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Abstract

We propose a lower limit on the size of a single discrete gravitational extra dimension in the context of an effecti
theory for massive gravitons. The limit arises in this setup from the requirement that the Casimir energy density of q
fields is in agreement with the observed dark energy density of the universeρobs� 10−47 GeV4. The Casimir energy densitie
can be exponentially suppressed to an almost arbitrarily small value by the masses of heavy bulk fields, thereby allow
size of the extra dimension. This suppression is only restricted by the strong coupling scale of the theory, which is kno
related to the compactification scale via an UV/IR connection for local gravitational theory spaces. We thus obtain a low
on the size of the discrete gravitational extra dimension in the range(1012 GeV)−1 · · · (107 GeV)−1, while the strong coupling
scale is by a factor∼ 102 larger than the compactification scale. We also comment on a possible cancelation of the grav
contribution to the quantum effective potential.
 200 Elsevier B.V5 . Open access under CC BY license.
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1. Introduction

Recent observations suggest that the univers
currently in a phase of accelerated expansion[1–5],
that is assumed to be driven by an energy form w
negative pressure called dark energy (DE). The m
famous candidate for DE is a positive cosmologi
constant (CC), which is equivalent to a positive va
uum energy density. Although DE represents the do
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inant part (about 75%) of the total energy density
the universe, the observed value of the CC is o
of the orderρobs � 10−47 GeV4, which is extremely
small compared to usual particle physics scales.
far, no generally accepted solution has been give
the problem of understanding such a tiny value of
CC, which is known as the CC problem[6].

It has been emphasized, that a non-zero CC a
ing from the Casimir effect[7,8] in Kaluza–Klein
(KK) theories[9] might be relevant for the dynam
cal compactification of extra dimensions[10–12]. In
this scenario, the Casimir energies produced by
fluctuations of gravitational and massless matter fie
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propagating in the internal space, would yield a c
tribution to DE which depends on the size of the e
tra dimensions. DE could therefore provide via t
Casimir effect a probe of the geometric infrared (I
structure of the higher-dimensional manifold. It wou
now be interesting to see, whether the Casimir e
gies contributing to DE, might also be sensitive to
ultraviolet (UV) details of the theory. In fact, distin
higher-dimensional gauge theories that reproduce
ilar physics in the IR, can look drastically differe
in the UV. This may be best appreciated by the
ample of dimensional deconstruction[13,14], which
yields a class of manifestly gauge-invariant and ren
malizable effective Lagrangians for KK modes a
thus represents a possible UV completion of high
dimensional gauge theories.1 In this type of mod-
els, one could only observe at high energies that
physics of extra dimensions actually emerges dyna
cally in a purely four-dimensional (4D) setting, whic
denotes a radical departure from the usual treatm
of higher-dimensional theories near their UV cuto
Recently, the idea of deconstruction has also been
plied to an effective field theory for massive gravito
[16–18], which is defined in a “theory space”[19] con-
taining “sites” and “links”. This allows the construc
tion of discrete gravitational extra dimensions, th
show qualitatively new properties as compared to n
gravitational theory spaces[17,18]. A major feature
of discrete gravitational extra dimensions is, that th
exhibit a strong coupling scaleΛ in the UV, which de-
pends via an “UV/IR connection” on the size or
length-scale of the compactified extra dimension[17].
We will therefore have to expect that a contribution
DE arising from the Casimir effect in discrete gra
tational extra dimensions could be related to the
structure of the theory in a non-trivial way.

In this Letter, we consider a vacuum energy co
tribution to DE, which is generated from the Casim
effect in a single discrete gravitational extra dime
sion. For this purpose, we treat the gravitational the
space as a flat background for quantum fields pro
gating in the latticized five-dimensional (5D) bulk.
determining the Casimir energy densities of the
ticized bulk fields, we assume linearized gravity a
truncate the theory at the 1-loop level. Since these

1 For an early application of similar ideas, see Ref.[15].
ergy densities contribute to the CC, they have to
below the observed valueρobs ∼ 10−47 GeV4, asso-
ciated with the accelerated expansion of the unive
For massless bulk fields,2 the 4D Casimir energy den
sity ρ scales with the size (circumference)R of the
extra dimension as|ρ| ∼ R−4, which would lead to a
lower boundR � (10−3 eV)−1 ∼ 0.1 mm. A much
smaller sizeR becomes possible, if the bulk field
have non-zero massesMX , in which case the Casim
energies are exponentially suppressed forMX � R−1.
In the discrete gravitational extra dimension, this s
pression is only limited by the strong coupling scaleΛ

of the theory, since in a sensible effective field theo
MX should be smaller than the UV cutoffΛ. By virtue
of the UV/IR connection in minimal discretization
however, the cutoffΛ depends onR and can be much
lower than the usual 4D Planck scaleMPl � 1019 GeV.
As a consequence, we expect from the Casimir ef
a smallest possible value or lower limit on the sizeR,
whenMX can at most be as large as the strong c
pling scaleΛ.

The Letter is organized as follows: in Section2,
we review the model for a single discrete gravitatio
extra dimension and briefly discuss the strong c
pling behavior as the origin of the UV/IR connectio
In Section3, we include scalar and fermionic lattic
fields in the gravitational theory space. Section4 rep-
resents the main part of this work, where we fi
consider the vacuum energy of quantum fields on
transverse lattice and then determine the suppres
of the Casimir energy density due to large bulk mas
of the latticized matter fields. Then, we employ t
UV/IR-connection and the observational constrai
on the DE density to derive a lower limit on the size
the extra dimension. Finally, in Section5, we present
our summary and conclusions.

2. Review of discrete gravitational extra
dimensions

Recently, Arkani-Hamed and Schwartz have
plied general techniques for implementing gravity

2 A scenario for obtaining the observed CC from a 5D Casimir
fect of massless bulk matter fields with a sub-mm extra dimen
has been proposed, e.g., in Ref.[20]. Current Cavendish-type ex
periments, however, put already very stringent upper bounds o
orderR � 0.1 mm on the possible sizeR of extra dimensions[21].
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Fig. 1. Section of the gravitational theory space for a discrete
dimension compactified on the circleS1. Each site corresponds t
one general coordinate invarianceGCi (i = 1,2, . . . ,N ), where two
neighboring sitesi andi + 1 are connected by one link fieldYi and
we identify i + N = i.

theory space[16] to a model for a single discret
gravitational extra dimension[17]. In this section,
we briefly review this model for a discrete gravit
tional extra dimension, which describes pure grav
in the latticized bulk. In the next section, we then e
tend this setup to a model, that also includes ma
fields.

Consider the minimal theory space for a sin
discrete gravitational extra dimension proposed
Ref. [17], which can be conveniently summarized
the “moose”[22] or “quiver” [23] type diagram shown
in Fig. 1. Each circle or sitei, wherei = 1,2, . . . ,N ,
corresponds to one general coordinate invariance (
symmetryGCi and is equipped with a metricgi

µν for
this site.3 An arrow connecting two sitesi and i + 1
symbolizes a link fieldYi , which transforms as a vec
tor under the two neighboring GCs. Since we supp
for the sites the identificationi + N = i, the theory
space is compactified on a circle. On each sitei, we as-
sume the usual Einstein–Hilbert action, i.e., the pur
gravitational contribution from all sites to the total a
tion is given by

(1)Sg

site=
N∑

i=1

∫
d4x M2

√
giR

(
gi

)
,

whereR(gi) is the Ricci scalar on the sitei, while
M2 = M2

4/N andM4 = 1/
√

16πGN with GN as the
4D Newton’s constant. We see in Eq.(1), that the ac-
tionSg

site is invariant under the large GC product gro∏N
i=1 GCi . This N -fold product GC, however, is ex

plicitly broken by the gravitational interactionsSg

link
between the sites. In a minimal discretization w
only nearest neighbor interactions, the actionSg

link is

3 Multi-graviton theories have been considered earlier, e.g.
Ref. [24] and in connection with discretized brane-worlds
Ref. [25].
found to be on a Fierz–Pauli[26] form4

Sg

link =
N∑

i=1

∫
d4x

√
giM2m2(gi

µν − gi+1
µν

)
(2)× (

gi
αβ − gi+1

αβ

)(
giµνgiµν − giµαgiνβ

)
,

where the inverse massm−1 of the heaviest graviton
sets the lattice spacinga = m−1, i.e., the discrete extr
dimension has a size (circumference)R = N/m such
that the 5D Planck scale is given byM5 = (M2

4/R)1/3,
which defines the usual UV cutoff of the 5D th
ory. The product group

∏N
i=1 GCi is explicitly broken

by the action in Eq.(2) to the diagonal GC. Whe
we now expand in the weak field limit the metri
about flat space asgi

µν = ηµν + hi
µν , whereηµν is the

Minkowski space metric, the mass-terms of the gra
tons can be written as

SFP
ij =

∫
d4x M2m2(2δi,j − δi,j+1 − δi,j−1)

(3)× (
hi

µνh
µν,j − hµ,i

µ hν,j
ν

)
,

leading to a graviton spectrum with mass-squares

(4)m2
n = 4m2 sin2 πn

N
(n = 1,2, . . . ,N).

The spectrum in Eq.(4) describes one diagonal zer
mode graviton which corresponds to the unbroken
and a phonon-like spectrum of massive gravitons
matches in the IR, i.e., in the regimen � N , onto
a linear KK tower. At this level, the phenomenolo
of the model appears to be very similar to that o
deconstructed gauge theory. An important qualita
difference to deconstruction, however, reveals itse
the peculiar strong coupling effects of the theory.

It has been demonstrated in Ref.[16], that the
strong coupling behavior of discrete gravitational ex
dimensions is most conveniently exhibited by mak
use of the Callan–Coleman–Wess–Zumino formal
for effective field theories[28]. Following this lead,
the product symmetry group

∏N
i=1 GCi can be for-

mally restored inSg

link by appropriately adding Gold
stone bosons. To this end, one expands each link
around the identity asYµ

i = xµ +π
µ
i , where the Gold-

stone bosonsπµ
i transform non-linearly underGCi

4 The Fierz–Pauli form for graviton mass terms ensures the
sence of ghosts in the spectrum. For a recent discussion of gho
massive gravity, see Ref.[27].
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andGCi+1. The Goldstone bosons, which have th
polarizations, are eaten by the massless gravit
which have two polarizations, to generate the five
larizations of the massive gravitons with spectrum
given in Eq.(4). Now, the interactions of the lowest ly
ing scalar longitudinal componentφ of the Goldstone
bosons allow to extract directly the scale of unitar
violation in the theory. It turns out that, for the mod
at hand, the amplitudeA(φφ → φφ) for φ–φ scat-
tering is of the orderA ∼ E10/Λ10

4 , whereE is the
energy ofφ and

(5)Λ4 =
(

M4

R3

)1/4

is the strong coupling scale of the theory that is
by the triple vertex ofφ. From Eq.(5), it is seen that
the UV cutoff scaleΛ4 of the effective theory depend
on the IR length-scaleR of the compactified extra di
mension. This phenomenon has been called UV
connection[17]. Since in a sensible effective theo
for massive gravitons the lattice spacingm−1 must al-
ways be larger than the minimal lattice spacing defi
by amin ∼ Λ−1

4 , this implies that the theory does n
possess a naive continuum limit. In other words,
given radiusR, the effective theory is characterized
a highest possible number of lattice sitesNmax= RΛ4,
which limits how fine grained the lattice can be ma

Besides the triple derivative coupling ofφ, the
Goldstone boson action contains other types of
tices, each of which can be associated with a cha
teristic strong coupling scale for that interaction[18].
As two such typical examples, we will consider t
scales

(6)Λ3 =
(

M4

R2

)1/3

and Λ5 =
(

M4

R4

)1/5

,

which we will later compare withΛ4. It is important
to note that the existence of the strong coupling sc
in Eqs.(5) and (6)is qualitatively different from the
UV cutoff in deconstructed gauge theories. In dec
struction, the strong coupling scale associated with
non-linear sigma model approximation is always b
factor∼ 4π larger than the mass of the heaviest ga
boson, which is of the order the inverse lattice spac
In this sense, deconstruction may provide, unlike
effective theory of massive gravitons discussed h
an UV completion of higher-dimensional gauge the
ries. It should be noted, however, that the emerge
of the scales in Eqs.(5) and (6)is a result of choosing
a minimal discretization with nearest-neighbor co
plings and may be avoided in specific types of n
local theory spaces[18].

3. Incorporation of matter

Let us now extend the model in Section2, which
has been formulated for pure gravity, by adding
each site extra scalar and fermionic site variables
illustrate the general idea, we shall restrict oursel
here, for simplicity, to the case where we have on e
sitei only one scalarΦi and one Dirac fermionΨi . We
suppose that the sets of scalar and fermionic site v
ables

⋃N
i=1 Φi and

⋃N
i=1 Ψi , respectively describe, i

the sense of usual lattice gauge theory, a scalarΦ and a
fermionΨ propagating in the discretized fifth dime
sion discussed in Section2. The total actionS of our
model can therefore be split into contributions fro
the sites and links as

(7)S =
∑

X=g,Φ,Ψ

(
SX

site+ SX
link

)
,

where we have distinguished between the purely g
itational part (X = g), which is given in Eqs.(1) and
(2), and the sum of contributions from the scalar (X =
Φ) and fermion (X = Ψ ) species. Let us first specif
in Eq. (7) the interactionsSX

site on the sites. For the
lattice fieldsΦ andΨ we take in Eq.(7) the matter
actions

SΦ
site=

N∑
i=1

∫
d4x

√
gi

(
−1

2

)

(8a)× (
gi

µν∂
µΦi∂

νΦi + M2
ΦΦiΦi

)
,

SΨ
site=

N∑
i=1

∫
d4x

√
gi

(8b)

× [
i(Ψ̄iγ

αVα
µ(∂µ + Γµ)Ψi + MΨ Ψ̄iΨi

]
,

whereMΦ andMΨ denote the bulk masses of the 5
scalarΦ and fermionΨ , respectively. In Eq.(8b), we
have written the fermion action using the vierbein f
malism (see, e.g., Ref.[29]), whereγ α (α = 0,1,2,3)
are the usual Dirac gamma matrices, whileVα

µ is the
vierbein andΓµ is the associated spin connection. It
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obvious, that the action
∑

X SX
site, summarizing the in-

teractions on theN sites, is invariant underN copies
of GC. TheN -fold product of GCs

∏N
i=1 GCi , how-

ever, is explicitly broken in Eq.(7) by each term in
the sum

∑
X SX

link , which contains the interactions b
tween the fields on the different sites. On the tra
verse lattice, we suppose thatΦ andΨ are coupled to
their nearest neighbors via

(9a)SΦ
link =

N∑
i=1

∫
d4x

√
gim2Φi(Φi+1 − Φi) + h.c.,

SΨ
link =

N∑
i=1

∫
d4x

√
gimΨ̄iL(Ψ(i+1)R − ΨiR)

(9b)+ h.c.,

whereΨiL,R = 1
2(1 ∓ γ5)Ψi , with γ5 = iγ 0γ 1γ 2γ 3,

are the left- and right-handed components of the D
spinorΨi . To arrive at Eq.(9b), we started with the
Wilson–Dirac action[30]

SW =
N∑

i=1

∫
d4x

√
gim

(10)

×
(

Ψ̄i

r + γ5

2
Ψi+1 + Ψ̄i

r − γ5

2
Ψi−1 − rΨ̄iΨi

)
,

where r is some arbitrary parameter. The action
Eq. (10) results from adding a Wilson term (whic
would vanish in the continuum limitm → ∞) to the
naive lattice action of fermions, thereby projecting o
unwanted fermion doublers. We then obtain fromSW
the actionSΨ

link in Eq. (9b) by assuming for the para
meterr Wilson’s choicer = 1 [31]. As a consequence
we arrive at a common mass spectrum for scalars
fermions, which is given by

(11)m2
n = 4m2 sin2 πn

N
+ M2

X (n = 1,2, . . . ,N),

whereX = Φ,Ψ . The assumption of Wilson-fermion
as in Eq.(9b)with r = 1 ensures forMΨ = MΦ identi-
cal dispersion relations for the latticized fermions a
bosons. Notice also, that Eq.(11) becomes forX = g

identical with the graviton spectrum in Eq.(4), when
setting the bulk graviton mass to zero, i.e.,Mg = 0. In
the weak field limit, we observe that for evenN , the
actionSΨ in Eq.(9b) is characterized byN/2 global
link
Z2 symmetries5

Z
(i)
2 : Ψ(i+k)L → −Ψ(i−k)L,

Ψ(i+k)R ↔ Ψ(i−k+1)R,

(12)hi+k
µν ↔ hi−k

µν ,

where i = 1,2, . . . ,N/2 is held fixed, whilek runs
over all the valuesk = 0,±1,±2, . . . ,±N/2. Start-
ing with the Wilson–Dirac actionSW in Eq. (10), the
discrete symmetriesZ(i)

2 are only consistent with th
form of the actionSΨ

link in Eq. (9b), which is obtained
for the choicer = 1. We wish to point out, that the “lo
cality” of the actionsSX

link with nearest neighbor cou
plings might be understood in terms of scale-invari
renormalization group transformations acting in th
ory space[33].

4. Casimir energies

In this section, we investigate the Casimir en
gies of matter fields propagating in the discrete
tra dimension introduced in Sections2 and 3. For a
continuous 5D space–time manifold, the Casimir
ergy densities of free massless scalars and ferm
have been computed in Ref.[11], whereas the Casim
contribution of a massless graviton in the same ba
ground, using the standard effective action theory,
be found in Ref.[10]. In our model with a discrete fifth
dimension, one can summarize in the 4D low-ene
theory the vacuum energy contributions of the mas
modes to the 1-loop effective potential as

(13)Veff = (s − 4f + 5g)

N∑
n=1

V0(mn),

wheres, f , andg, respectively, denote the number
real scalar, fermionic, and gravitational fields pro
agating in the latticized bulk. In Eq.(13), we have
summed for each latticized field over the vacuum
ergy densitiesV0(mn) of all the modes with masse
mn belonging to the phonon-like spectrum in Eq.(11).
Notice in Eq.(13), that the factors−4 and 5 reflect
the spin-degrees of freedom that contribute to e
massive fermion and graviton loop. In continuum K

5 Discrete non-Abelian flavor symmetries from deconstruct
have recently been analyzed in Ref.[32].
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fore
theories, a gauge-independent gravitational quant
effective action can be consistently formulated by e
ploying the Vilkovisky–De Witt effective action[34],
for which, however, only a few explicit examples
special topologies are known[35]. For our model with
a discrete extra dimension, the contributionV0(mn) to
the effective potential from a single real scalar deg
of freedom withMX = 0 has been calculated in Ref
[36,37], where

V0(mn) = m4
n

64π2

(
ln

m2
n

µ2
− 3

2

)

has been obtained by a zeta-function regulariza
technique[38]. In our theory space, the purely gra
itational contribution to the effective potential whic
includes only the tower of massive gravitons [i.
s = f = 0 andg = 1 in Eq. (13)], for example, was
then found to be

Veff|s,f =0 = 15Nm4

32π2

(
ln

4m2

µ2
− 3

2

)

(14)

+ 5m4

2π2

N−1∑
n=1

sin4
(

πn

N

)
ln sin

(
πn

N

)
,

where, from Eq.(4), m2
n = 4m2 sin2 πn

N
. For a re-

lated discussion in a supersymmetric context see
Refs.[39,40]. Note that Eq.(14) contains also term
that are not due to the Casimir effect or terms that
pend on an arbitrary renormalization scaleµ originat-
ing from the regularization process.6 Since we wish to
consider only the 4D Casimir energy density, we w
in the following, eliminate the unwanted parts in t
effective potential. This can be realized by subtract
off the vacuum energy density that corresponds to
uncompactified (unbounded) extra dimension as
plained in Ref.[41]. As a nice advantage of this reno
malization procedure we obtain that the transverse
tice result converges in the limitN → ∞ exactly to the
value expected from the continuum theory.

If the bulk massesMX of the fields in Eq.(13) are
all set to zero, the resulting 4D Casimir energy d
sity of each latticized bulk field would be of the ord

6 The dependence on the renormalization scaleµ leads, in a cos-
mological setup, to a running CC. Some recent work on such re
malization group motivated DE models and their cosmological
plications can be found in Ref.[42] and references therein.
∼ R−4. As already mentioned in the introduction, th
would lead to the boundR � 0.1 mm. Let us there
fore now consider latticized matter fields with no
vanishing bulk massesMX 
= 0. In the extra dimen
sion, the boundary conditions for the quantum fie
can be periodic or anti-periodic, and the correspond
fields are called untwisted and twisted, respectiv
The Casimir energy densities of these field configu
tions differ by a factor of order one and have oppos
sign. Following Ref.[41], the 4D Casimir energy den
sity of a single untwisted real scalar field in the la
cized fifth dimension can be written as

ρuntwisted= 1

2(2π)3

(15)

× 4π

8

[
N∑

n=1

m4
n lnmn −N

1∫
0

ds m4
s lnms

]
,

where, from Eq.(11), m2
n = 4m2 sin2(πn/N) + M2

X

and s is treated in the integral as a continuous pa
meter which replacesn/N in the sine function. As
long as the number of lattice sites isN � O(10),
the Casimir energy density on the transverse lattic
Eq. (15) differs less than� 1% from the value in the
naive continuum limitN → ∞. In the remainder o
this section, we will therefore employ the expressio
for the Casimir energy densities of quantum fields
the continuum theory. In this approximation, the va
uum energy density of a real (un)twisted scalar fi
reads[41]

(16)

ρ(un)twisted= ±1

8(2π)2

(2π)5

R4

∞∫
x

dn
(n2 − x2)2

exp(2πn) ± 1
,

where the “+” and “−” signs belong to twisted an
untwisted fields, respectively, andx = MXR/(2π), in
which MX denotes the bulk mass of the scalar fie
The integral in Eq.(16)can be performed exactly afte
neglecting the term±1 in the denominator, i.e., bot
densities differ only in an overall sign:

(17)ρ(un)twisted= ± (MXR)2 + 3MXR + 3

(2π)2R4
e−MXR.

When taking the sum of contributions for twisted a
untwisted fields, the integrals must be added be
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carrying out the approximation, which gives

(18)ρsum= −4(MXR)2 + 6MXR + 3

16(2π)2R4
e−2MXR.

The corresponding energy densities of Dirac fermi
are obtained by simply multiplying the scalar densit
ρ(un)twistedby −4. Note that the applied approximatio
works fine even in the limit of vanishing bulk mass
MX → 0. The basic feature expressed in Eqs.(17)
and (18)is that for large bulk massesMX � R−1, the
energy density of massive matter fields becomes e
nentially suppressed, which could compensate for
possibly large factor∼ R−4, even whenR is compar-
atively small.

Now, we are in a position to calculate the Casim
energy densities with the bulk massesMX set equal
to the strong coupling scalesΛ3, Λ4, andΛ5 given
in Eqs.(5) and (6). The effective field theory descrip
tion suggests that these are the largest possible va
that MX can take in the gravitational theory spac
If the UV cutoff Λ is much larger than∼ R−1, the
expressions in Eqs.(17) and (18)are dominated by
the exponential damping factors, such that the Cas
energy densities are most strongly suppressed w
MX becomes of the order the strong coupling sc
Λ, with Λ = Λ3,Λ4,Λ5. Moreover, this suppressio
is most effective, when the number of lattice sitesN

is maximized by choosing the inverse lattice spac
m = N/R to be also of the orderΛ. The lower limit
Rmin on the sizeR of the extra dimension emerge
from requiring that the Casimir energy densities
main below the observed valueρobs � 10−47 GeV4

of the DE density. The results for an untwisted sca
field and the sum of twisted and untwisted fields
plotted in Fig. 2. Since the smallest valueRmin that
R can take is, due to the UV/IR connection, a fun
tion of Λ, we have consideredRmin(Λ) for all three
scalesΛ = Λ3,Λ4,Λ5. These values together wit
the corresponding maximum number of lattice si
N = Rmin ·Λ(Rmin), whereΛ(Rmin) is the strong cou
pling scale associated withRmin, are summarized in
Table 1. Note that we can apply here the relatio
from the continuum theory, since (i) the number
lattice sitesN is of the order∼ 102 and (ii) the lat-
tice calculation leads to energy densities (drawn
Fig. 2 as circles), that agree very well with the valu
s

Table 1
Lower boundRmin on the sizeR of the extra dimension for an
untwisted real scalar field and the sum of a twisted and an
twisted scalar. Additionally, the values of the strong coupling sc
Λ and the number of lattice sitesN are given whenR is equal to
Rmin. For the scaleΛ, we considered each of the three choic
Λ = Λ3,Λ4,Λ5 from Eqs. (5) and (6). The lower boundRmin
emerges from the requirement that the absolute Casimir energy
sity lies below the observed valueρobs of the DE density, when
the bulk field massMX in Eq. (11) takes the largest possible valu
MX � Λ

Untwisted Rmin [GeV−1] Λ(Rmin) [GeV] N = Rmin ·Λ(Rmin)

Λ3 6.1× 10−12 3.6× 1013 219
Λ4 9.0× 10−10 2.2× 1011 198
Λ5 1.1× 10−7 1.7× 109 179

Sum Rmin [GeV−1] Λ(Rmin) [GeV] N = Rmin ·Λ(Rmin)

Λ3 8.2× 10−13 1.4× 1014 112
Λ4 6.6× 10−11 1.6× 1012 103
Λ5 4.4× 10−9 2.1× 1010 95

in the continuum theory.7 For a mix of a twisted and
an untwisted field, we observe that the Casimir ene
density of massive bulk fields exhibits a stronger s
pression due to the different signs of both compone
FromFig. 2, we read off that the minimal radiusRmin
of the discrete gravitational extra dimension lies in
range

(19)
(
1012 GeV

)−1 � Rmin �
(
107 GeV

)−1
,

where, typically,Λ(Rmin) ∼ 102 × R−1
min. For a ra-

diusR which is much smaller than the range given
Eq.(19), the Casimir energy densities of the bulk m
ter fields would significantly exceedρobs and thus run
into conflict with observation. Of course, there may
other possible sources of DE which might be resp
sible for the accelerated expansion of the universe
it seems unlikely that they could exactly cancel the
tentially large contributions from the Casimir effect
extra dimensions.

Let us now briefly comment on the gravitation
contribution to the 1-loop quantum effective acti
Veff in Eq.(13). For zero bulk massMg = 0, the gravi-

7 ForRmin, the values of the continuum and lattice formulas dif
by about 15%, which is negligible, since the strong coupling sc
Λ3,4,5 are order of magnitude estimates. For instance, the la
calculation for an untwisted scalar field andΛ = Λ3 givesRmin =
6.8 × 10−12 GeV−1, whereas the continuum approximation yiel
Rmin = 6.1× 10−12 GeV−1.
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es

from
Fig. 2. For the three choicesΛ = Λ3,Λ4,Λ5 of the strong coupling scaleΛ from Eqs.(5) and (6), we plotted the values ofΛ, the Casimir
energy densitiesρ, and the corresponding numberN = RΛ of lattice sites as functions of the sizeR of the fifth dimension. The energy densiti
ρ are given for the untwisted scalar field [cf. Eq.(17)] and the sum of one untwisted and one twisted scalar field [cf. Eq.(18)]. Note, thatρ
is negative in both cases, and the bulk masses of the fields have their maximal values, given byΛ, according to Section4. In the plots ofρ,
the horizontal dashed line marks the observed valueρobs∼ 10−47 GeV4 of the DE density and the circles represent exact lattice values
Eq.(15).
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tational effective potential given in Eq.(14)would lead
to a contribution toVeff of the order∼ m4. The gravita-
tional vacuum energy, however, can be canceled in
model at the linear level, when we assume the p
ence of a suitable number of latticized matter fie
with actions as given in Eqs.(8) and (9), which have
vanishing bulk massesMX = 0. For instance, choos
ing b = 3 massless scalars andf = 2 massless fermi
ons, we find from Eq.(13) that in this caseVeff = 0,
which holds in linearized gravity at the 1-loop lev
for an arbitrary numberN of lattice sites. In this ap
proximation, the cancelation of bosonic and fermio
degrees of freedom would actually be approache
the limit N → ∞ for any value of the parameterr
in the Wilson–Dirac action in Eq.(10). The require-
ment that this cancelation holds for arbitrary, i.e., a
for smallN , however, uniquely singles out Wilsons
choicer = 1. It is interesting to consider a possible o
gin of free massless scalars in effective field theo
for KK modes. In a(4 + d)-dimensional KK theory
with d = 4 compactified extra dimensions, e.g.,
would have in the 4D low-energy theory one tower
massive spin-2 states, three towers of massive sp
states and six towers of massive spin-0 states
degenerate masses (see, e.g., Ref.[43]). The effec-
tive potential of these fields could, in a similar w
as mentioned above, be canceled at the 1-loop l
by adding only free Dirac fermions with zero bu
masses. Notice that, since the massless fields co
only gravitationally to the visible sector, a sufficien
low temperature of the massless states would allow
retain the predictions of standard big-bang nucleos
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thesis[44]. Finally, we note that the cancelation
vacuum energies in a supersymmetric multi-gravi
theory on space–times with non-trivial topology w
also considered very recently in Ref.[40], where bulk
masses and different boundary conditions were ta
into account.

5. Summary and conclusions

In this Letter, we have analyzed the Casimir eff
of matter fields in the background of an effective 5
space–time. The underlying model of a discrete gr
itational extra dimension exhibits a strong coupli
behavior at an energy scaleΛ, which depends via a
UV/IR connection non-trivially on the sizeR of the
extra dimension. For a small compactified extra
mension, massless quantum fields usually lead, du
the Casimir effect, to large vacuum energy contri
tions, which are in stark contrast to current obser
tions. To circumvent this problem, we have assum
for the matter fields large bulk massesMX to sup-
press the Casimir energy density exponentially, e
for a tiny extra dimension. However, the strong co
pling scale sets an upper bound on the values of
bulk massesMX � Λ, and therefore limits the sup
pression effect. This yields a lower bound on the s
of the fifth dimension, when the bulk masses take
maximal possible valueMX � Λ. Here, we found tha
the minimal sizeRmin of the extra dimension lies in th
rangeRmin ∼ (1012 GeV)−1 · · · (107 GeV)−1 and that
the corresponding maximum number of lattice si
is of the order∼ 102. Furthermore, we discussed t
possibility of canceling the contribution of massle
bulk fields to the quantum effective potential. Gen
ally, it would be interesting to explore a possible re
tion of our model to holography, as suggested by
UV/IR connection[45], and analyze also supersym
metric realizations[39,40], e.g., in the framework o
sequestered sector models of anomaly mediation[46].

Acknowledgements

We would like to thank T. Enkhbat for usefu
comments and discussions. This work was suppo
by the “Sonderforschungsbereich 375 für Astrote
chenphysik der Deutschen Forschungsgemeinsch
(F.B.) and the US Department of Energy und
Grant Nos. DE-FG02-04ER46140 and DE-FG0
04ER41306 (G.S.). F.B. wishes to thank the Freis
Bayern for a “Promotionsstipendium”.

References

[1] Supernova Search Team Collaboration, A.G. Riess, et al.,
tron. J. 116 (1998) 1009, astro-ph/9805201;
J.L. Tonry, et al., Astrophys. J. 594 (2003) 1, ast
ph/0305008.

[2] Supernova Cosmology Project Collaboration, S. Perlmutte
al., Astrophys. J. 517 (1999) 565, astro-ph/9812133;
R.A. Knop, et al., Astrophys. J. 598 (2003) 102, ast
ph/0309368.

[3] WMAP Collaboration, D.N. Spergel, et al., Astrophy
J. Suppl. 148 (2003) 175, astro-ph/0302209.

[4] SDSS Collaboration, M. Tegmark, et al., Phys. Rev. D
(2004) 103501, astro-ph/0310723.

[5] S.P. Boughn, R.G. Crittenden, Nature 427 (2004) 45, as
ph/0404470.

[6] S. Weinberg, Rev. Mod. Phys. 61 (1989) 1.
[7] H.B.G. Casimir, Proc. Kon. Nederl. Akad. Wetensch.

(1948) 793.
[8] For recent reviews on the Casimir effect see, e.g., M. Bord

U. Mohideen, V.M. Mostepanenko, Phys. Rep. 353 (2001
quant-ph/0106045;
K.A. Milton, J. Phys. A 37 (2004) R209, hep-th/0406024.

[9] T. Kaluza, Sitzungsber. Preuss. Akad. Wiss. Berlin, Ma
Phys. 1921 (1921) 966;
O. Klein, Z. Phys. 37 (1926) 895;
O. Klein, Surveys High Energ. Phys. 5 (1986) 241.

[10] T. Appelquist, A. Chodos, Phys. Rev. Lett. 50 (1983) 141;
T. Appelquist, A. Chodos, Phys. Rev. D 28 (1983) 772.

[11] P. Candelas, S. Weinberg, Nucl. Phys. B 237 (1984) 397.
[12] For some recent discussions of Casimir energies in de

ter and anti-de Sitter spaces, see, e.g., E. Ponton, E. Po
JHEP 0106 (2001) 019, hep-ph/0105021;
E. Elizalde, S. Nojiri, S.D. Odintsov, S. Ogushi, Phys. R
D 67 (2003) 063515, hep-th/0209242.

[13] N. Arkani-Hamed, A.G. Cohen, H. Georgi, Phys. Rev. Lett.
(2001) 4757, hep-th/0104005.

[14] C.T. Hill, S. Pokorski, J. Wang, Phys. Rev. D 64 (200
105005, hep-th/0104035.

[15] M.B. Halpern, W. Siegel, Phys. Rev. D 11 (1975) 2967.
[16] N. Arkani-Hamed, H. Georgi, M.D. Schwartz, Ann. Phys. 3

(2003) 96, hep-th/0210184.
[17] N. Arkani-Hamed, M.D. Schwartz, Phys. Rev. D 69 (200

104001, hep-th/0302110.
[18] M.D. Schwartz, Phys. Rev. D 68 (2003) 024029, h

th/0303114.
[19] N. Arkani-Hamed, A.G. Cohen, H. Georgi, JHEP 0207 (20

020, hep-th/0109082.
[20] K.A. Milton, R. Kantowski, C. Kao, Y. Wang, Mod. Phys. Let

A 16 (2001) 2281, hep-ph/0105250;
K.A. Milton, Grav. Cosmol. 9 (2003) 66, hep-ph/0210170.



F. Bauer, G. Seidl / Physics Letters B 624 (2005) 250–259 259

el-
Rev.

cl.

16.
02)

33,

9)

-

69)

ys.

p-
w

u-

ry

re

eed-
rth-

00)

65,

ni,

p-

ep-

s.

ep-

-qc/

99)

hys.

01,

p-

04)
[21] See, e.g., C.D. Hoyle, D.J. Kapner, B.R. Heckel, E.G. Ad
berger, J.H. Gundlach, U. Schmidt, H.E. Swanson, Phys.
D 70 (2004) 042004, hep-ph/0405262.

[22] H. Georgi, Nucl. Phys. B 266 (1986) 274.
[23] M.R. Douglas, G.W. Moore, hep-th/9603167.
[24] N. Boulanger, T. Damour, L. Gualtieri, M. Henneaux, Nu

Phys. B 597 (2001) 127, hep-th/0007220;
N. Boulanger, Fortschr. Phys. 50 (2002) 858, hep-th/01112

[25] T. Damour, I.I. Kogan, A. Papazoglou, Phys. Rev. D 66 (20
104025, hep-th/0206044;
C. Deffayet, J. Mourad, Class. Quantum Grav. 21 (2004) 18
hep-th/0311125.

[26] M. Fierz, W. Pauli, Proc. R. Soc. London, Ser. A 173 (193
211.

[27] P. Creminelli, A. Nicolis, M. Papucci, E. Trincherini, hep
th/0505147.

[28] S.R. Coleman, J. Wess, B. Zumino, Phys. Rev. 177 (19
2239;
C.G. Callan, S.R. Coleman, J. Wess, B. Zumino, Ph
Rev. 177 (1969) 2247.

[29] S. Weinberg, Gravitation and Cosmology: Principles and A
plications of the General Theory of Relativity, Wiley, Ne
York, 1972.

[30] K.G. Wilson, Phys. Rev. D 10 (1974) 2445.
[31] K.G. Wilson, in: A. Zichichi (Ed.), New Phenomena in Subn

clear Physics, Plenum, New York, 1977.
[32] J. Kubo, hep-ph/0506043.
[33] C.T. Hill, hep-th/0303267.
[34] G.A. Vilkovisky, Nucl. Phys. B 234 (1984) 125;

G.A. Vilkovisky, in: S.M. Christensen (Ed.), Quantum Theo
of Gravity, Hilger, Bristol, 1984;
B.S. De Witt, in: P. Ramond, R. Stora (Eds.), Architectu
of Fundamental Interactions at Short Distances, in: Proc
ings of the Les Houches Summer School, Session 44, No
Holland, Amsterdam, 1987.

[35] See, e.g., H.T. Cho, R. Kantowski, Phys. Rev. D 62 (20
124003, hep-th/0004082, and references therein.

[36] N. Kan, K. Shiraishi, Class. Quantum Grav. 20 (2003) 49
gr-qc/0212113.

[37] G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov, S. Zerbi
Mod. Phys. Lett. A 19 (2004) 1435, hep-th/0312269.

[38] S.W. Hawking, Commun. Math. Phys. 55 (1977) 133.
[39] S. Nojiri, S.D. Odintsov, Phys. Lett. B 590 (2004) 295, he

th/0403162.
[40] G. Cognola, E. Elizalde, S. Zerbini, hep-th/0506082.
[41] F. Bauer, M. Lindner, G. Seidl, JHEP 0405 (2004) 026, h

th/0309200.
[42] A. Babic, B. Guberina, R. Horvat, H. Stefancic, Phy

Rev. D 71 (2005) 124041, astro-ph/0407572;
I.L. Shapiro, J. Sola, H. Stefancic, JCAP 0501 (2005) 012, h
ph/0410095;
F. Bauer, Class. Quantum Grav. 22 (2005) 3533, gr
0501078;
J. Sola, H. Stefancic, astro-ph/0505133.

[43] T. Han, J.D. Lykken, R.J. Zhang, Phys. Rev. D 59 (19
105006, hep-ph/9811350.

[44] See, e.g., Z. Chacko, L.J. Hall, S.J. Oliver, M. Perelstein, P
Rev. Lett. 94 (2005) 111801, hep-ph/0405067;
R.N. Mohapatra, S. Nasri, Phys. Rev. D 71 (2005) 0530
hep-ph/0407194.

[45] V. Jejjala, R.G. Leigh, D. Minic, JCAP 0306 (2003) 002, he
th/0302230.

[46] T. Gregoire, M.D. Schwartz, Y. Shadmi, JHEP 0407 (20
029, hep-th/0403224.


	Vacuum energy from an extra dimension with UV/IR connection
	Introduction
	Review of discrete gravitational extra dimensions
	Incorporation of matter
	Casimir energies
	Summary and conclusions
	Acknowledgements
	References


