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Abstract

We propose a lower limit on the size of a single discrete gravitational extra dimension in the context of an effective field
theory for massive gravitons. The limit arises in this setup from the requirement that the Casimir energy density of quantum
fields is in agreement with the observed dark energy density of the unjwggse: 1047 GeV?*. The Casimir energy densities
can be exponentially suppressed to an almost arbitrarily small value by the masses of heavy bulk fields, thereby allowing a tiny
size of the extra dimension. This suppression is only restricted by the strong coupling scale of the theory, which is known to be
related to the compactification scale via an UV/IR connection for local gravitational theory spaces. We thus obtain a lower limit
on the size of the discrete gravitational extra dimension in the r(alr@é GeV)~1...(10" Gev)~1, while the strong coupling
scale is by a factor 102 larger than the compactification scale. We also comment on a possible cancelation of the gravitational
contribution to the quantum effective potential.

0 2006 Elsevier B.VOpen access under CC BY license.

1. Introduction inant part (about 75%) of the total energy density of
the universe, the observed value of the CC is only
of the orderpops~ 1047 GeV*, which is extremely
small compared to usual particle physics scales. So
far, no generally accepted solution has been given to
the problem of understanding such a tiny value of the
CC, which is known as the CC probl€.

It has been emphasized, that a non-zero CC aris-
ing from the Casimir effec{7,8] in Kaluza—Klein
(KK) theories[9] might be relevant for the dynami-
cal compactification of extra dimensioftd0—12] In
" E-mail addresses: fbauer@ph.tum.déF. Bauer), this scenario, the Casimir energies produced by the
gseidl@susygut.phy.okstate. e Seidl). fluctuations of gravitational and massless matter fields

Recent observations suggest that the universe is
currently in a phase of accelerated expangibrb],
that is assumed to be driven by an energy form with
negative pressure called dark energy (DE). The most
famous candidate for DE is a positive cosmological
constant (CC), which is equivalent to a positive vac-
uum energy density. Although DE represents the dom-
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propagating in the internal space, would yield a con- ergy densities contribute to the CC, they have to lie
tribution to DE which depends on the size of the ex- below the observed valugons ~ 1047 GeV*, asso-

tra dimensions. DE could therefore provide via the ciated with the accelerated expansion of the universe.
Casimir effect a probe of the geometric infrared (IR) For massless bulk fieldsthe 4D Casimir energy den-
structure of the higher-dimensional manifold. It would sity p scales with the size (circumferenc®)of the
now be interesting to see, whether the Casimir ener- extra dimension afp| ~ R, which would lead to a
gies contributing to DE, might also be sensitive to the lower boundR > (10~3 eV)~1 ~ 0.1 mm. A much
ultraviolet (UV) details of the theory. In fact, distinct smaller sizeR becomes possible, if the bulk fields
higher-dimensional gauge theories that reproduce sim- have non-zero mass@égy, in which case the Casimir
ilar physics in the IR, can look drastically different energies are exponentially suppressediar>> R~ 1.

in the UV. This may be best appreciated by the ex- In the discrete gravitational extra dimension, this sup-
ample of dimensional deconstructi¢h3,14], which pression is only limited by the strong coupling scdle
yields a class of manifestly gauge-invariant and renor- of the theory, since in a sensible effective field theory,
malizable effective Lagrangians for KK modes and My should be smaller than the UV cutoff. By virtue
thus represents a possible UV completion of higher- of the UV/IR connection in minimal discretizations,
dimensional gauge theoriésin this type of mod- however, the cutofiA depends ok and can be much
els, one could only observe at high energies that the lower than the usual 4D Planck scate ~ 10'° GeV.
physics of extra dimensions actually emerges dynami- As a consequence, we expect from the Casimir effect
cally in a purely four-dimensional (4D) setting, which a smallest possible value or lower limit on the sRge
denotes a radical departure from the usual treatmentwhen My can at most be as large as the strong cou-
of higher-dimensional theories near their UV cutoff. pling scaleA.

Recently, the idea of deconstruction has also been ap- The Letter is organized as follows: in Secti@n
plied to an effective field theory for massive gravitons we review the model for a single discrete gravitational
[16—18] which is defined in a “theory spacgl'9] con- extra dimension and briefly discuss the strong cou-
taining “sites” and “links”. This allows the construc- pling behavior as the origin of the UV/IR connection.
tion of discrete gravitational extra dimensions, that In Section3, we include scalar and fermionic lattice
show qualitatively new properties as compared to non- fields in the gravitational theory space. Sectibrep-
gravitational theory spacg47,18] A major feature resents the main part of this work, where we first
of discrete gravitational extra dimensions is, that they consider the vacuum energy of quantum fields on the

exhibit a strong coupling scal¢ in the UV, which de- transverse lattice and then determine the suppression
pends via an “UV/IR connection” on the size or IR of the Casimir energy density due to large bulk masses
length-scale of the compactified extra dimendibr. of the latticized matter fields. Then, we employ the

We will therefore have to expect that a contribution to  UV/IR-connection and the observational constraints
DE arising from the Casimir effect in discrete gravi- on the DE density to derive a lower limit on the size of
tational extra dimensions could be related to the UV the extra dimension. Finally, in Sectiénwe present
structure of the theory in a non-trivial way. our summary and conclusions.

In this Letter, we consider a vacuum energy con-
tributio_n to D_E, whif:h is genera_ted_ from the Ca_simir 2. Review of discrete gravitational extra
effect in a single discrete gravitational extra dimen- §imensions
sion. For this purpose, we treat the gravitational theory

space as a flat background for quantum fields propa-  Recently, Arkani-Hamed and Schwartz have ap-

gating in the latticized five-dimensional (5D) bulk. In  plied general techniques for implementing gravity in
determining the Casimir energy densities of the lat-

ticized bulk fields, we assume linearized gravity and

truncate the theory at the 1_|00p level. Since these en- 2 A scenario for obtaining the observed CC from a 5D Casimir ef-
) fect of massless bulk matter fields with a sub-mm extra dimension

has been proposed, e.g., in RE0]. Current Cavendish-type ex-
- periments, however, put already very stringent upper bounds of the
1 Foran early application of similar ideas, see R&%]. orderR < 0.1 mm on the possible size of extra dimensionf21].
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Fig. 1. Section of the gravitational theory space for a discrete fifth
dimension compactified on the circ®. Each site corresponds to
one general coordinate invarianG€; (i =1, 2, ..., N), where two
neighboring site$ andi + 1 are connected by one link fiel§ and

we identifyi + N =i.

theory spacg16] to a model for a single discrete
gravitational extra dimensiofil7]. In this section,
we briefly review this model for a discrete gravita-
tional extra dimension, which describes pure gravity
in the latticized bulk. In the next section, we then ex-
tend this setup to a model, that also includes matter
fields.

Consider the minimal theory space for a single
discrete gravitational extra dimension proposed in
Ref. [17], which can be conveniently summarized by
the “moose’122] or “quiver” [23] type diagram shown
in Fig. 1L Each circle or sité, wherei =1,2,..., N,
corresponds to one general coordinate invariance (GC)
symmetryGC; and is equipped with a metr'g,fw for
this site3 An arrow connecting two sitesandi + 1
symbolizes a link field’;, which transforms as a vec-
tor under the two neighboring GCs. Since we suppose
for the sites the identification+ N = i, the theory
space is compactified on a circle. On eachiitee as-
sume the usual Einstein—Hilbert action, i.e., the purely
gravitational contribution from all sites to the total ac-
tion is given by

N
She=3_ [ d M2 R()
i=1

where R(g") is the Ricci scalar on the sitg while
M2 = M2/N and M4 = 1//I6x Gn with Gy as the
4D Newton's constant. We see in H4), that the ac-
tion Sé”ite is invariant under the large GC product group
]_[f"=l GC;. This N-fold product GC, however, is ex-
plicitly broken by the gravitational interactiorﬁ‘fnk
between the sites. In a minimal discretization with

only nearest neighbor interactions, the actigy, is

1)

3 Multi-graviton theories have been considered earlier, e.g., in
Ref. [24] and in connection with discretized brane-worlds in
Ref.[25].
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found to be on a Fierz—Paif6] form*

N
Z / d*x \/;Mzmz(gLV
i=1

X (gétﬁ — g(’;;l)(gi“”g‘w _ gi/mgivﬂ)’ 2)

where the inverse mass ! of the heaviest graviton
sets the lattice spacing=m~1, i.e., the discrete extra
dimension has a size (circumferende)}= N/m such
that the 5D Planck scale is given bfs = (M2/R)/3,
which defines the usual UV cutoff of the 5D the-
ory. The product grouﬂfv=1 GC; is explicitly broken
by the action in Eq(2) to the diagonal GC. When
we now expand in the weak field limit the metrics
about flat space ag'w =N + hiw, wheren,,, is the
Minkowski space metric, the mass-terms of the gravi-
tons can be written as

- i+1
Slink - )

—8uv

Si'j.P: / d*x M?m?(28;,; — 8i j41— 8. j—1)
X (hiwh“v’j - hiﬁ’ihﬁ’j): ®)

leading to a graviton spectrum with mass-squares

(4)

The spectrum in Eq4) describes one diagonal zero-
mode graviton which corresponds to the unbroken GC
and a phonon-like spectrum of massive gravitons that
matches in the IR, i.e., in the regime<« N, onto

a linear KK tower. At this level, the phenomenology
of the model appears to be very similar to that of a
deconstructed gauge theory. An important qualitative
difference to deconstruction, however, reveals itself in
the peculiar strong coupling effects of the theory.

It has been demonstrated in R¢1L6], that the
strong coupling behavior of discrete gravitational extra
dimensions is most conveniently exhibited by making
use of the Callan—Coleman—Wess—Zumino formalism
for effective field theorie$28]. Following this lead,
the product symmetry grouﬁ[f\’=1 GC; can be for-
mally restored inS‘ﬁnk by appropriately adding Gold-
stone bosons. To this end, one expands each link field
around the identity a);i“ =xt+ nl.”, where the Gold-
stone bOSOﬂSri“ transform non-linearly unde&C;

m2 =dm?sit % (n=1,2,...,N).
N

4 The Fierz—Pauli form for graviton mass terms ensures the ab-
sence of ghosts in the spectrum. For a recent discussion of ghosts in
massive gravity, see RdR7].
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andGC; 1. The Goldstone bosons, which have three of the scales in Eqg5) and (6)is a result of choosing
polarizations, are eaten by the massless gravitons,a minimal discretization with nearest-neighbor cou-
which have two polarizations, to generate the five po- plings and may be avoided in specific types of non-
larizations of the massive gravitons with spectrum as local theory spaced 8].

given in Eq.(4). Now, the interactions of the lowest ly-

ing scalar longitudinal componeatof the Goldstone

bosons allow to extract directly the scale of unitarity 3. Incorporation of matter

violation in the theory. It turns out that, for the model

at hand, the amplitudel(¢p¢p — ¢¢) for ¢p—¢ scat- Let us now extend the model in Secti@nhwhich
tering is of the ordetd ~ E19/410 whereE is the has been formulated for pure gravity, by adding on
energy ofp and each site extra scalar and fermionic site variables. To
1/4 illustrate the general idea, we shall restrict ourselves
My / . ..
Ag= (_3) (5) here, for simplicity, to the case where we have on each
R sitei only one scala®; and one Dirac fermiow;. We

is the strong coupling scale of the theory that is set suppose that the sets of scalar and fermionic site vari-
by the triple vertex ofs. From Eq.(5), it is seen that ~ ables{J/_; ®; andJ!\, ¥;, respectively describe, in
the UV cutoff scaled, of the effective theory depends  the sense of usual lattice gauge theory, a scaland a

on the IR length-scal® of the compactified extra di-  fermion¥ propagating in the discretized fifth dimen-
mension. This phenomenon has been called UV/IR sion discussed in Sectich The total actionS of our
connection[17]. Since in a sensible effective theory model can therefore be split into contributions from

for massive gravitons the lattice spacimg* must al- the sites and links as

ways be larger than the minimal lattice spacing defined X

by amin ~ A;l, this implies that the theory does not §= Z (SSlte"' Siink ) @)
possess a haive continuum limit. In other words, for X=g,&.¥

given radiusR, the effective theory is characterized by where we have distinguished between the purely grav-
a highest possible number of lattice sitfégax= R A4, itational part = g), which is given in Egs(1) and
which limits how fine grained the lattice can be made. (2), and the sum of contributions from the scal&r£

Besides the triple derivative coupling @f, the @) and fermion ¥ = V) species. Let us first specify
Goldstone boson action contains other types of ver- in Eq. (7) the interactions;Ss’fte on the sites. For the
tices, each of which can be associated with a charac-lattice fields® and¥ we take in Eq.(7) the matter
teristic strong coupling scale for that interactids]. actions

As two such typical examples, we will consider the

scales 58— Z / d4 < )
M, 1/3 My 1/5
Az = — and As=|— , 6
3 (R2> 5 <R4) ©6) X (gwa“qsia ®; + M50;9;), (8a)

which we will later compare withi. It is important

to note that the existence of the strong coupling scales sY Z / d4
in Egs.(5) and (6)is qualitatively different from the Ssite =

UV cutoff in deconstructed gauge theories. In decon- u -
struction, the strong coupling scale associated with the X ['(w”’ Ve O + LW + My W],
non-linear sigma model approximation is always by a (8b)
factor~ 4 larger than the mass of the heaviest gauge whereMy and My denote the bulk masses of the 5D
boson, which is of the order the inverse lattice spacing. scalar® and fermion¥, respectively. In Eq(8b), we

In this sense, deconstruction may provide, unlike the have written the fermion action using the vierbein for-
effective theory of massive gravitons discussed here, malism (see, e.g., RdR9]), wherey* (¢« =0, 1, 2, 3)

an UV completion of higher-dimensional gauge theo- are the usual Dirac gamma matrices, whilg* is the
ries. It should be noted, however, that the emergence vierbein andl’, is the associated spin connection. It is
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obvious, that the actio) y SX,., summarizing the in-
teractions on thev sites, is invariant undeN copies

of GC. TheN-fold product of GCH[]/; GC;, how-
ever, is explicitly broken in Eq(7) by each term in
the sum)_, S, which contains the interactions be-
tween the fields on the different sites. On the trans-
verse lattice, we suppose thatand¥ are coupled to

their nearest neighbors via

N
Sik=_ / d'x \[gim2®; (@41 — @) +he., (98)
i=1

N
Siink = Z/d4x VemWrL(Wirnr — Yir)
i=1

+he, (9b)

where¥;; g = 1(1F y5)¥;, with y5 = iy%y1y2ys,

are the left- and right-handed components of the Dirac
spinor ¥;. To arrive at Eq(9b), we started with the
Wilson—-Dirac actiorj30]

N
Sw = Z/d4x \/;m
i=1

- r+ - r— -
X <‘1/i 5 2)/5%“ +y =B 2)/5‘1’1'—1 - rWi‘E’),
(10)
wherer is some arbitrary parameter. The action in
Eqg. (10) results from adding a Wilson term (which
would vanish in the continuum limitz — o0) to the
naive lattice action of fermions, thereby projecting out
unwanted fermion doublers. We then obtain frékg
the actionSI‘if]k in Eq. (9b) by assuming for the para-
meterr Wilson’s choicer = 1[31]. As a consequence,

we arrive at a common mass spectrum for scalars and

fermions, which is given by
m?=4m?sit 2l L M2 (n=1,2,...,N), (11)
n — N X ke R ’

whereX = @, . The assumption of Wilson-fermions
asin Eq(9b)with r = 1 ensures foMy = My identi-

cal dispersion relations for the latticized fermions and
bosons. Notice also, that E(L1) becomes folX = g
identical with the graviton spectrum in E@L), when
setting the bulk graviton mass to zero, i#, = 0. In
the weak field limit, we observe that for evén the
actionSﬁ’:1k in Eqg. (9b)is characterized by /2 global
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7, symmetries

790 WL = —Yi-kL.
Ytk R < Y(i—k+1)R>
hitk < hik, (12)

wherei =1,2,...,N/2 is held fixed, whilek runs
over all the valuek =0, £1,+2,...,+N/2. Start-
ing with the Wilson—Dirac actioby in Eq. (10), the
discrete symmetriezg) are only consistent with the
form of the actionSﬁ’r’1k in EqQ. (9b), which is obtained
for the choicer = 1. We wish to point out, that the “lo-
cality” of the actionsS;¥, with nearest neighbor cou-
plings might be understood in terms of scale-invariant
renormalization group transformations acting in the-
ory spacg33].

4. Casimir energies

In this section, we investigate the Casimir ener-
gies of matter fields propagating in the discrete ex-
tra dimension introduced in Sectio@sand 3 For a
continuous 5D space—-time manifold, the Casimir en-
ergy densities of free massless scalars and fermions
have been computed in R¢t1], whereas the Casimir
contribution of a massless graviton in the same back-
ground, using the standard effective action theory, can
be found in Ref[10]. In our model with a discrete fifth
dimension, one can summarize in the 4D low-energy
theory the vacuum energy contributions of the massive
modes to the 1-loop effective potential as

N
Vet = (s —4f +5¢) Y Vo(mn), (13)

n=1
wheres, f, andg, respectively, denote the number of
real scalar, fermionic, and gravitational fields prop-
agating in the latticized bulk. In Eq13), we have
summed for each latticized field over the vacuum en-
ergy densitiesVp(m,,) of all the modes with masses
my, belonging to the phonon-like spectrum in Ety1).
Notice in Eq.(13), that the factors-4 and 5 reflect
the spin-degrees of freedom that contribute to each
massive fermion and graviton loop. In continuum KK

5 Discrete non-Abelian flavor symmetries from deconstruction
have recently been analyzed in R&2].
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theories, a gauge-independent gravitational quantum-~ R~*. As already mentioned in the introduction, this
effective action can be consistently formulated by em- would lead to the boun® = 0.1 mm. Let us there-
ploying the Vilkovisky—De Witt effective actiof34], fore now consider latticized matter fields with non-
for which, however, only a few explicit examples in vanishing bulk massesfx # 0. In the extra dimen-
special topologies are knowW85]. For our model with sion, the boundary conditions for the quantum fields
a discrete extra dimension, the contributids(m,) to can be periodic or anti-periodic, and the corresponding
the effective potential from a single real scalar degree fields are called untwisted and twisted, respectively.
of freedom withMy = 0 has been calculated in Refs. The Casimir energy densities of these field configura-

[36,37] where tions differ by a factor of order one and have opposite
4 2 3 sign. Following Ref[41], the 4D Casimir energy den-
Vo(m,) = —on_ (In M _ _> sity of a single untwisted real scalar field in the latti-
6472 ur o2 cized fifth dimension can be written as
has been obtained by a zeta-function regularization 1

technique[38]. In our theory space, the purely grav-  puntwisted=
itational contribution to the effective potential which

includes only the tower of massive gravitons [i.e., ar [N !

s = f=0andg =1 in Eq.(13)], for example, was X ?[Zmilnmn —N/dsmflnms:|,
then found to be n=1

15Nm4< 4m? 3)

— n— [
3272 w2 2
N-1

2(2m)3

(15)

where, from Eq(11), m2 = 4m?siré(zn/N) + M2
ands is treated in the integral as a continuous para-

Vef‘f|s,f=0 =

+ 5£4 Zsin“ " VMinsinl ™% meter which replaces/N in the sine function. As
2n2 ot N ’ long as the number of lattice sites ¢ > O(10),
a (14) the Casimir energy density on the transverse lattice in

Eq. (15) differs less than< 1% from the value in the
naive continuum limitN — oo. In the remainder of
this section, we will therefore employ the expressions
for the Casimir energy densities of quantum fields in
the continuum theory. In this approximation, the vac-
uum energy density of a real (un)twisted scalar field

where, from Eq.(4), m? = 4m?sir® ZL. For a re-
lated discussion in a supersymmetric context see also
Refs.[39,40] Note that Eq(14) contains also terms
that are not due to the Casimir effect or terms that de-
pend on an arbitrary renormalization scaleriginat-

ing from the regularization proce8sSince we wish to

consider only the 4D Casimir energy density, we will, readq41]

in the following, eliminate the unwanted parts in the 5 0 5 oo
effective potential. This can be realized by subtracting Punytwisted = 1 @o) / n (n” —x%) ’

off the vacuum energy density that corresponds to an 8(27)2 R4 exp(2rn) + 1
uncompactified (unbounded) extra dimension as ex- * (16)

plained in Ref[41]. As a nice advantage of this renor-
malization procedure we obtain that the transverse lat-
tice result converges in the limN — oo exactly to the
value expected from the continuum theory.

If the bulk massed/x of the fields in Eq(13) are
all set to zero, the resulting 4D Casimir energy den-
sity of each latticized bulk field would be of the order

where the %" and “—" signs belong to twisted and
untwisted fields, respectively, and= Mx R/(2r), in
which My denotes the bulk mass of the scalar field.
The integral in Eq(16) can be performed exactly after
neglecting the termt1 in the denominator, i.e., both
densities differ only in an overall sign:

(MxR)?>+3MxR+3 _
5 o . Puntwisted = £ MxR —(17)
The dependence on the renormalization sgaleads, in a cos-

(271)2R4
mological setup, to a running CC. Some recent work on such renor- . . . .
malization group motivated DE models and their cosmological im- YWhen taking the sum of contributions for twisted and

plications can be found in Ref#2] and references therein. untwisted fields, the integrals must be added before
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carrying out the approximation, which gives

A(MxR)?+6MxR + 3 —2mxR
16(27)2R4 '

(18)

Psum= —

The corresponding energy densities of Dirac fermions
are obtained by simply multiplying the scalar densities
Puntwisted DY —4. Note that the applied approximation
works fine even in the limit of vanishing bulk masses
My — 0. The basic feature expressed in E(fsr)
and (18)is that for large bulk massedx > R~1, the

energy density of massive matter fields becomes expo- 44

nentially suppressed, which could compensate for the
possibly large factor- R—4, even wherR is compar-
atively small.

Now, we are in a position to calculate the Casimir
energy densities with the bulk masskf set equal
to the strong coupling scaless, A4, and As given
in Egs.(5) and (6) The effective field theory descrip-

F. Bauer, G. Saidl / Physics Letters B 624 (2005) 250-259

Table 1

Lower boundRmin on the sizeR of the extra dimension for an
untwisted real scalar field and the sum of a twisted and an un-
twisted scalar. Additionally, the values of the strong coupling scale
A and the number of lattice site¥ are given wherR is equal to
Rmin. For the scaleA, we considered each of the three choices
A = Az, Ay, Ag from Egs.(5) and (6) The lower boundRmin
emerges from the requirement that the absolute Casimir energy den-
sity lies below the observed valygps of the DE density, when
the bulk field mas3/y in Eq. (11) takes the largest possible value
My ~A

Untwisted Rmin [Gev 1] A(Rmin) [GeV] N = Rmjin - A(Rmin)

Az 6.1x10°12  36x 1013 219
90x10710 22101 198
As 11x1077  17x10° 179
Sum Rmin [GEV™] A(Rmin) [GeVI N = Rin- A(Rmin)
Az 82x10713  14x104 112
Ay 6.6x 10711 16x 102 103
As 44x107°  21x100 95

in the continuum theory.For a mix of a twisted and

tion suggests that these are the largest possible valuesin untwisted field, we observe that the Casimir energy

that My can take in the gravitational theory space.
If the UV cutoff A is much larger than~ R~1, the
expressions in Eqq17) and (18)are dominated by
the exponential damping factors, such that the Casimir

density of massive bulk fields exhibits a stronger sup-
pression due to the different signs of both components.
FromFig. 2, we read off that the minimal radiug&nn

of the discrete gravitational extra dimension lies in the

energy densities are most strongly suppressed whenrange

My becomes of the order the strong coupling scale
A, with A = A3z, A4, As. Moreover, this suppression
is most effective, when the number of lattice sifés

is maximized by choosing the inverse lattice spacing
m = N/R to be also of the orden. The lower limit
Rmin On the sizeR of the extra dimension emerges
from requiring that the Casimir energy densities re-
main below the observed valygps ~ 10°47 GeV*

of the DE density. The results for an untwisted scalar
field and the sum of twisted and untwisted fields are
plotted inFig. 2 Since the smallest valuRn, that

R can take is, due to the UV/IR connection, a func-
tion of A, we have considere®tnin(A) for all three
scalesA = Ag, A4, As. These values together with
the corresponding maximum number of lattice sites
N = Rmin- A(Rmin), WhereA(Rmin) is the strong cou-
pling scale associated witRyin, are summarized in
Table 1 Note that we can apply here the relations
from the continuum theory, since (i) the number of
lattice sitesN is of the order~ 10? and (ii) the lat-
tice calculation leads to energy densities (drawn in
Fig. 2 as circles), that agree very well with the values

(102 GeV) " < Rmin S (107 GeV) 7,
where, typically, A(Rmin) ~ 107 x R For a ra-
dius R which is much smaller than the range given in
Eq.(19), the Casimir energy densities of the bulk mat-
ter fields would significantly exceegh,s and thus run
into conflict with observation. Of course, there may be
other possible sources of DE which might be respon-
sible for the accelerated expansion of the universe, but
it seems unlikely that they could exactly cancel the po-
tentially large contributions from the Casimir effect in
extra dimensions.

Let us now briefly comment on the gravitational
contribution to the 1-loop quantum effective action
Vett in Eq.(13). For zero bulk masaf, = 0, the gravi-

(19)

7 For Ryin, the values of the continuum and lattice formulas differ
by about 15%, which is negligible, since the strong coupling scales
A3z 45 are order of magnitude estimates. For instance, the lattice
calculation for an untwisted scalar field and= A3 gives Rmin =
6.8 x 1012 Gev—1, whereas the continuum approximation yields
Rmin=6.1x 10712 Gev—1,
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Fig. 2. For the three choice$ = A3, A4, Ag of the strong coupling scala from Egs.(5) and (6) we plotted the values ofi, the Casimir
energy densitiep, and the corresponding numbh¥r= R A of lattice sites as functions of the siReof the fifth dimension. The energy densities

p are given for the untwisted scalar field [cf. E47)] and the sum of one untwisted and one twisted scalar field [cf(ER)]. Note, thatp

is negative in both cases, and the bulk masses of the fields have their maximal values, givieacbgrding to Sectiod. In the plots ofp,

the horizontal dashed line marks the observed vajyg ~ 10~47 GeV* of the DE density and the circles represent exact lattice values from
Eq. (15).

tational effective potential given in E{{L4)would lead for small N, however, uniquely singles out Wilsons’s
to a contribution td/es of the order~ m*. The gravita- choicer = 1. Itis interesting to consider a possible ori-
tional vacuum energy, however, can be canceled in our gin of free massless scalars in effective field theories
model at the linear level, when we assume the pres- for KK modes. In a(4 + d)-dimensional KK theory
ence of a suitable number of latticized matter fields with d = 4 compactified extra dimensions, e.g., we
with actions as given in Eq$8) and (9) which have would have in the 4D low-energy theory one tower of
vanishing bulk masse&x = 0. For instance, choos- massive spin-2 states, three towers of massive spin-1
ing b = 3 massless scalars affd= 2 massless fermi-  states and six towers of massive spin-0 states with
ons, we find from Eq(13) that in this casé&/est = 0, degenerate masses (see, e.g., []). The effec-
which holds in linearized gravity at the 1-loop level tive potential of these fields could, in a similar way
for an arbitrary numbenV of lattice sites. In this ap- as mentioned above, be canceled at the 1-loop level
proximation, the cancelation of bosonic and fermionic by adding only free Dirac fermions with zero bulk
degrees of freedom would actually be approached in masses. Notice that, since the massless fields couple
the limit N — oo for any value of the parameter only gravitationally to the visible sector, a sufficiently
in the Wilson-Dirac action in Eq10). The require- low temperature of the massless states would allow to
ment that this cancelation holds for arbitrary, i.e., also retain the predictions of standard big-bang nucleosyn-
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thesis[44]. Finally, we note that the cancelation of
vacuum energies in a supersymmetric multi-graviton
theory on space-times with non-trivial topology was
also considered very recently in R&40], where bulk
masses and different boundary conditions were taken
into account.

5. Summary and conclusions

In this Letter, we have analyzed the Casimir effect
of matter fields in the background of an effective 5D
space-time. The underlying model of a discrete grav-
itational extra dimension exhibits a strong coupling
behavior at an energy scale, which depends via an
UV/IR connection non-trivially on the siz& of the
extra dimension. For a small compactified extra di-

mension, massless quantum fields usually lead, due to

the Casimir effect, to large vacuum energy contribu-
tions, which are in stark contrast to current observa-
tions. To circumvent this problem, we have assumed
for the matter fields large bulk massésy to sup-
press the Casimir energy density exponentially, even
for a tiny extra dimension. However, the strong cou-
pling scale sets an upper bound on the values of the
bulk masses\fy < A, and therefore limits the sup-
pression effect. This yields a lower bound on the size
of the fifth dimension, when the bulk masses take the
maximal possible valug’/y >~ A. Here, we found that
the minimal sizeRmin of the extra dimension lies in the
rangeRmin ~ (102 GeV)~1... (10’ GeV)~! and that
the corresponding maximum number of lattice sites
is of the order~ 10%. Furthermore, we discussed the
possibility of canceling the contribution of massless
bulk fields to the quantum effective potential. Gener-
ally, it would be interesting to explore a possible rela-
tion of our model to holography, as suggested by the
UV/IR connection[45], and analyze also supersym-
metric realization§39,40], e.g., in the framework of
sequestered sector models of anomaly medidti6h
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