
Information and Computation 147, 145�170 (1998)

Positive Versions of Polynomial Time*

C. Lautemann- and T. Schwentick-

Institut fu� r Informatik FB17, Johannes Gutenberg��Universita� t Mainz,
D-55099 Mainz, Germany

and

I. A. Stewart- , �

Department of Mathematics and Computer Science, University of Leicester,
Leicester LE1 7RH, United Kingdom

We show that restricting a number of characterizations of the com-
plexity class P to be positive (in natural ways) results in the same class
of (monotone) problems, which we denote by posP. By a well-known
result of Razborov, posP is a proper subclass of the class of monotone
problems in P. We exhibit complete problems for posP via weak logical
reductions, as we do for other logically defined classes of problems. Our
work is a continuation of research undertaken by Grigni and Sipser, and
subsequently Stewart; indeed, we introduce the notion of a positive
deterministic Turing machine and consequently solve a problem posed by
Grigni and Sipser.] 1998 Academic Press

1. INTRODUCTION

The question of monotone vs positive has a number of manifestations in theoreti-
cal computer science. Perhaps the best known is in the context of boolean circuits
where Razborov [25] proved that there exist monotone boolean functions which
are computable by polynomial-size sequences of boolean circuits but not by poly-
nomial-size sequences of boolean circuits in which negation gates do not appear.
The question can also be considered in the wider context of complexity classes.
Grigni and Sipser [17] considered positive versions of a variety of computational
models such as boolean circuits, branching programs, and nondeterministic Turing
machines and, in a natural way, made them positive. For a number of complexity
classes, such as REG, CFL and NP, they proved that the positive restriction

Article No. IC982742

145 0890-5401�98 �25.00
Copyright � 1998 by Academic Press

All rights of reproduction in any form reserved.

* An extended abstract of this paper appeared as (1996), On positive P, in ``Proc. 11th Annual IEEE
Symposium on Computational Complexity,'' IEEE Press, New York.

- Supported by British-German ARC Project 604.
� Supported by EPSRC Grant GR�H 81108. Most of the work in this paper was done while the

author was at the University of Wales Swansea.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82761582?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

coincides exactly with the subclass of monotone problems. They also studied classes
(mostly contained within NC) for which the positive restriction does not, or is not
known to, include all monotone problems of the class (this study was extended in
[18]). Subsequently, Stewart [29] obtained logical characterizations of the class of
monotone problems in NP. Finally, Ajtai and Gurevich [1] considered the ques-
tion in the context of finite model theory and proved that there exist monotone
problems which are definable in first-order logic but not by any positive first-order
sentence (a simpler example is given in [32]).

In this paper we study a number of possible definitions for a positive version of
P, obtained by restricting logics, boolean circuits, alternating Turing machines,
non-deterministic auxiliary pushdown machines, and deterministic Turing machines.
We show that the resulting classes of (monotone) problems are, in fact, identical
and we denote this class of problems by posP. We also exhibit complete problems
for posP via weak logical reductions, as we do for other logically defined complexity
classes and solve a problem posed in [17] by introducing and developing the
notion of a positive deterministic Turing machine.

2. SOME DIFFERENT CHARACTERIZATIONS OF P

We consider naturally defined positive versions of a variety of characterizations
of the complexity class P, polynomial-time, involving extensions of first-order logic
with a built-in successor relation, log-space bounded nondeterministic and alternating
machines, deterministic polynomial-time bounded machines, and uniform sequences
of boolean circuits. In particular, we prove that naturally defined positive versions
of the following all define the same complexity class, and so we arrive at a stable
notion of ``positive P'' (more precise definitions follow subsequently):

v LFP*[FOs]: first-order logic, with a built-in successor relation, extended by
positive applications of a least fixed point operator.

v PS*[FOs]: first-order logic, with a built-in successor relation, extended by
positive applications of an operator corresponding to the path-system problem.

v D3S*[FOs]: first-order logic, with a built-in successor relation, extended
by positive applications of an operator corresponding to the degree-at-least-3-
subgraph problem.

v BC[qffo]: quantifier-free uniform sequences of polynomial-size boolean
circuits.

v BC[poly]: polynomial-time uniform sequences of polynomial-size boolean
circuits.

v ATM[log]: alternating Turing machines with logarithmically bounded work
tapes.

v NauxPDM[log]: nondeterministic auxiliary pushdown machines with
logarithmically bounded work tapes.

v DTM[poly]: deterministic polynomial-time Turing machines.

146 LAUTEMANN, SCHWENTICK, AND STEWART

With regard to defining positive versions of the above, making LFP*[FOs],
PS*[FOs], etc., positive (in the logical sense) with regard to the symbols of the
underlying signature is the obvious thing to do. As for the machine characteriza-
tions, positive nondeterministic or alternating machines can be defined by making
the machine random-access and demanding that whenever the machine reads an
input 0 it rejects, and we can define a positive version of a deterministic Turing
machine by insisting that, informally speaking, after reading a 0 it must not write
a 1, unless, in the same situation except reading a 1, it also writes a 1. Of course,
boolean circuits are made positive by disallowing negation gates.

Let us give a more detailed account of our formalisms (and also references to
further, more complete definitions: general references are [11] for logical concepts
and [24] for complexity-theoretic concepts, and we follow, for example, [29] as
regards our notation).

2.1. Logical Operators

For any signature _ consisting of relation and constant symbols, by FOs(_) we
denote the set of all first-order formulas (possibly with free variables) built using
relation symbols from _ _ [succ], where succ is a binary relation symbol (which
never appears in _), and also the constant symbols 0 and max (again, which never
appear in _). By FO+

s (_) we denote those formulas of FOs(_) in which relation
symbols from _ occur only positively, i.e., not within the scope of a negation sym-
bol (note that no restriction is placed on the occurrence of any constant symbols
of _). Sentences, i.e., formulas with no free variables, of FOs(_) can be used to
define problems over _, i.e., sets of finite _-structures closed under isomorphism,
where a finite structure S over _, or _-structure, consists of a universe |S|=
[0, 1, ..., n&1] and has a relation of arity a over |S| corresponding to every rela-
tion symbol of _ of arity a and a constant corresponding to every constant symbol
of _ (we always assume that the universe of any structure contains at least 2
elements). We denote the set of all finite _-structures by STRUCT(_). Given some
_-structure S of size n, i.e., where |S|=[0, 1, ..., n&1], and some sentence
, # FOs(_), S |=, iff S satisfies , in the obvious way except that 0 (respectively
max) is always interpreted as 0 # |S| (respectively n&1 # |S|) and succ is always
interpreted as the natural successor relation on |S|. We call 0 and max built-in
constants and succ a built-in successor relation.1 We denote �_ FOs(_) by FOs

(and do likewise for other logics or classes of _-machines defined later). Note that
not every sentence � # FOs defines a problem (as it may be the case that the set of
structures defined by � is not closed under isomorphism, e.g., when _ consists of a
unary relation symbol U and when � is _x(succ(0, x) 7 U(x))). Throughout, we are
only ever concerned with sentences of FOs defining problems, and the same goes
for other logics (the reader is referred to [11] where the role of built-in relations
such as succ is discussed).

The logic FOs was extended in [21, 34] using the least fixed point operator LFP
to obtain the logic (\LFP)* [FOs], and it was proved that the problems definable

147POSITIVE VERSIONS OF POLYNOMIAL TIME

1 We do not always differentiate between a relation or constant and a relation or constant symbol.

by the sentences of (\LFP)* [FOs] are exactly those problems in P. (We think of
a complexity class variously as consisting of sets of strings over [0, 1], decision
problems (in the abstract complexity-theoretic sense, see [12]) and sets of finite
structures closed under isomorphism. Also, we write, for example, (\LFP)* [FOs]
to denote the formulas of the actual logic and also the class of problems defined by
the sentences of (\LFP)* [FOs]. Hence, we may write (\LFP)* [FOs]=P and
say that (\LFP)* [FOs] captures P.) Moreover, it was proven that the logics
(\LFP)* [FOs], LFP*[FOs] (the fragment of (\LFP)* [FOs] where no
occurrence of the operator LFP in any formula may appear within the scope of a
negation symbol), and LFP1[FOs] (the fragment of LFP*[FOs] where no nesting
of the operator LFP is allowed) define the same class of problems.

v A formula � # LFP*[FOs(_)] belongs to LFP*[FO+
s (_)] if all occurrences

in � of relation symbols from _ are positive, with LFP1[FO+
s (_)] defined likewise.

An alternative method of capturing complexity classes was introduced in [22]
and involves the extension of FOs using operators corresponding to problems (these
operators are alternatively known as vectorized sequences of Lindstro� m quantifiers,
and we shall see some of these operators in action in the subsequent sections). In
particular, extending FOs with positive occurrences of the transitive closure
operator TC to obtain the logic TC*[FOs], as in [22], enables one to capture the
complexity class NL. Immerman's celebrated result that the class of problems
defined by the logic (\TC)* [FOs], where we no longer insist that an occurrence
of the operator TC does not appear within the scope of a negation symbol,
coincides with the class of problems defined by the logic TC*[FOs], thus yielding
NL=co-NL, followed later [23] (this corollary was proved independently by
Szelepcse� nyi [33]).

One may take any problem and extend any logic by the corresponding operator.
Many complexity classes have been captured by such extensions of FOs (see,
for example, [15, 22, 28, 29]). In particular, it was proven in [29] that
(\PS)* [FOs]=PS1[FOs]=P, where PS is the path-system problem and is
defined as follows. Let _3, 1, 1=(R, U, V) , where R is a relation symbol of arity 3
and U and V are unary relation symbols. Any _3, 1, 1 -structure S can be regarded
as a path-system, in the sense of [12], and S # PS iff starting with the set of
accessible vertices [u # |S| : US(u) holds], the sources, eventually a vertex of
[v # |S| : VS(v) holds], the sinks, becomes accessible in the path-system described
by S, where the rule for determining accessible vertices is ``z becomes accessible if
there exist two accessible vertices x and y (not necessarily distinct) such that
RS(x, y, z) holds'' (if RS(x, y, z) holds then we say that (x, y, z) is a rule). The
problem PS was shown to be complete for P via log-space reductions in [9].

v A formula � # PS*[FOs(_)] belongs to PS*[FO+
s (_)] if all occurrences in

� of relation symbols from _ are positive, with PS1[FO+
s (_)] defined likewise.

We also consider the logics D3S*[FOs] and D3S1[FOs], where D3S is the
degree-at-least-3-subgraph problem and is defined as follows (see also [13] where it
is referred to as the high-degree-subgraph problem). Let _2=(E) , where E is a
binary relation symbol. Any _2 -structure S can be regarded as an undirected graph,

148 LAUTEMANN, SCHWENTICK, AND STEWART

and S # D3S iff it contains an induced subgraph with minimum degree at least 3.
It was shown in [2] that D3S is complete for P via log-space reductions. The logics
D3S*[FO+

s (_)] and D3S1[FO+
s (_)] are defined as above.

The reason we focus on PS and D3S is that these problems are monotone in the
following sense. Let S1 and S2 be _-structures, for some signature _. We say that
S2 is a relational refinement of S1 iff |S1 |=|S2 |; for every constant symbol C of _,
CS1=C S2; and for every relation symbol R of _, of arity a, and for every
u # |S1 | a=|S2 | a, if RS1(u) holds then RS2(u) holds. Any problem 0 over _ is
monotone if for any _-structures S1 and S2 with S2 a relational refinement of S1 ,
S1 # 0 implies S2 # 0. It is not difficult to prove that any problem defined by a
sentence of either of the logics PS*[FO+

s] or D3S*[FO+
s] is monotone. As it

is our aim to establish a stable notion of ``positive P,'' it is essential that all
problems in ``positive P'' be monotone (note that all problems in LFP*[FO+

s] are
indeed monotone). It should be mentioned that inflationary fixed point logic,
(\IFP)* [FOs] (see, for example, [11]), is not relevant in our context. It is a
simple exercise to show that even if the relation symbols of the underlying signature
are restricted only to appear positively in formulas of (\IFP)* [FOs], we are still
able to define nonmonotone problems.

It is worthwhile pausing to compare our notion of a monotone problem with the
notion of monotonicity commonly encountered in complexity theory. As remarked
in the Introduction, much research in computational complexity has centered on
whether certain monotone boolean functions can be computed by boolean circuits
of restricted size and depth without negation gates; that is, monotonicity is con-
sidered in the context of boolean functions. If it is the case that a problem is over
a relational signature then the problem can obviously be equated directly with a
boolean function, and having constants as part of some structure, which are not
subject to montonicity constraints, would seemingly destroy this correspondence.
This is not the case, however, as the constants merely allow one to consider
parameterized monotone functions: such functions are also regularly considered
in the literature (e.g., CLIQUEk, n and CONNECTn [5]). Alternatively, if
parameterized monotone functions are to be avoided then one simply forces all
signatures to be relational.

2.2. Circuits

It is well known that P is the class of languages over [0, 1] accepted by polyno-
mial-time uniform sequences of polynomial-size boolean circuits [6]; here, polyno-
mial-time uniform means that there is a polynomial-time algorithm which, when
given n (in unary), produces a description of the n th circuit of the sequence. In
order that we might talk about uniformity constraints imposed through logical
means, we need to say how a boolean circuit Cn can be considered to be a finite
structure over an appropriate signature and how a set of formulas can, for every n,
describe such a circuit Cn : moreover, in our context we need only consider positive2

boolean circuits, i.e., circuits with no negation gates.

149POSITIVE VERSIONS OF POLYNOMIAL TIME

2 Traditionally, such circuits are called ``monotone'' in the literature. However, we prefer to use
``monotone'' exclusively as a semantic notion.

We consider a positive boolean circuit with n gates as a structure S of size n over
the signature _pc=(G7 , G6 , G0 , G1 , I, O, C) , where G7 , G6 , G0 , G1 , I, and O
are unary relation symbols and C is a relation symbol of arity 3, as follows: the
gates of the circuit are labeled 0, 1, ..., n&1; GS

7(x) (respectively, GS
6(x)) holds iff

gate x is a 7-gate (respectively, 6-gate); GS
0(x) (respectively, GS

1(x)) holds iff gate
x is a gate set at the constant value 0 (respectively, 1); IS(x) (respectively, OS(x))
holds iff gate x is an input (respectively, the unique output) gate; and CS(x, y, z)
holds iff the input gates connected to gate z are gates x and y, where x=% y (note
that not every structure over _pc corresponds to a positive boolean circuit). Also,
we allow our circuits to have ``partially specified'' gates, such as gates whose type
may not be specified (for example, gates for which c(GS

7(x) 6 GS
6(x) 6 I S(x) 6

GS
0(x) 6 GS

1(x)) holds) or gates which do not have a full complement of inputs.
Such gates we regard as ``broken'' and we assume that the output of such gates is
always 0. As we shall see, we do this so that we can more easily define circuits using
logical formulas otherwise, as our uniformity is provided by ``vectorized first-order
formulas'' (see below), every circuit Cn in a uniform sequence of circuits [Cn] would
necessarily have exactly nm gates, for some (fixed) m. (We can clearly think of
arbitrary boolean circuits as finite structures by including another unary relation
symbol in _pc to cater for negation gates.)

We are now in a position to say what we mean by a quantifier-free uniform
sequence of positive boolean circuits. We make all our boolean circuits and
machine models take structures, as opposed to strings over [0, 1], as inputs.
Consequently, whereas which bit of the input string is associated with which input
gate of the circuit is not usually an issue in the traditional setup, we do need to say
which bit of our input structure is associated with which input gate of our circuit
in our logical setting.

v A sequence [Cn] of positive boolean circuits, taking as inputs structures
over the signature _=(R1 , R2 , ..., Rr , C1 , C2 , ..., Cc) , where each Ri is a relation
symbol of arity ai and each Cj is a constant symbol, is quantifier-free uniform if
there are quantifier-free formulas of FOs :

,7(x), ,6(x), ,0(x), ,1(x), ,I (x), ,O(x), ,C(x, x$, z), � i (x, yi), !j (x, w),

where |yi |=ai and |x|=|x$|=|z|=k, for some k, for i=1, 2, ..., r and for j=
1, 2, ..., c, which involve only symbols from [0, max, succ], describing [Cn] in the
following sense. For each n, let =n be the structure of size n over the empty signature
_< . The gates of Cn are indexed by k-tuples over [0, 1, ..., n&1], and for every
a, a$, b # [0, 1, ..., n&1]k and d # [0, 1, ..., n&1]:

a is an 7-gate (respectively, 6-gate) iff =n |=,7(a) (respectively, =n |=,6(a))

a is a gate with constant value 0 (respectively, 1) iff =n |=,0(a) (respectively,
=n |=,1(a))

a is an input (respectively, output) gate iff =n |=,I (a) (respectively, =n |=,O(a))

a and a$ are input gates to gate b iff =n |=,C(a, a$, b)

150 LAUTEMANN, SCHWENTICK, AND STEWART

for each i=1, 2, ..., r and for each ci # [0, 1, ..., n&1]ai, the bit Ri (ci) of the
input structure, of size n, to Cn is associated with input gate a iff =n |=�i (a, ci)

for each j=1, 2, ..., c, a 1 (respectively, 0) is associated with input gate a iff Cj

is the unique element of [0, 1, ..., n&1] such that =n |=! j (a, C j) (respectively,
=n |=c!j (a, Cj)).

We denote the class of quantifier-free uniform sequences of positive boolean
circuits taking _-structures as input by BC+(_)[qffo]. The notion of the sequence
of boolean circuits [Cn] being polynomial-time uniform is defined analogously, and
the class of polynomial-time uniform sequences of positive boolean circuits taking
-structures as input is denoted by BC+()[poly].

Note that not every set of formulas (as in the above definition) properly defines
a sequence of boolean circuits. Also, note that the constant symbols in the signature
_ (if present) parameterize the resulting sequence of boolean circuits by determining
whether certain input gates take the value 0 or 1, with these inputs independent of
the rest of the input structure.

2.3. Machines

We now focus on making our machine models positive. A random-access
_-Turing machine works on _-structures rather than strings over [0, 1]. It has an
address-tape and for each relation symbol R, of arity a, from _, a special query
state qR . Upon entering the state qR , the contents of the address-tape are inter-
preted as an a-tuple (u1 , u2 , ..., ua) # |S|a, where S is the input structure. The
machine then enters one of two distinguished states, q1 or q0 , depending on
whether RS(u1 , u2 , ..., ua) holds or does not hold, respectively (if the contents of the
address-tape do not encode an a-tuple over |S| then the machine crashes). The
machine initially has access to the size of the input structure S and any constants
of S.

Alternating Turing machines, ATMs, were originally introduced and studied in
[7], where it was shown that P coincides exactly with those languages accepted by
log-space ATMs (see also [24]).

v ATM(_)[log] is the class of log-space random-access alternating _-Turing
machines, and, furthermore, ATM+(_)[log] consists of those machines for which
q0 is a rejecting state: such machines are called positive.

The nondeterministic auxiliary pushdown machine, NauxPDM, was defined in
[8] as a nondeterministic Turing machine with an additional tape operating as a
pushdown store, or stack, and it was proved that P coincides exactly with the class
of languages accepted by log-space nondeterministic auxiliary pushdown machines.

v NauxPDM(_)[log] is the class of log-space random-access nondeterministic
auxiliary pushdown _-machines, and, furthermore, NauxPDM+(_)[log] consists of
those machines for which q0 is a rejecting state: such machines are called positive.

Finally, let M be a k-tape deterministic Turing machine, DTM, with input
alphabet [0, 1]. We call tuples I=(q, :1 , ..., :k), where q is a state of M and each

151POSITIVE VERSIONS OF POLYNOMIAL TIME

:i is a tape symbol of M, in-tuples of M. Analogously, we define tuples
O=(q, :1 , ..., :k , d1 , ..., dk) in which q is a state, each :i is a tape symbol and each
dj is a direction (say ``left,'' ``right,'' or ``stay''), to be out-tuples. Hence, we view the
transition function $ of M as a mapping from in-tuples to out-tuples. For two in-
tuples I=(q, :1 , ..., :k) and I$=(q$, :$1 , ..., :$k), we write I�I$ iff q=q$ and for every
i, either :i=:i$ or both :i=0 and :i$=1 (note that the work alphabet may contain
other symbols apart from 0 and 1). We define O�O$ for out-tuples O and O$
analogously (the respective directions must be identical in both tuples): further-
more, if the state of O is rejecting and the state of O$ is accepting then O�O"�O$,
for every out-tuple O". This final condition allows us to signal acceptance or rejec-
tion of some input string. We call M positive if from I�I$, $(I)=O and $(I$)=O$,
it always follows that O�O$. As usual, a positive DTM takes _-structures as input,
for some signature _, and we assume that the input is an encoding of the relations
of some _-structure, which are presented for input as tuples over [0, 1], with the
constants of the _-structure being given in binary using different symbols from 0
and 1; and so the constants are parameters.

Informally, M being positive means that whether the machine reads a 0 or a 1
does not affect the next state, the head movements or the written symbols different
from 0 and 1. However, the transition function of M is not allowed to be such
that a 0 is written immediately after reading a 1 when in the same situation except
reading a 0 a 1 is then written. Note that a positive deterministic Turing machine
is oblivious in a very strong sense: the state and head positions at any time depend
only on the length of the input but not on the input itself (except for the time
instant at which a computation halts).

As an example, consider the Turing machine M with transition function $ given
by

$(q, 0)=(q, 0, R); $(q, 1)=(qy , 0, S); $(q, b)=(qn , b, S),

where qy (respectively, qn) is the accepting (respectively, rejecting) state, and b is
the blank symbol. M is positive and accepts all strings with at least one 1.

v DTM+(_)[poly] is the class of polynomial-time positive deterministic
Turing _-machines.

Note that the problem accepted by any positive ATM, NauxPDM, or DTM is
always monotone.

2.4. Main Result

Our main result is the equivalence of all the above definitions.

Theorem 1. As classes of problems:

LFP*[FO+
s]=LFP1[FO+

s]=PS*[FO+
s]=PS1[FO+

s]

=D3S*[FO+
s]=D3S1[FO+

s]=BC+[qffo]=BC+[poly]

=ATM+[log]=NauxPDM+[log]=DTM+[poly].

152 LAUTEMANN, SCHWENTICK, AND STEWART

We call the class of problems determined by Theorem 1 positive P or, for short,
posP. Of course, all problems in posP are monotone. The following three sections
are devoted to a proof of Theorem 1.

Before proceeding, let us comment on Theorem 1. Razborov [25] proved that no
(uniform or nonuniform) sequence of polynomial-size boolean circuits can solve
BPM, the (monotone) problem of deciding whether a bipartite graph has a perfect
matching, which is well known to be solvable in polynomial time [24]. Hence,
the class P & mono of monotone problems in P, where mono is the class of
all monotone problems, properly contains posP. By rephrasing this result logically
as LFP*[FO+

s]/LFP*[FOs] & mono, we can view this result as an analogue to
Ajtai and Gurevich's result mentioned earlier [1]. However, a more ``logical''
analogue would be such a result in the absence of the built-in successor relation.

3. LEAST FIXED POINTS AND PATH SYSTEMS

In this section, we relate ``monotone computations'' using least fixed points and
path systems. The main result is the following.

Proposition 2. For every signature _, LFP1[FO+
s (_)]�PS1[FO+

s (_)].

Proof. Let _ be some signature and let 8 # LFP1[FO+
s (_)] be a sentence of the

form:

LFP[*x, X, Q1 y1Q2 y2 } } } Qryr,](z),

where |x|=m, X is an m-ary relation symbol not in _, z is an m-tuple of constant
symbols, each Qi is the quantifier \ or _, and , # FO+

s (_ _ [X]) is quantifier-free.
We intend to prove that 8 is logically equivalent to a sentence 9 # PS1[FO+

s (_)]
of the form

PS[*x$, y$, z$, ,R , x$, ,U , x$, ,V],

where |x$|=|y$|=|z$|=k, for some k; and ,R , ,U , ,V # FO+
s (_) are quantifier-free.

The proof (of which the basic idea is not difficult but technically somewhat
tedious) takes the form of a reduction: given a _-structure S, of size n, we construct
a path system P(S) such that S |=8 iff some sink is accessible from the sources in P(S).
We also show that the sources, the sinks, and the accessibility relation of P(S) can
be described in terms of S by quantifier-free formulas ,R , ,U , ,V # FO+

s (_).
The construction is as follows. The primary vertices of P(S) represent subfor-

mulas of 8, instantiated with elements of S, and also the formula X(x), instantiated
with elements of S (if such instantiations are not already catered for by 8: hence-
forth, let us assume for simplicity that they are). We intend that such a vertex u�(a)
will be accessible in P(S) iff the corresponding formula �S(a) holds when X is inter-
preted as the least fixed point. We are interested in the truth or otherwise of the
formula X(z) and so the vertex uX (z) (corresponding to X(z)) will be the solitary
sink of P(S). As sources, we take the vertices corresponding to those instantiated
literals over _ _ [succ, =] which are set to true over S. Here, a literal is an atomic

153POSITIVE VERSIONS OF POLYNOMIAL TIME

or negated atomic subformula of 8.3 We will ``connect'' these vertices using our
accessibility relation in an appropriate way (and using some additional vertices).

More precisely, our vertices are arranged in r+2 levels. On level 0, we have
all instantiations of ,0 :=Q1 y1Q2 y2 } } } Qr yr ,, i.e., all vertices of the form u,0

(a),
where a # |S|m. The truth of ,0(a) (in S) depends directly on the truth of
,1(a, b1) :=Q2 y2 } } } Qr yr,(a, b1 , y2 , ..., yr), for all choices of b1 # |S|. We arrange
all vertices of the form u,1

(a, b1) on level 1 and connect them with rules to the
vertices of the form u,0

(a) on level 0. These connections will depend upon whether
Q1=\ or Q1=_, and will be explained below. Continuing in this fashion, we get
vertices of the form u,i

(a, b1 , ..., b i) on level i, where , i :=Q i+1 yi+1 } } } Qr yr, and
where i=0, 1, ..., r, and connections between vertices on adjacent levels. Thus, on
level r, all vertices correspond to instantiations of the form ,(a, b1 , b2 , ..., br). The
truth of such a (quantifier-free) formula depends directly upon the truth of instan-
tiations of literals whose corresponding vertices lie on level r+1. Again, we connect
the vertices of level r with those of level r+1 by appropriate rules, as detailed
below. Note that, in general, the truth of ,(a, b1 , b2 , ..., br) depends not only on the
truth of instantiated atomic and negated atomic formulas built using the symbols
of _ _ [succ, =] but also on the truth of instantiated atomic formulas involving
the relation symbol X.

Let us assume for the moment that all connections between levels have been
made in the correct way and that the sources of our path system are the vertices
corresponding to true instantiations of literals (occurring in 8) involving the sym-
bols of _ _ [succ, =]. Then, for any a # |S|m, the vertex corresponding to X(a) is
not accessible, and u,0

(a) is accessible iff ,S
0(a) is true when X is interpreted as the

empty set, i.e., if a is in the first iteration of the least fixed point computation. In
order to simulate the subsequent iterations, as the final step in our construction we
connect, for each a # |S|m, the vertex u,0

(a) on level 0 with the vertex corresponding
to X(a) on level r+1. In this way, the results of one iteration of the least fixed point
computation are fed back into the path system for the simulation of the next
iteration. Hence, S |=8 iff the sink, uX (z), is accessible in P(S).

All that remains is to explain the different connections between levels and to give
the formulas ,R , ,U , and ,V . The formulas ,U and ,V will have the k=m+r+t
free variables v1 , v2 , ..., vt , x1 , x2 , ..., xm , y1 , y2 , ..., yr , where t denotes the number
of subformulas of 8: let us call these subformulas �1 , �2 , ..., �t . The formula ,R will
have 3k free variables. Each k-tuple over S is to be interpreted as a vertex of the
path system. The first t components encode the subformula of 8 to which the vertex
corresponds and we encode �i as the t-tuple (0i&1, n&1, 0t&i). The last m+r
components are the instantiations of the free variables of �i , the formula encoded
by the first t components. Thus, for example, (0i&1, n&1, 0t&i, a, b) encodes the
vertex u�i

(a, b). Note that not every variable of x and y need occur free in �i and
so the encoding process might yield numerous tuples encoding the vertex u�i

(a, b)
of P(S). In such cases, we consider the tuple encoding u�i

(a, b) to be that obtained
by inserting 0 for every component j # [t+1, t+2, ..., k] for which the corre-
sponding variable does not appear in �i . The tuples (0i&1, j, 0t&i, a, b), for

154 LAUTEMANN, SCHWENTICK, AND STEWART

3 Note that since 8 # LFP1[FO+
s (_)], only atomic formulas involving succ or=may be negated.

j{n&1, encode additional vertices (used, as mentioned above, to connect vertices
on different levels).

Thus, we can define the sources of the path system P(S) by the formula
�U (v, x, y) defined as

�
i \vi=max 7 �i (x, y) 7 �

j{i

vj=07 �
h

xh=0 7 �
l

yl=0+ ,

where i ranges over the indices of all formulas �i which are literals involving sym-
bols from _ _ [succ, =] and where h (respectively, l) ranges over all indices where
xh (respectively, yl) does not appear in �i . Similarly, �V (v, x, y) is defined as

vi=max 7 �
j{i

vj=0 7 x=z 7 y=0,

where i is the index of the formula �i which is X(x). Henceforth, for the sake of
ledgibility, instead of (0i&1, n&1, 0t&i, a, b) we shall write (�i , a, b).

It remains for us to define �R , the formula describing the rules connecting the
vertices of different levels. Let us begin with those rules connecting the vertices on
levels 0 and r+1. These are of the form ((,0 , a, 0), (,0 , a, 0), (�i , a, 0)) , where i
is the index of the formula �i which is X(x). These rules are easily described using
a quantifier-free formula of FO+

s (_).
Next, consider the rules connecting levels i and i&1, for i=1, 2, ..., r. Here, the

construction depends on the quantifier Qi . If Qi=_ then the formula ,S
i&1(a, b1 , ...,

bi&1) is true iff for some b # |S|, ,S
i (a, b1 , ..., bi&1 , b) is true. In order to describe

this dependency, we introduce the rules

((,i , a, b1 , ..., b i&1 , b, 0), (, i , a, b1 , ..., bi&1 , b, 0), (, i&1 , a, b1 , ..., bi&1 , 0)) ,

for all b # |S|. Clearly, these rules can be described by a quantifier-free formula of
FO+

s (_). If, on the other hand, Qi=\, then the construction is more involved.
Now, ,S

i&1(a, b1 , ..., bi&1) is true iff ,S
i (a, b1 , ..., bi&1 , b) is true, for all b # |S|. In

order to connect the vertices of the form u,i
(a, b1 , b2 , ..., bi&1 , b) with those of

the form u,i&1
(a, b1 , b2 , ..., bi&1), we make use of the additional vertices

uc
,i&1

(a, b1 , b2 , ..., bi&1) encoded by tuples (0 j&1, c, 0t& j, a, b1 , b2 , ..., bi&1 , 0), where
j is the index of ,i&1 (as a subformula of 8) and c # |S|"[0, n&1]. The connections
are given by (encodings of) the rules

(u,i
(a, b1 , ..., bi&1 , 0, 0), u,i

(a, b1 , ..., b i&1 , 1, 0), u1
,i&1

(a, b1 , ..., bi&1 , 0))

(u,i
(a, b1 , ..., bi&1 , c+1, 0), uc

,i
(a, b1 , ..., bi&1 , 0), uc+1

,i&1
(a, b1 , ..., bi&1 , 0)) ,

for c # |S|"[0, n&2, n&1]

(u,i
(a, b1 , ..., bi&1 , n&1, 0), un&2

,i
(a, b1 , ..., b i&1 , 0), u,i&1

(a, b1 , ..., bi&1 , 0)).

Again, these rules can be described by a quantifier-free formula of FO+
s (_).

155POSITIVE VERSIONS OF POLYNOMIAL TIME

Finally, we describe the connections between levels r and r+1. These connec-
tions express the fact that the truth of , depends directly only on the truth of
literals. We can assume that , is built from atomic and negated atomic formulas
using only 6 and 7 . Then , is of the form / 6 % or / 7 %, where / and % are
either literals or, in turn, of the form /$ 6 %$ or /$ 7 %$. All these subformulas occur
in the list �1 , �2 , ..., �t and consequently have an associated index. If %=/$ 7 %$
then we include (the encoding of) the rule

(u/$(a, b), u%$(a, b), u% (a, b)) ,

and if %=/$ 6 %$ then we include (encodings of) the rules

(u/$(a, b), u/$(a, b), u% (a, b))

(u%$(a, b), u%$(a, b), u% (a, b)) ,

for every a # |S|m and b # |S| r. This concludes the construction. K

Note also that it follows from the proof of Proposition 2 that any constant
symbol in the tuple z which does not appear in ,, only appears in ,V .

The proof of the following is straightforward.

Lemma 3. Let _ be some signature and let 9 # PS1[FO+
s] be of the form

PS[*x, y, z, ,R , x, ,U , x, ,V],

where |x|=|y|=|z|=k, for some k, and ,R , ,U , ,V # FO+
s (_) are all quantifier-free.

Then 9 is logically equivalent to the formula 8 # LFP1[FO+
s (_)] of the form

_x(LFP[*z, X, (,U(z) 6_x _y(X(x) 7 X(y) 7 ,R(x, y, z)))](x) 7 ,V (x)),

where X is a k-ary relation symbol not in _. K

Corollary 4. LFP*[FO+
s] = LFP1[FO+

s] = PS1[FO+
s] = PS*[FO+

s], and
any problem in LFP*[FO+

s] can be defined by a sentence of the form

LFP[*x, X, _y1 _y2 ..._yr,](max, max, ..., max),

for some r, where |x|=m, for some m, X is an m-ary relation symbol not in _, and
, # FO+

s is quantifier-free.

Proof. The result follows immediately from Proposition 2, Lemma 3, and
Corollary 4.8 of [29].4 K

Note that the normal form for LFP*[FO+
s] in Corollary 4 is identical with that

exhibited for LFP*[FOs] in Corollary 4.4 of [30] (except , # FO+
s as opposed to

, # FOs). We postpone a more detailed analysis of the proof of Proposition 2 until
later when we see that yet more information is forthcoming.

156 LAUTEMANN, SCHWENTICK, AND STEWART

4 The problem PS was defined slightly differently in [29] but the results still apply here.

4. CIRCUITS AND MACHINES

We now establish the equivalences of Theorem 1 involving circuits and machines.

Proposition 5. LFP*[FO+
s]�BC+[qffo].

Proof. The proof follows by amending the proof of Proposition 2 (whose
terminology we now adopt) so that we build a circuit as opposed to a path system,
and by using Corollary 4. As the construction stands, the iterations of the least
fixed point computation are performed by ``re-using'' vertices of the path system in
the sense that the vertices on level r+1 are updated after each iteration, and rules
are rechecked to see whether more can be applied. A boolean circuit is necessarily
acyclic and so the capability for reuse is absent. However, as at most nm iterations
are required, we can ``unfold'' the construction so that we obtain a polynomial-size
(in n) positive boolean circuit by replacing rules with gates:

v we replace any rule (:, ;, #) by a 7-gate with inputs : and ; and output #

v we add extra circuitry to ensure that once a gate takes the value 1 then all
``unfolded copies'' also take the value 1.

Note that by proceeding as above, the rules (:, ;, #) and (:$, ;$, #) would intro-
duce a 7-gate, corresponding to #, with more than 2 inputs, which would not be
what was intended. However, we can include extra circuitry, involving polynomially
many binary 6-gates, so that a collection of such path system rules can be modeled
in our circuit (analogously to how we handled the quantifier \ in the proof of
Proposition 2).

Consequently, the boolean circuit consists of essentially nm copies, stacked one
on top of the other, of the basic circuit corresponding to levels 0 through r+1 of
the path system P(S) (without the rules connecting levels 0 and r+1), with extra
circuitry added to join consecutive copies together (to cater for the rules connecting
levels 0 and r+1) and to ensure that corresponding gates in copies higher up the
circuit are set to 1 if the gate lower down is (that is, in the unfolding process every
vertex of P(S) on level r+1 corresponds to a gate in each of the nm circuit copies,
and if any one of these gates is set to 1 then all corresponding gates in higher copies
must be set to 1: this mimics the fact that in the computation of the least fixed
point, once X(u) holds, for some u # |S|m, then it holds henceforth). Just as with the
path system P(S), our positive boolean circuit can be defined using quantifier-free
first-order formulas, and the result follows. K

As any first-order formula can be evaluated in polynomial time, we clearly have
that BC+[qffo]�BC+[poly].

Proposition 6. BC+[poly]�ATM+[log].

Proof. The construction of a random-access ATM to evaluate a boolean circuit
is standard (see, for example, Theorem 4.4 of [3]). Beginning with the output gate,
the ATM M recursively verifies that the current gate g evaluates to 1 as follows:

v if g is a 6-gate then M guesses two gates, g1 and g2 , and verifies that they
are both input gates to g and that one of them evaluates to 1

157POSITIVE VERSIONS OF POLYNOMIAL TIME

v if g is a 7-gate then M guesses two gates, g1 and g2 , and verifies that they
are both input gates to g and that they both evaluate to 1

v if g is an input gate then M reads the corresponding input bit.

In order to verify that g1 and g2 are the input gates to g, the machine branches
universally: on one branch it proceeds under the assumption that, indeed, g1 and
g2 are the input gates to g, and on the other branch it tests whether they really are.
Since the sequence of circuits is polynomial-time uniform, and P=ATM[log], this
can be done in alternating log-space without reading any input bits. Also, since
every circuit is positive, only positive input information is required for acceptance,
and so we may use a positive ATM. K

Proposition 7. ATM+[log]�NauxPDM+[log].

Proof. Again, this is a standard construction. Let M be a positive random-
access alternating _-Turing machine. A positive NauxPDM N that simulates M
works as follows. To start with, N pushes M 's initial configuration onto its stack,
and then N repeatedly pops the topmost configuration I off its stack, copies it onto
its work tape and

v if I is a universal configuration then N generates I 's two successor configura-
tions and pushes them onto the top of the stack

v if I is an existential configuration then N guesses one of I 's successor
configurations and pushes it onto the top of the stack

v if I is a query configuration then N executes the query and rejects if the result
is 0: if the result is 1 and the stack is empty then N accepts, otherwise it proceeds
with the topmost configuration.

It is not hard to see that N accepts its input iff M does. K

Proposition 8. NauxPDM+[log]�LFP*[FO+
s].

Proof. The proof is based on the one given by Cook in [8] where it was shown
how a s(n)-space-bounded NauxPDM can be simulated by a 2O(s(n))-time-bounded
deterministic Turing machine.

Define a surface configuration of the positive NauxPDM N to be a configuration
in which only the topmost symbol of the pushdown store is represented. There are
only a polynomial number, in n, of surface configurations, for some given input
structure S of size n. A pair (c, d) of such surface configurations is called realizable
if on input S, N can move from c to d by a (partial) computation which never looks
at stack entries below the current top entry, and at the end of which the stack
has the same height as at the beginning. In particular, N accepts S iff (c0 , d0) is
realizable, where c0 (respectively, d0) is the start (respectively, unique accepting)
configuration (we assume that the stack is emptied before acceptance).

In [8], Cook proved that the set of realizable surface configuration pairs can be
defined inductively as follows:

158 LAUTEMANN, SCHWENTICK, AND STEWART

v every pair (c, c) is realizable

v if (c1 , d1) and (c2 , d2) are realizable then the pair (c1 , d3) is realizable if
either:

d1=c2 and N can move from d2 to d3 in one step, without moving the stack
head

or

d1 and d3 have the same pushdown symbol, and N can move from d1 to c2

in one step, pushing one symbol, and from d2 to d3 in one step, popping one
symbol.

It will be convenient for us to restrict the above definition to nonrejecting
configurations.

There is a polynomial number of different surface configurations and so we
can encode a surface configuration as a k-tuple, for some fixed k, over the input
-structure S, and define LFP*[FOs(<)]-formulas to describe properties of such
configurations: this is a standard construction (see, for example, [11] for details).
For instance, there is a formula ,0(x) that holds precisely for nonrejecting con-
figurations, where the configuration is represented using the k-tuple of variables x,
and for each arity a of a relation symbol in _, there is a formula �a(x, z), where
|z|=a, that holds for a surface configuration c, represented by the k-tuple x, and
where z=u # |S|a iff the contents of the query tape in the surface configuration c
encode u.

Now we can formalize the relations between surface configurations which are
needed to describe realizability as above. First, there are formulas ,start and ,halt ,
which define c0 and d0 , respectively. We also have a formula ,sym(x, y), where
|x|=|y|=k, that holds for a pair of (tuples representing) surface configurations
(c, d) iff c and d have the same pushdown symbol. Similarly, there exists a formula
,push (respectively, ,pop , ,nil) that holds for (c, d) iff c is not in the query state and
d is reached from c in one step involving a push (respectively, a pop, no stack
operation at all). All these relations between surface configurations are independent
of the input and can therefore be defined in LFP*[FOs(_<)].

The only situation in which the transition of N depends on the input is when N
is in the query state and the answer to the query is positive (remember, in case of
a negative answer, N enters the rejecting state). For each relation symbol R # _, of
arity a, the formula /R(x, y) # LFP*[FOs(_<)], where |x|=|y|=k, holds for (c, d)
iff c is a query configuration with state qR , and d is the same configuration but with
state q1 ; i.e., d is the successor configuration of c after a positive answer to the
query. The transition from c to d can now be described by the following formula
,R(x, y) # LFP*[FO+

s (_)]:

/R(x, y) 7_z(�a(x, z) 7 R(z)).

It is now straightforward to construct a formula of LFP*[FO+
s (_)] which tests

whether the pair (c0 , d0) is realizable. K

159POSITIVE VERSIONS OF POLYNOMIAL TIME

Proposition 9. LFP*[FO+
s]�DTM+[poly].

Proof. Let the problem 0 # LFP*[FO+
s] be defined by a sentence as in

Corollary 4. The positive DTM calculates the least fixed point by repeatedly
evaluating the least fixed point formula. For all internal calculations, the machine
uses symbols different from 0 and 1; except for the representation of the inter-
mediate stages of the least fixed point. Beginning with the empty relation, inter-
mediate stages of the least fixed point are stored as strings over [0, 1]. Here, a 1
is never changed to a 0, and since both the least fixed point relation symbol and
the relation symbols of the signature of the input structure appear only positively
in the formula, a 0 is never changed to 1 as a result of reading a 0. K

Proposition 10. DTM+[poly]�LFP*[FO+
s].

Proof. In the general (nonpositive) setting, the respective proof proceeds as
follows (see [11] or [21]). A nk-time-bounded computation of some DTM M
is encoded into several 2k-ary relations [R#

i : # a work tape symbol of M] and
[Ki : i=1, 2, ..., m, where m is the number of tapes of M] and k-ary relations [Qq: q
is a state of M]. These relations are amalgamated into one (2k+c)-ary relation, for
some c, which is ``filled in'' by an LFP-formula. Numbers between 0 and nk&1 are
encoded as k-tuples. The relations are such that:

v R#
i (t, x) holds iff after step t of the computation there is a symbol # at

position x of tape i

v Ki (t, x) holds iff after step t of the computation the head of tape i is
positioned at cell x

v Qq(t) holds iff after step t of the computation the state is q.

The first order part of the LFP-formula expresses the fact that the start
configuration will be in the least fixed point, and also that if the configuration at
time t is in the least fixed point then so is the configuration at time t+1. The only
part of the whole formula where negation occurs is where R0

0(0, x) is built from the
input relations (R0

0 describes the 0s on the input tape). Normally, the formula says
that (0, x) # R0

0 iff x is not in the corresponding input relation.
In the simulation of positive DTMs we modify this construction in the following

way: instead of a relation R0
0 we make use of a relation R0 6 1 which says that the

symbol at the position in question is a 0 or a 1. It is straightforward that with this
replacement an LFP-formula without any negations can then describe the computa-
tion. K

5. COMPLETE PROBLEMS FOR posP

In this section, we complete the proof of Theorem 1, and also prove that posP
has complete problems via positive quantifier-free projections.5 Positive quantifier-
free projections are restricted versions of first-order translations: they were defined

160 LAUTEMANN, SCHWENTICK, AND STEWART

5 Positive quantifier-free projections were called monotone quantifier-free projections in [27] and
[29] but in keeping with our philosophy in this paper we rename them.

in [27] and it was proved in [29] that PS is complete for (\PS)* [FO+
s] via

positive quantifier-free projections.
In more detail, let _=(R1 , R2 , ..., Rr , C1 , C2 , ..., Cc) and _$ be signatures, where

each Ri is a relation symbol of arity ai , and each Cj is a constant symbol. Let k
be some positive integer and let ,i (xi), �j (yj) # FOs(_$), where |x i |=kai , for
i=1, 2, ..., r, |yj |=k, for j=1, 2, ..., c, and, additionally, for every _$-structure S$
and for every j # [1, 2, ..., c], there exists exactly one u # |S$|k such that �S

j (u) holds.
Given any _$-structure S$, define the _-structure S as follows:

v |S|=|S$|k

v for each i=1, 2, ..., r and for each ui # |S| kai, RS
i (ui) holds iff ,S$

i (ui) holds
(here, we think of the kai -tuple ui as an ai -tuple of k-tuples)

v for each j=1, 2, ..., c, C S
j =u iff u # |S$| k is the unique k-tuple such that

�S$
j (u) holds.

Then S is the first-order translation of S$ w.r.t. [,1 , ,2 , ..., ,r , �1 , �2 , ..., �c]. We
say that some problem 0, over the signature _, is a first-order translation of
some problem 0$, over the signature _$, w.r.t. [,1 , ,2 , ..., ,r , �1 , �2 , ..., �c] if
for every _$-structure S$, S$ # 0$ iff the first-order translation S of S$ w.r.t.
[,1 , ,2 , ..., ,r , �1 , �2 , ..., �c] is in 0. We clearly also have the notion of a quan-
tifier-free translation.

A quantifier-free formula , # FOs(_) is a quantifier-free projection (see [22]) if ,
is of the form

(:1 7 ;1) 6 (:2 7 ;2) 6 } } } 6 (:m 7 ;m),

for some m, where each :i involves no relation symbol from _ (that is, only the rela-
tion symbol succ and the constant symbols from [0, max] _ _ appear), each ;i is
atomic or negated atomic; and for i{ j, :i and :j are mutually exclusive. Further,
, is a positive quantifier-free projection if each ;i is atomic. We clearly have the
notion of one problem being a (respectively, positive) quantifier-free projection of
another.

Proposition 11. There is a positive quantifier-free projection from PS to D3S.

Proof. Let the _3, 1, 1 -structure S be some path system of size n. If there exists
some vertex x such that US(x) 7 VS(x) holds then let \(S) be a clique of size at
least 4. Otherwise, define the graph \(S) as follows. The vertices of \(S) are
arranged into rows and columns with the rows numbered 0 to N=n4&1 (the rows
can be thought of as being indexed by the elements of |S|4) and the columns
numbered 0 to n&1. For each row i{0 and for each column j, there are vertices
ai, j , bi, j , ci, j , and di, j . For each column j of row 0, there is a vertex d0, j , and each
column j of row 0 such that US(j) holds, also contains vertices a0, j , b0, j , c0, j ,
and e0, j .

The edges of \(S) are of two types: the first depend only on n and the second
depend on the relation RS. The edges of the first type are as follows. For every row
i{0 and for every column j, there are edges as in Fig. 1a, and for every j # |S| such
that US(j) holds there are edges as in Fig. 1b.

161POSITIVE VERSIONS OF POLYNOMIAL TIME

FIG. 1. The component graphs of \(S).

Without loss of generality, we may assume that I=[x # |S| : cVS(x) holds]=
[0, 1, ..., p] and that J = [y # |S| : V S(y) holds] = [p+1, p+2, ..., n&1]. There
are edges

[(dN, i , bN, i+1): i=0, 1, ..., p&1] _ [(bN, i , dN, i+1): i= p+1, p+2, ..., n&2]

_ [(dN, p , dN, p+1)].

Finally, the vertices in any column are joined via for every row i{N and for every
column j, there is an edge (di, j , bi+1, j).

The edges of the second type are as follows. We write m=(h, i, j, k) if
(h, i, j, k) # |S| 4 corresponds to m # [0, 1, ..., N]. For every m # [0, 1, ..., N&1], set
m=(h, i, j, k) and:

v if RS(i, j, k) holds and i{ j{k{i then there is a new vertex such that this
new vertex is joined to am, i , am, j , and bm+1, k

v if RS(i, i, k) holds then there is an edge joining vertex am, i to vertex bm+1, k .

The graph \(S) can be pictured as in Fig. 2.
Suppose that \(S) has a subgraph H such that every vertex has degree at least

3. Note that for every row m{N, where m=(h, i, j, k):

v am+1, l # H iff either am, l # H or l=k, RS(i, j, k) holds and am, i and am, j are
both in H (it may be the case that i= j)

v if am, l # H then am+1, l # H.

Then (dN, p , dN, p+1) # H and consequently (bN, p+i , dN&1, p+i) is an edge of H,
for some i # [1, 2, ..., n&1& p]. Hence, vertex p+i is accessible in the path system
S (as d0, p+i has degree 1 in \(S)).

Conversely, suppose that some vertex p+i is accessible in the path system S.
Then applying the rules (0, 0, 0), (0, 0, 1), (0, 0, 2), ..., (n&1, n&1, n&2) in this
order (if they exist) and repeating this sequence of applications n&1 times will
certainly witness this fact. The structure of \(S) is such as to mimic this application
of rules (that is, row m=(h, i, j, k) corresponds to the hth application of rule
(i, j, k), if it exists), and so there is a subgraph of \(S) of degree at least 3. As \(S)
can clearly be defined in terms of S using a positive quantifier-free projection then
the result follows (see, for example, [29] for some descriptions of reductions as
(positive) quantifier-free projections). K

162 LAUTEMANN, SCHWENTICK, AND STEWART

FIG. 2. The graph \(S).

Proposition 12. D3S # DTM+[poly].

Proof. Let G be a graph with n vertices. The idea of the algorithm is to compute
subgraphs G0 , G1 , ..., Gn of G such that:

v G0=G

v Gi+1 is the subgraph of Gi induced by those vertices of Gi with degree at
least 3.

Clearly, G is in D3S iff Gn is not empty.
The positive DTM M successively computes strings |0 , |1 , ..., |n over [0, 1],

where the j th bit of |i is 1 iff vertex j is in Gi . M accepts G iff |n contains at least
one 1. This last stage is easily computed by a positive DTM (using the fact that an
out-tuple whose associated state is the accepting state is greater than or equal to,
in the ordering on out-tuples, any other out-tuple). Also, it is easy to compute |0

since it depends only on the length of the input.
We now describe how M computes |i+1 from |i . The input tape of M contains

the characteristic string of the adjacency matrix of G. M makes use of five addi-
tional tapes. Tape 1 contains |i and tape 2 is used for writing |i+1. From each of
the tapes 3, 4, and 5, only one single cell is needed. These cells c3 , c4 , and c5 are
used to count the number of neighbors of a given vertex up to the value 3.

The algorithm works as follows. For every j�n, M does the following. First, M
resets c3 , c4 , and c5 to 0, which signifies that no neighbors of vertex j have so far
been found. For every k�n, whenever (j, k) is an edge of G and both j and k are

163POSITIVE VERSIONS OF POLYNOMIAL TIME

vertices of Gi , one more of the cells c3 , c4 , and c5 is updated to 1 to signify this
fact, except that if 3 neighbors of vertex j have been found then no updating is
done. If, after all vertices have been tested, c3=c4=c5=1 then vertex j is included
in Gi+1 with this fact signified in |i+1 . Note that M must cycle through all
neighbors of j, even if j is not in Gi , as M is strongly oblivious. For the same
reason, for any vertex j, M must cycle through all remaining vertices even if 3
neighbors of j in Gi have already been found. K

As PS is complete for PS*[FO+
s] via positive quantifier-free projections [29],

Propositions 11 and 12 yield that D3S is complete for PS*[FO+
s] via positive

quantifier-free projections, and consequently Theorem 1 follows.
Let 0 be complete for posP via positive quantifier-free projections. In particular,

there is a positive quantifier-free projection from PS to 0. By [29], there is a quan-
tifier-free projection from any problem in P to PS, and as the notion of quantifier-
free projection is transitive [31], 0 must also be complete for P via quantifier-free
projections. Hence, any problem complete for posP via positive quantifier-free
projections is necessarily complete for P via quantifier-free projections.

Remark. Our positive DTM model seems to be able to characterize numerous
complexity classes. For example, for all deterministic space classes CC above LIN
(the class of problems accepted by a linear-space DTM), it characterizes exactly the
monotone problems in CC. To see this, given an input string | of length n, cycle
through all strings of length n, using symbols different from 0 and 1, and accept
whenever the original machine accepts a string |$�|. Also, Grigni [16] observed
that for L, our model characterizes the class monL as it was defined in [18], hence
solving an open problem posed in [17].

6. SOME LOGICAL CONSEQUENCES

The proof of Proposition 2 yields further results regarding logical definability,
especially in the absence of a built-in successor relation; but first let us derive
another complete problem for posP via positive quantifier-free projections. Let the
signature _pcv be defined as _pc _ (M) , where M is a unary relation symbol, and
let S be some _pcv -structure of size n which encodes a positive boolean circuit, with
a unique output gate (see Section 2), together with an input string from [0, 1]n via
MS(i) holds iff the input value associated with gate i is a 1 (if gate i is not an input
gate then this information is inconsequential). We would like to define the positive
circuit value problem as

[S # STRUCT(_pcv): the positive boolean circuit encoded by S accepts

the input string encoded by MS]

(this problem was first shown to be complete for P via logspace reductions by
Goldschlager [14]). However, this problem, as defined, is not monotone. Hence,
our version of the positive circuit value problem, PCVP, is

164 LAUTEMANN, SCHWENTICK, AND STEWART

[S # STRUCT(_pcv): the positive boolean circuit encoded by S accepts

the input string encoded by MS]

_ [S # STRUCT(_pcv): S does not encode a positive boolean circuit].

The problem PCVP is monotone and can be defined in LFP1[FO+
s].

Corollary 13. The problem PCVP is complete for posP via positive quantifier-
free projections.

Proof. The result follows by Theorem 1, Corollary 4, the proof of Proposition
5, and the observation that the formulas defining the circuits in the proof of
Proposition 5 can be made positive quantifier-free projections. K

Corollary 13 strengthens Goldschlager's result [14] mentioned earlier (note also
that the more preferable, but nonmonotone, version of PCVP is hard for posP via
positive quantifier-free projections, and complete for P via quantifier-free projec-
tions).

As remarked above, of more interest to us is the proof of Proposition 2 in the
absence of a built-in successor relation. In the original proof, the successor relation
is used to cater for the quantifier Qi=\. Consequently, in the absence of a built-in
successor relation we obtain weaker results. For any logic L, let _L denote its
existential fragment.

Corollary 14. _LFP*[FO+]=_LFP1[FO+]=_PS1[FO+] =_PS*[FO+],
and PS is complete for _LFP*[FO+] via positive quantifier-free projections without
successor (moreover, there is an analogous result with the superscript + and the word
``positive'' omitted throughout). However, PS is not complete for LFP*[FO] via
quantifier-free translations without successor, and consequently PS is not complete for
LFP*[FO+] via positive quantifier-free translations without successor.

Proof. Let 8 be as in the proof of Proposition 2 except that , # FO+(_ _ [X])
and each Qi=_. The proof of Proposition 2 can easily be amended to work without
using a built-in successor relation and the constants 0 and max (note that 0 and
max are used simply to denote two distinct elements of a structure). Hence,
_LFP1[FO+]�_LFP*[FO+]�_PS*[FO+].

Consider the proof of Theorem 4.2 in [29]. In particular, the proof of Case (iv)
holds in the absence of a built-in successor relation and the constants 0 and max,
and consequently _PS*[FO+]�_PS1[FO+]�_LFP1[FO+] (the latter inclu-
sion follows by Lemma 3).

The fact that the problem PS is complete for _LFP*[FO+] via positive quan-
tifier-free projections without successor, i.e., where a built-in successor relation and
the constant symbols 0 and max are not used, follows from the observation that the
proof of Theorem 4.2 of [29] goes through in the absence of a built-in successor
relation for every case apart from Case (iii), and additionally for the case where the
formula 8 (in the proof of Theorem 4.2 of [29]) is of the form 8#81 7 82 .

Note that every sentence of _LFP*[FO] is preserved under extensions [4],
which is patently not true for LFP*[FO], and so the result follows. K

165POSITIVE VERSIONS OF POLYNOMIAL TIME

The study of the existential fragment of least-fixed point logic, _LFP*[FO], was
initiated in [4] and has since been studied by Grohe [19]. In [19], a complete
problem for _LFP*[FO] via quantifier-free translations was derived. Our complete
problem, PS, is a much more ``natural'' complete problem than that presented
in [19].

Let us now turn to possible analogues of Corollary 5 in the absence of a built-in
successor relation. In order to transform the construction in the proof of Proposi-
tion 2 into one yielding a boolean circuit rather than a formula of PS*[FO+

s],
among other things we unfolded the path system. This unfolding seems to require
the use of a built-in successor relation. So, not only do we have to get by without
using the successor relation in the proof of Proposition 2, which, as remarked
above, we have failed to do, we must also be able to unfold without using
the successor relation (note that the transformation from a formula to a boolean
circuit uses the successor relation to cope with both existential and universal
quantifiers).

Suppose we relax our definition of a boolean circuit to allow unbounded fan-in
for our gates. Then clearly in this model we can dispense with the successor relation
to cope with both existential and universal quantifiers; but this still leaves unfolding.
For obvious reasons, acyclicity is necessary for general boolean circuits. When
dealing with positive boolean circuits, however, these circuits need not be acyclic so
long as we define that a gate is initialized at the start of the computation as having
the value 0: let us refer to such circuits as cyclic.

Consider the signature _ps=(G7 , G6 , G0 , G1 , I, in) , where all symbols are
unary relation symbols except for in which is a relation symbol of arity 2. A positive
unbounded fan-in cyclic circuit can be equated with a structure S over _ps as before
except that inS(x, y) holds iff gate x is an input to gate y. Also, as before, we extend
_ps to cater for which bits of some input structure are associated with which input
gates, and we define _psv by including the extra relation symbol M of arity 1 in _ps

so as to consider positive unbounded fan-in cyclic circuits together with input
assignments. We define the positive unbounded fan-in cyclic circuit value problem,
PUSCVP, as

[S # STRUCT(_psv): the positive unbounded fan-in cyclic circuit

encoded by S accepts the input encoded by MS].

Note that PUSCVP is not monotone, and that the trick applied to ``monotonize''
PCVP does not work here.

Nonpositive cyclic circuits actually make sense if we insist that any input to any
c-gate must be an input gate. We equate (nonpositive) cyclic circuits with struc-
tures over the signature _s=_ps _ (Gc), where Gc is a unary relation symbol, via
GS

c (x) holds iff gate x is a c-gate, and for any c-gate y, inS(x, y) holds iff gate
x is the input to gate y. The signature _s is extended to cater for which bits of some
input stucture are associated with which input gates, as before, and the signature
_sv and the unbounded fan-in cyclic circuit value problem, USCVP, are defined as
expected.

166 LAUTEMANN, SCHWENTICK, AND STEWART

Corollary 15. (i) Any problem in LFP*[FO] (respectively, LFP*[FO+])
can be recognized by a quantifier-free-uniform sequence [Cn] of polynomial-size
unbounded fan-in (respectively, positive) cyclic circuits.

(ii) The problem PUSCVP is hard for LFP*[FO+] via positive quantifier-free
projections without successor, and the problem USCVP is complete for LFP*[FO]
via quantifier-free projections without successor.

Proof. By [21], any formula of LFP*[FO] is logically equivalent to a sentence
of the form

LFP[*x, X, ,(x, X)](y),

where |x|=|y|=k; X is a relation symbol of arity k not in the underlying signature,
and , # FO. Hence, the result follows by Corollary 14, Lemma 3, and by proceeding
as in Proposition 5. K

The result that the problem USCVP is complete for LFP*[FO] via quantifier-
free translations without successor was independently proven by Imhof [20].

We can also characterize the logic LFP*[FO] (respectively, LFP*[FO+]) in
terms of Petri nets as opposed to (respectively, positive) cyclic circuits. For us, a
Petri net is a finite set of places P together with a (disjoint) finite set of transitions
T. Each transition t # T has an associated set of input places in(t) and an associated
set of output places out(t). A marking of a Petri net is an assignment m of a natural
number to every place, and a marking is unary if all natural numbers assigned are
either 0 or 1. A transition t # T is enabled for some marking m if m(p)>0, for every
p # in(t). If the transition t is enabled for the marking m then t can occur, and if t
occurs then the resulting marking m$(p) is given by:

v m(p)&1, if p # in(t)"out(t)

v m(p)+1, if p # out(t)"in(t)

v m(p), otherwise,

for every place p. The coverability problem for Petri nets is defined as follows:
given a Petri net and two markings m1 and m2 , is there a finite occurrence sequence
(i.e., a sequence of transition occurrences) so that starting at the marking m1 the
Petri net reaches a marking m3 for which m3�m2 ; that is, m3(p)�m2(p), for all
places p? (A general reference for Petri nets is [26].)

We also insist that our Petri nets are such that every input place of every trans-
ition is also an output place: let us call these Petri nets all-in-out Petri nets. Define
the signature _p=(in, out, Mi , Mo) , where in and out are relation symbols of arity
2 and Mi and Mo are relation symbols of arity 1. We can equate any all-in-out Petri
net, together with two unary markings, with a structure S, of size n, over _p via the
set of places is [0, 1, ..., n&1], the set of transitions is also [0, 1, ..., n&1], inS(p, t)
holds iff the place p is an input place of transition t, outS(p, t) holds iff the place
p is an output place of transition t, and the markings Mi and Mo are defined
via Mi (p)=1 (respectively, 0) iff M S

i (p) (respectively, cM S
i (p)) holds, with Mo

167POSITIVE VERSIONS OF POLYNOMIAL TIME

defined similarly. The unary coverability problem for all-in-out Petri nets, UCPAPN,
is defined as:

[S # STRUCT(_p): S defines an all-in-out Petri net of size n and the unary

marking Mo is coverable from the unary marking Mi].

Again, note that this problem is not monotone, nor can it be ``monotonized'' as
before. The following result is immediate from Corollary 15.

Corollary 16. The problem UCPAPN is hard for LFP*[FO+] via positive
quantifier-free projections without successor, and complete for LFP*[FO] via quan-
tifier-free projections without successor. K

While Corollary 16 follows trivially from Corollary 15, so trivially in fact that
one might be tempted to omit it, we prefer to include it so as to provoke further
examinations of Petri nets within the logical framework.

Originally, Dahlhaus [10] showed that LFP*[FO] has a complete problem
via quantifier-free translations: the problem involves playing games on structures.
Also, Grohe [19] exhibited a complete problem for LFP*[FO] via quantifier-free
translations: his problem mirrors the construction of the least fixed point relation.
Our completeness results do not rely on those of Dahlhaus and Grohe, and
both Dahlhaus' and Grohe's problems are less natural than ours (PSCVP and
UCPAPN): moreover, we show completeness via (the more restricted) quantifier-
free projections without successor. We have been unable to exhibit a complete
problem for LFP*[FO+] via positive quantifier-free projections without successor
(or even via any less restricted logical reductions) and we leave this as an open
problem.

Finally, let us consider how we might bridge the gap from posP to P & mono. We
have failed to capture P & mono by making known characterizations of P positive.
However, this does not rule out the existence of a syntactic definition of P & mono.
Since BPM, the (monotone) problem of deciding whether a bipartite graph has a
perfect matching, is not contained in posP, a natural contender for such a definition
is the extension of FO+

s by the operator BPM, BPM*[FO+
s]. Clearly,

BPM*[FO+
s] defines a subclass of P & mono. However, since BPM is in RNC

(see [24]) and RNC is closed under positive first-order translations, it seems
unlikely that BPM*[FO+

s] contains any P-complete problems, such as PS. Thus
BPM*[FO+

s] is unlikely to contain posP. On the other hand, BPM*[FO+
s]

contains posNL, which we define here as the positive fragment of transitive closure
logic (see [11, 22]).

Proposition 17. TC*[FO+
s]�BPM*[FO+

s].

Proof. We show that CONN, the class of all directed graphs on the vertices
[0, 1, ..., n&1] in which there is a path from u to v, can be reduced to BPM by
a positive quantifier-free projection.

Let G be a directed graph on V=[0, 1, ..., n&1]. Construct a bipartite graph H
as follows:

168 LAUTEMANN, SCHWENTICK, AND STEWART

v for every vertex x{u, v of G, H has two vertices, xin , xout , which are
connected by an edge

v for x=u, H contains only uout , and for x=v only vin

v for every directed edge (x, y) in G, H has an edge (xout , yin).

Clearly, this construction can be described by a positive quantifier-free projec-
tion.

Assume that (u=x0, x1), (x1, x2), ..., (xr, xr+1=v) is a path in G. Then the
set [(x i

out , x i+1
in): i=0, 1, ..., r] _ [(xin , xout) : x # V"[x0 , x1 , ..., xr+1]] is a perfect

matching of H. On the other hand, if M is a perfect matching of H, then the set
[(x, y) : (xout , yin) # M] contains a path from u to v in G. K

Received December 9, 1996; final manuscript received April 23, 1998

REFERENCES

1. Ajtai M., and Gurevich, Y. (1987), Monotone versus positive, J. Assoc. Comput. Mach. 34,
1004�1015.

2. Anderson, A., and Mayr, E. (1984), A P-complete problem and approximations to it, Stanford
University Tech. Rep. STAN-CS-84-1014.

3. Balca� zar, J., D@� az, J., and Gabarro� , J. (1992), ``Structural Complexity,'' Vol. II, Springer-Verlag,
Berlin.

4. Blass, A., and Gurevich, Y. (1987), Existential fixed-point logic, in ``Lecture Notes in Computer
Science,'' Vol. 270, pp. 20�36, Springer-Verlag, Berlin.

5. Boppana, R. B., and Sipser, M. (1990), The complexity of finite functions, in ``Handbook of
Theoretical Computer Science'' Vol. A (J. van Leeuwen, Ed.), pp. 757�804, Elsevier, Amsterdam.

6. Borodin, A. (1977), On relating time and space to size and depth, SIAM J. Comput. 6, 733�744.

7. Chandra, A. K., Kozen, D. C., and Stockmeyer, L. J. (1981), Alternation, J. Assoc. Comput. Mach.
28, 114�133.

8. Cook, S. A. (1971), Characterizations of pushdown machines in terms of time-bounded computers,
J. Assoc. Comput. Mach. 18, 4�18.

9. Cook, S. A. (1974), An observation on time-storage trade off, J. Comput. System Sci. 9, 308�316.

10. Dahlhaus, E. (1987), Skolem normal forms concerning the least fixed point, in ``Lecture Notes in
Computer Science,'' Vol. 270, Springer-Verlag, Berlin.

11. Ebbinghaus, H. D., and Flum, J. (1995), ``Finite Model Theory,'' Springer-Verlag, Berlin.

12. Garey, M. R., and Johnson, D. S. (1979), ``Computers and Intractability: A Guide to the Theory of
NP-Completeness,'' Freeman, New York.

13. Greenlaw, R., Hoover, H. J., and Ruzzo, W. L. (1995), ``Limits to Parallel Computation,'' Oxford
Univ. Press, London.

14. Goldschlager, L. M. (1977), The monotone and planar circuit value problems are log space complete
for P, SIGACT News 9, 25�29.

15. Gottlob, G. (1995), Relativized logspace and generalized quantifiers over finite structures, in ``Proc.
10th Ann. IEEE Symp. on Logic in Computer Science,'' pp. 65�78.

16. Grigni, M. (1996), Personal communication.

17. Grigni, M., and Sipser, M. (1992), Monotone complexity, in ``Boolean Function Complexity''
(M. S. Paterson, Ed.), pp. 57�75, Cambridge Univ. Press, Cambridge, UK.

18. Grigni, M., and Sipser, M. (1995), Monotone separation of logarithmic space from logarithmic
depth, J. Comput. System Sci. 50, 433�437.

169POSITIVE VERSIONS OF POLYNOMIAL TIME

19. Grohe, M. (1994), ``The Structure of Fixed-Point Logics,'' Ph.D. thesis, Albert-Ludwigs Universita� t,
Freiburg i. Br.

20. Imhof, H. (1996), ``Fixed Points Logics and Generalized Quantifiers in Descriptive Complexity,''
Ph.D. thesis, Albert-Ludwigs Universita� t, Freiburg i. Br.

21. Immerman, N. (1986), Relational queries computable in polynomial time, Inform. and Control 68,
86�104.

22. Immerman, N. (1987), Languages which capture complexity classes, SIAM J. Comput. 16, 760�778.

23. Immerman, N. (1988), Nondeterministic space is closed under complementation, SIAM J. Comput.
17, 935�938.

24. Papadimitriou, C. H. (1994), ``Computational Complexity,'' Addison�Wesley, Reading, MA.

25. Razborov, A. A. (1985), A lower bound on the monotone network complexity of the logical perma-
nent, Mat. Zametki 37, 887�900. [In Russian. English translation in 1985, Math. Notes 37,
485�493].

26. Reisig, W. (1985), Petri nets, in ``EATCS Monographs on Theoretical Computer Science,'' Vol. 4,
Springer-Verlag, Berlin.

27. Stewart, I. A. (1991), Complete problems involving boolean labelled structures and projection trans-
lations, J. Logic Computat. 1, 861�882.

28. Stewart, I. A. (1992), Using the Hamiltonian path operator to capture NP, J. Comput. System Sci.
45, 127�151.

29. Stewart, I. A. (1994), Logical description of monotone NP problems, J. Logic Computat. 4, 337�357.

30. Stewart, I. A. (1994), Context-sensitive transitive closure operators, Ann. Pure App. Logic 66,
277�301.

31. Stewart, I. A. (1995), Completeness of path problems via logical reductions, Inform. Computat. 121,
123�134.

32. Stolboushkin, A. (1995), Finite monotone properties, in ``Proc. 10th Ann. IEEE Symp. on Logic in
Computer Science,'' pp. 324�330.

33. Szelepcse� nyi, R. (1988), The method of forced enumeration for nondeterministic automata, Acta
Informat. 26, 279�284.

34. Vardi, M. Y. (1982), The complexity of relational query languages, in ``Proc. 14th Ann. ACM Symp.
on Theory of Computing,'' pp. 137�146.

170 LAUTEMANN, SCHWENTICK, AND STEWART

