] that we use is only subadditive in A; cf. Proposition 1.5.

1.1. Optimality, universality and universality by adjunction

We denote by 2<ω the set of all finite words on the alphabet {0, 1} and by 2≤n the set of all words up to size n.
The length of a word a is denoted as |a|. We write � for the prefix relation between words. Let ϕ : 2<ω

→ 2<ω. We
denote by ϕe : 2<ω

→ 2<ω the map such that dom(ϕe) = {p | 0e1p ∈ dom(ϕ)} and ϕe(p) = ϕ(0e1p) for all p in
its domain. We shall use the next definition when C is the class of partial computable functions (resp. with prefix-free
domains) or partial computable with oracle ∅

(n−1).

Definition 1.1 (Universality and Universality by Adjunction). Let C be a class of partial functions 2<ω
→ 2<ω.

(1) U is universal (resp. partial universal) in C if U ∈ C and there is a total (resp. partial) computable function
c : N × 2<ω

→ 2<ω such that

C = {λp.U (c(e, p)) | e ∈ N}

where λp.U (c(e, p)) denotes the partial function p 7→ U (c(e, p)) with domain {p | c(e, p) ∈ dom(U )}.
(2) U is universal by adjunction in the case of c(e, p) = 0e1p, i.e.

U ∈ C ∧ C = {Ue | e ∈ N}.

Let us recall the classical notion of optimality.

Definition 1.2. (1) Let ϕ : 2<ω
→ 2<ω. We denote by Cϕ : 2<ω

→ N ∪ {+∞} the map such that Cϕ(u) = min{|p| |

ϕ(p) = u} (with the convention min ∅ = +∞).
(2) U : 2<ω

→ 2<ω is optimal for C if

U ∈ C ∧ (∀ϕ ∈ C ∃a ∀x ∈ 2<ω
[CU (x) ≤ Cϕ(x) + a]).

As is well known,

Proposition 1.3. If U : 2<ω
→ 2<ω is partial universal for C with respect to a partial computable map c such that

(Ď) ∀e ∃ae ∀p ((e, p) ∈ dom(c) ⇒ |c(e, p)| ≤ |p| + ae)

then U is also optimal for C. In particular, universality by adjunction implies optimality.

1.2. Generalized Chaitin reals

We shall deal with Martin-Löf randomness (cf. textbooks [3,12,7]) and n-randomness (i.e. randomness in oracle
∅

(n−1)), for n ≥ 1. Recall that a real is left c.e. (resp. n-left c.e.) if it is the limit of a bounded monotone increasing
computable (resp. computable in oracle ∅

(n−1)) sequence of rational numbers. We use µ(X ) to denote the Lebesgue
measure of a subset X of the Cantor space 2ω of all infinite binary words of length ω. For a set S ⊆ 2<ω, we write
S2ω to denote the set {sg | s ∈ 2<ω

∧ g ∈ 2ω
}. In the case where S is a singleton {s} we drop the braces and simply

write s2ω.

Definition 1.4. Let f : 2<ω
→ 2<ω and A ⊆ 2<ω. We denote by Ω f [A] and Ω f [k, A] the reals

Ω f [A] = µ({p ∈ dom( f ) | f (p) ∈ A}2ω)

Ω f [k, A] = µ({p ∈ dom( f ) | |p| ≥ k ∧ f (p) ∈ A}2ω)

Thus, Ω f [A] (resp. Ω f [k, A]) is the probability that an infinite word has at least one prefix (resp. prefix of length ≥ k)
which is mapped into A by f .
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The lack of prefix-freeness prevents Ω f [A] from being additive in A; it is merely subadditive.

Proposition 1.5. (1) If A, B ⊆ 2<ω then Ω f [A ∪ B] ≤ Ω f [A] + Ω f [B].
(2) In the case where f has prefix-free domain and A, B are disjoint then

Ω f [A ∪ B] = Ω f [A] + Ω f [B].

Since there are finitely many p’s with length < k, the real µ({|p| < k | f (p) ∈ A}2ω) is rational. In the case
where f has prefix-free domain, we have Ω f [A] = Ω f [k, A] + µ({|p| < k | f (p) ∈ A}2ω) and Chaitin’s celebrated
theorem [5] (see the Note on page 141 of [6]) can be stated as follows.

Theorem 1.6 (Chaitin [5]). Let U : 2<ω
→ 2<ω be optimal for the class of partial computable functions with prefix-

free domains. For every k ∈ N and every infinite computably enumerable set A ⊆ 2<ω, the real ΩU [k, A] is random
left c.e.

Let us also recall the extension obtained for Σ 0
n sets A in [1].

Theorem 1.7 (Becher, Figueira, Grigorieff and Miller [1]). Let U : 2<ω
→ 2<ω be optimal for the class of partial

computable functions with prefix-free domains. For every k ∈ N and n ≥ 2 and every Σ 0
n -complete set A ⊆ 2<ω, the

real ΩU [k, A] is random.

Remark 1.8. As shown in [1], the above results cannot be extended:

– for any optimal U there exists a ∆0
2 set A such that ΩU [A] is rational,

– there exists an optimal U such that ΩU [A] is rational for all finite sets A.

However, we shall extend them with the extra hypothesis of universality by adjunction. In particular, randomness is
extended to n-randomness in Theorem 2.7.

2. Universality by adjunction and randomness of generalized Chaitin reals

2.1. Partial many–one reducibility

The following extension of many–one reducibility is the pertinent tool for addressing the main Theorem 2.4. It
was introduced by Ershov, 1968 [8], and is related to Kleene index sets and enumeration reducibility (cf. [8], page 23,
point 6 of Corollaries and [14] and [10], Remark 4).

Definition 2.1 ([8]). (1) Let A, B ⊆ 2<ω. We say that A is partial many–one reducible to B if A = f −1(B) for
some partial computable f : 2<ω

→ 2<ω.
(2) For C ⊆ P(2<ω), the notion of partial many–one C-completeness is defined in the usual way.

The following result was noticed in [8] (Example on p. 21).

Proposition 2.2. A set S is partial many–one Σ 0
1 -complete if and only if it is Σ 0

1 and non-empty.

Proof. Let f : 2<ω
→ 2<ω be a constant function with value an element of S and domain the set to be reduced to S.

2.2. Randomness of ΩU [k, A] for k large enough

The following proposition is straightforward.

Proposition 2.3. Suppose that

(1) X̃ and Ỹ are disjoint subsets of 2<ω,
(2) X̃ ∪ Ỹ is prefix-free,
(3) X ⊆ X̃2<ω and Y ⊆ Ỹ 2<ω.

Then X2ω and Y 2ω are disjoint and µ((X ∪ Y )2ω) = µ(X2ω) + µ(Y 2ω).

We can now prove our main theorem.
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Theorem 2.4. Let U : 2<ω
→ N be universal by adjunction for the class of partial computable functions (no prefix-

free condition on domains).
Let n ≥ 1. If A ⊆ N is partial many–one Σ 0

n complete then, for all k large enough, the real ΩU [k, A] is n-random
left n-c.e.

Note 2.5. Let ` > 0, a ∈ A and define V from U as follows: V (q) = a if |q| < ` and V (qp) = U (p) for all |q| = `.
If U is optimal (resp. universal, resp. universal by adjunction) for the class of partial computable functions then so is
V . Also, µ({p | |p| = k ∧ V (p) = a}2ω) = 1 for all k < `. Thus ΩV [k, {a}] = 1 for all k < `. Since {a} is partial
many–one Σ 0

1 complete (cf. Proposition 2.2), the condition “k large enough” cannot be removed in Theorem 2.4.

Proof. Let ϕn be universal by adjunction for the class of functions with prefix-free domains which are partial
computable with oracle ∅

(n−1). Let Zn = dom(ϕn). Chaitin’s Theorem 1.6 (and its oracular version, for the case
n ≥ 2) insures that Zn ⊂ 2<ω is a prefix-free Σ 0

n set such that µ(Zn2ω) is n-random left n-c.e. The assumed partial
many–one Σ 0

n -completeness of A yields a partial computable f : 2<ω
→ N such that f −1(A) = Zn . Since U is

universal by adjunction, there exists i ∈ N such that f = Ui . Thus,

Zn = U−1
i (A) = {p ∈ 2<ω

| 0i 1p ∈ U−1(A)}

0i 1Zn = U−1(A) ∩ 0i 12<ω.

Let k be any integer > i and let

X = X̃ = U−1(A) ∩ 0i 12<k−i−1

Y = Ỹ = U−1(A) ∩ 0i 12≥k−i−1.

Since 0i 1Zn = U−1(A) ∩ 0i 12<ω is prefix-free, the conditions of Proposition 2.3 are satisfied. Since X ∪ Y =

U−1(A) ∩ 0i 12<ω
= 0i 1Zn , we get

µ(0i 1Zn2ω) = µ((U−1(A) ∩ 0i 12<k−i−1)2ω) + µ(U−1(A) ∩ 0i 12≥k−i−1)2ω).

Now, 0i 12<k−i−1 is finite; hence the real µ((U−1(A) ∩ 0i 12<k−i−1)2ω) is rational. Since µ(0i 1Zn2ω) =

2−i−1µ(Zn2ω) is n-random, so is µ((U−1(A) ∩ 0i 12≥k−i−1)2ω). Finally, letting

X̃ = 0i 12k−i−1 X = U−1(A) ∩ X̃2<ω

Ỹ = {u | |u| = k ∧ 0i 1 6� u} Y = U−1(A) ∩ Ỹ 2<ω

we have X ∪ Y = U−1(A) ∩ 2≥k and the conditions of Proposition 2.3 are satisfied, so that

ΩU [k, A] = µ((U−1(A) ∩ 2≥k)2ω)

= µ((U−1(A) ∩ 0i 12≥k−i−1)2ω) +

∑
|u|=k,0i 16�u

µ((U−1(A) ∩ u2<ω)2ω).

Both terms on the right are left n-c.e. and the first one is n-random. Using the fact that the sum of two left n-c.e. reals
is n-random whenever one of them is n-random ([4]; cf. also [2], Prop. 3.6, or Downey and Hirschfeldt’s book [7]),
we conclude that our sum is n-random, completing the proof of Theorem 2.4.

Using Proposition 2.2, we get:

Corollary 2.6. Let U : 2<ω
→ N be universal by adjunction for the class of partial computable functions (no prefix-

free condition on domains).
(1) If A ⊆ N is computably enumerable and non-empty, then, for all k large enough, the real ΩU [k, A] is 1-random

left c.e.
(2) If n ≥ 2 and A ⊆ N is many–one Σ 0

n complete then, for all k large enough, the real ΩU [k, A] is n-random left
n-c.e.

2.3. Prefix-freeness and randomness of ΩU [A]

The argument of the proof of Theorem 2.4 also applies mutatis mutandis to prefix-free partial computable maps
(it is even simpler since there is no need for large k). Under the hypothesis of universality by adjunction, this extends
Chaitin’s Theorem 1.6 and also Theorem 3.2 of [1].
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Theorem 2.7. Let U : 2<ω
→ N be universal by adjunction for the class of partial computable functions with

prefix-free domains. Let n ≥ 1. If A ⊆ N is partial many–one Σ 0
n complete, then ΩU [A] is n-random left n-c.e.

3. On the role of the hypothesis of universality by adjunction

3.1. Optimal partial universality is not enough

Proposition 3.1 below stresses the essential role of universality by adjunction in Theorem 2.4. Point (i) is a non-
prefix-free version of the weaker analog statement in [1, Proposition 2.1]. We construct an optimal partial universal
machine V such that ΩV [k, A] is not random, for the choices of A ⊂ 2<ω in Points (ii) and (iii). These are the
counterparts of the weaker analogs [1, Corollary 2.2 and Remark 2.3] (also cf. Figueira, Stephan and Wu [9]). In
particular, Point (iii) constructs a Π 0

1 set A, and disproves randomness of ΩV [k, B] for every B ⊆ A, by showing lack
of Borel normality in base 2. We provide the full proof.

Let us recall that a real r is Borel normal in base t ≥ 2, if for every word w ∈ {0, 1, . . . , (t − 1)}<ω,

lim
n→∞

number of occurrences of w in r �n in base t
n

=
1

t |w|
.

r is absolutely normal if it is normal to every base t ≥ 2. Absolute normality is an effective measure 1 property, so all
random reals possess it.

Proposition 3.1. There exists a partial computable function V : 2<ω
→ 2<ω such that

(i) V is partial universal and satisfies property (Ď) of Proposition 1.3. In particular, V is optimal.
(ii) If A ⊂ 2<ω is finite then V −1(A) is finite, and hence ΩV [k, A] is dyadic rational for every k,

(iii) There is an infinite Π 0
1 set A ⊆ 2<ω such that, for every k and every subset B ⊆ A, the real ΩV [k, A] is not

Borel normal, and hence not 1-random.

3.2. Proof of Proposition 3.1

3.2.1. Construction of V
Let U : 2<ω

→ 2<ω be partial computable universal by adjunction. Modify U so that the empty word ε is not
in the domain of U . This does not affect universality which involves programs of the form 0i 1p which are all 6= ε.
We transform U into another partial computable function V by removing from the domain of U as many “useless”
programs as we can: we remove any program p which is not shorter than some program which is already known to
be in the domain of U and gives the same image as p does. Namely, let (pi )i∈N be a computable enumeration of
dom(U ). Define a total computable function f : N → N such that f (i) is the smallest j ≤ i satisfying

U (p j ) = U (pi ), |p j | = min{|p`| : ` ≤ i, U (p`) = U (pi )}.

Let V be the partial computable restriction of U to the computably enumerable set {p f (i) | i ∈ N}.

3.2.2. Proof of point (i) of Proposition 3.1
To simplify notation we write ΩV [a] and ΩV [k, a] in place of ΩV [{a}] and ΩV [k, {a}] for singleton sets {a}. Define

a partial computable c : N × 2<ω
→ 2<ω as follows:

dom(c) = {(e, p) | 0e1p ∈ dom(U )}

c(e, p) = p f (i) where i is such that pi = 0e1p.

Clearly, 0e1p ∈ dom(U ) ⇔ c(e, p) ∈ dom(V ) and U (0e1p) = V (c(e, p)). Since U is universal by adjunction, we
see that V is partial universal. Finally, inequality |c(e, p)| ≤ |0e1p| yields property (Ď).
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3.2.3. Proof of point (ii) of Proposition 3.1
To get point (ii) of Proposition 3.1, apply equality V −1(A) =

⋃
a∈A V −1(a) and the following claim.

Claim 3.2. Let a ∈ 2<ω. The set V −1(a) is finite non-empty of the form V −1(a) = {q0, . . . , qn} where |q0| > |q1| >

· · · > |qn| = CU (a). In particular, CV = CU .

Proof. Let j be least such that U (p j ) = a and |p j | = CU (a). Then f (i) = j for every i ≥ j such that U (pi ) = a.
This proves finiteness of V −1(a) and that its smallest element has length CU (a). To conclude, observe that, by
construction of V , two elements of V −1(a) cannot have the same length.

3.2.4. Some more properties of V
The length of a dyadic rational in [0, 1] is the number of digits of its shortest representation in base 2.

Claim 3.3. There exists a total computable function ` : 2<ω
→ (N \ {0}) such that, for all a ∈ 2<ω,

(1) the longest word in V −1(a) has length `(a); hence 2−`(a)
≤ ΩV [a];

(2) the real ΩV [a] is dyadic rational with length ≤ `(a).

Proof. Let `(a) be the length of the element q0 of V −1(a) which comes first in the enumeration of dom(U ). Since
the empty word is not in dom(U ) (cf. Section 3.2.1), ` takes values in N \ {0}. The construction of V insures that q0
is the longest element of V −1(a), which proves point 1. Observe that ΩV [a] =

∑
q∈Ma

2−|q| where Ma is the set of
minimal elements of the finite set V −1(a) (minimality is with respect to the prefix ordering on words). Thus, point 1
implies point 2.

Note 3.4. In the case where the longest element of V −1(a) has a prefix in V −1(a), it does not appear in Ma , so that
the length of ΩV [a] may be < `(a).

Claim 3.5. lim|a|→+∞ ΩV [a] = 0.

Proof. Claim 3.2 yields ΩV [a] <
∑

j≥CU (a) 2− j
= 2−CU (a)+1. To conclude, recall that lim|a|→+∞ CU (a) = +∞ for

any U .

3.2.5. A sufficient condition for failing normality
We shall use the following lemma to prove that ΩV [k, A] is not Borel normal.

Lemma 3.6. Let α =
∑

n∈N αn where the αn’s are strictly positive dyadic rational numbers. Suppose there is some
g : N → (N \ {0}) such that, for all n, αn has length ≤ g(n) (as a dyadic rational) and αn+1 < 2−3g(n). Then α is not
Borel normal in base 2 (and hence not 1-random).

Proof. Observe that the hypotheses imply that 2−g(n+1)
≤ αn+1 < 2−3g(n); hence, g(n + 1) > 3g(n). In particular,

g(n) is strictly monotone increasing unbounded. Let β =
∑

n∈N αn+1. The contribution of αn+1 to β is for digits with
ranks in {3g(n) + 1, . . . , g(n + 1)}. All digits of β between g(n + 1) + 1 and 3g(n + 1) are 0. Let us denote by #i (x)

the number of digits i (i = 0, 1) in the initial segment of β up to rank x ;

#1(3g(N + 1)) ≤ [g(1) − 3g(0)] + · · · + [g(N + 1) − 3g(N )]

= g(N + 1) − 2[g(1) + · · · + g(N )] − 3g(0)

#0(3g(N + 1)) ≥ [3g(1) − g(1)] + · · · + [3g(N + 1) − g(N + 1)]

= 2g(1) + · · · + 2g(N + 1).

Thus, #0(3g(N + 1)) ≥ 2#1(3g(N + 1)), i.e. the 3g(N + 1) first digits of β contain more than twice as many 0’s as
1’s. Since g(N + 1) is unbounded, this proves that β is not normal in base 2. Finally, α is also not normal since it is
the sum of β and the dyadic rational α0.
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3.2.6. Construction of the Π 0
1 set A

We now define the set A which satisfies property (ii) of Proposition 3.1. Fix some enumeration (pi )i∈N of dom(V )

and associate with it the computable bijective enumeration E : N → 2<ω such that the E(i)’s are the distinct
elements of the sequence (V (pi ))i∈N in their order of first appearance. Let <E be the order on 2<ω induced by E :

u <E v ⇔ E−1(u) < E−1(v). We give a construction of an infinite Π 0
1 set A =

⋂
t≥0 At . To force failure of

Borel normality of ΩV [k, A] in base 2, we make the construction so that the following property will hold, where
` : 2<ω

→ N is the total computable function from Claim 3.3:

∀n ≥ 1 (ΩV [an] < 2−3`(an−1))

where a0, a1, . . . is the enumeration of A induced by E .
(1)

The computable sequence of cofinite sets (At )t∈N is inductively defined as follows.
Initial step. Let a0

0 = E(0) (the <E least word) and A0 = 2<ω.
Inductive step: from t to t + 1. Let Ω t

V [a] denote the approximation of ΩV [a] at step t . The set At+1 is defined as
follows.

Let at
0 <E at

1 <E . . . <E at
mt

be the distinct elements in
At ∩ {V (pi ) | 0 ≤ i ≤ t}. Set At+1 = At in the case where for every n = 1, . . . , mt ,

Ω t
V [at

n] < 2−3`(at
n−1) (2)

Otherwise let at
j be the first among at

1, . . . , at
mt

such that condition (2) fails and set At+1 = At \ {at
j }.

Clearly, the At’s are cofinite and decreasing and A =
⋂

t≥0 At is Π 0
1 .

3.2.7. A has the wanted properties
Claim 3.7. A is infinite and, letting a0 <E a1 <E . . . be the enumeration of A, for every n ∈ N, conditions mt ≥ n
and at

n = an hold for all t large enough.

Proof. Let P(n) be the following property:

∃a0 . . . ∃an [a0 <E a1 <E . . . <E an ∧

(∀a ∈ At \ {a0, . . . , an} an <E a)∧

(∃τ ∀t ≥ τ (mt ≥ n ∧
∧

i=0,...,n at
i = ai ))].

To prove the claim, it suffices to show ∀n P(n). By induction on n. Initial step n = 0. Observe that at
0 is never

removed since the at
j to be removed is selected among at

1, . . . , at
mt

. Thus, one can take a0 = a0
0 and τ = 0.

Inductive step: from n to n + 1. Let a0, . . . , an and τ witness condition P(n). First, observe that, since At is cofinite
and domain(U ) is infinite, the set T = {t ≥ τ | mt > n} is infinite. If P(n + 1) failed then, for every t ∈ T ,
the element at

n+1 is removed at some step t ′ > t . Thus, we can extract an infinite subset S ⊆ T such that the
at

n+1’s, t ∈ S, are pairwise distinct. The removal at step t ′ of at
n+1 = at ′

n+1 means that Ω t ′
V [at

n+1] ≥ 2−3`(an). Since,
ΩV [at

n+1] ≥ Ω t ′
V [at

n+1], we get

ΩV [at
n+1] ≥ 2−3`(an) for all t ∈ S. (3)

Now, the infinite sequence (at
n+1)t∈S is made of pairwise distinct elements, and hence the lengths of its elements tend

to +∞ and Claim 3.5 says that ΩV [at
n+1] tends to 0 when t tends to +∞. But, according to (3), the sequence is

bounded from below by 2−3`(an). A contradiction.

Claim 3.8. Condition (1) holds for every infinite subset B of A.

Proof. Condition (1) from the construction holds for A. Let τ be such that mt
≥ n and an = at

n and Ω t
V [an] = ΩV [an]

for all t ≥ τ . Since at
n is not removed, we have Ω t

V [an] < 2−3`(an−1). Hence ΩV [an] < 2−3`(an−1).
To get condition (1) for any infinite subset B of A, it suffices to prove that ΩV [an+1+k] < 2−3`(an) holds for all n

and k. We prove it by induction on k.
Initial step k = 0. Apply condition (1) for A (cf. point 1 of this proof).
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Inductive step: from k to k + 1. Observe that

ΩV [an+1+k+1] < 2−3`(an+1+k ) (condition (1) for A)
< 2−`(an+1+k )

≤ ΩV [an+1+k] (Claim 3.3)
< 2−3`(an) (induction hypothesis).

3.2.8. Proof of point (iii) of Proposition 3.1
Consider some infinite subset B of A and some fixed k. Let b0 <E b1 <E . . . be the elements of B. Then

ΩV [k, B] =
∑

n∈N αn where

α0 = ΩV [k, b0]

αn+1 = ΩV [k, {b0, . . . , bn+1}] − ΩV [k, {b0, . . . , bn}].

Case 1: {n | αn = 0} is cofinite. Then ΩV [k, B] is rational and hence not normal.

Case 2: I = {n | αn > 0} is infinite. Let i0 < i1 < . . . be the elements of I . Then ΩV [k, {b j | j ≤ im}] = ΩV [k, {bi j |

j ≤ m}]. Let B ′
= {bi j | j ∈ N}. Then B ′ is an infinite subset of A and ΩV [k, B] = ΩV [k, B ′

] and the α′
n’s associated

with B ′ are all strictly positive. Thus, we reduce to the case where all αn’s are strictly positive.
By Claim 3.8, condition (1) is true for B. Thus, ΩV [bn+1] < 2−3`(bn), so that

All programs in V −1(bn+1) have length ≥ 3`(bn). (4)

From Claim 3.3 we have 2−`(bn+1) ≤ ΩV [bn+1]. In particular, 2−`(bn+1) < 2−3`(bn), so that `(bn+1) > 3`(bn) and the
sequence (`(bn))n∈N is strictly increasing.

Using Claim 3.3 and the monotonicity of the `(bn), we see that

All programs in V −1({b0, . . . , bn}) have length ≤ `(bn). (5)

Using conditions (4) and (5) we see that no program in V −1(bn+1) is shorter than some program in V −1({b0, . . . , bn}).
In particular, αn+1 = µ(Mn2ω) where Mn is the family of programs in V −1(bn+1) which have length ≥ k and have no
prefix in V −1({b0, . . . , bn}) ∩ 2≥k . Since αn+1 > 0, the set Mn is not empty. Now, Mn ⊆ V −1(bn+1) and Claim 3.3
states that the longest element of Mn has length ≤ `(bn+1). As a consequence, the length of the dyadic rational
αn+1 = µ(Mn2ω) is ≤ `(bn+1).

Inclusion Mn ⊆ V −1(bn+1) and inequality ΩV [bn+1] < 2−3`(bn) (condition (1) for B) imply that αn+1 =

µ(Mn2ω) ≤ ΩV [bn+1] < 2−3`(bn).
The hypotheses of Lemma 3.6 are satisfied taking g to be the map n 7→ `(bn). The application of this lemma

concludes the proof of point (iii) of Proposition 3.1.
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