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Abstract

We calculate the corrections to the fine structure constant in the spacetime of a cosmic string. These corrections stem from the g
uncertainty principle. In the absence of a cosmic string our result here is in agreement with our previous result.
 2005 Elsevier B.V.Open access under CC BY license.
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The gravitational properties of cosmic strings are strikin
different from those of nonrelativistic linear distributions
matter. To explain the origin of the difference, we note that
a static matter distribution with energy–momentum tensor,

(1)T µ
ν = diag

(
ρ,−p1

c2
,−p2

c2
,−p3

c2

)
,

the Newtonian limit of the Einstein equations becomes

(2)∇2Φ = 4πG ρ

(
+ p1 + p2 + p3

c2

)
,

whereΦ is the gravitational potential. For nonrelativistic ma
ter, pi � ρc2 and∇2Φ = 4πGρ. Strings, on the other hand
have a large longitudinal tension. For a straight string pa
lel to the z-axis, p3 = −ρc2, with p1 and p2 vanish when
averaged over the string cross-section. Hence, the right-
side of (2) vanishes, suggesting that straight strings prod
no gravitational force on surrounding matter. This conclus
is confirmed by a full general-relativistic analysis. Another f
ture distinguishing cosmic strings from more familiar source
their relativistic motion. As a result, oscillating loops of stri
can be strong emitters of gravitational radiation.

The analysis in this Letter is based on thin-string and we
gravity approximations. The metric of a static straight str
lying along thez-axis in cylindrical coordinates(t, z, ρ,φ) is
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given by1

(3)ds2 = c dt2 2 − dz2 − (1− h) dρ
( 2 + ρ dφ ,2 2)

whereG is Newton’s gravitational constant,µ the string mass
per unit length and

(4)h = 8Gµ

c2
ln

(
ρ

ρ̂

)
.

Introducing a new radial coordinateρ′ as

(5)(1− h)ρ2 =
(

1− 8Gµ

c2

)
ρ ,′2

we obtain to linear order inGµ

c2 ,

(6)ds2 = c dt2 2 − dz2 − dρ′2 −
(

1− 8Gµ

c2

)
ρ dφ .′2 2

Finally, with a new angular coordinate

(7)φ′ =
(

1− 4Gµ

c2

)
φ,

the metric takes a Minkowskian form

(8)ds2 = c dt2 2 − dz2 − dρ′2 − ρ dφ .′2 ′2

1 We use the notation(t, z, ρ,φ) for cylindrical coordinates and(t, r, θ,φ)

for spherical coordinates. Here the mks units have been used.
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So, the geometry around a straight cosmic string is locally id
tical to that of flat spacetime. This geometry, however is
globally Euclidean since the angleφ′ varies in the range

(9)0� φ′ < 2π

(
1− 4Gµ

c2

)
.

Hence, the effect of the string is to introduce an azimu
“deficit angle”

(10)∆ = 8πGµ

c2
,

implying that a surface of constantt andz has the geometry o
a cone rather than that of a plane[1].

As shown above, the metric(6) can be transformed to a fla
metric(8) so there is no gravitational potential in the space o
side the string. But there is a delta-function curvature at
core of the cosmic string which has a global effect-the de
angle(10).

The dimensionless parameterGµ

c2 plays an important role
in the physics of cosmic strings. In the weak-field appro
mation Gµ

c2 � 1. The string scenario for galaxy formation r

quires Gµ

c2 ∼ 10−6 while observations constrainGµ

c2 to be less

than 10−5 [1].
Linet in [2] has shown that the electrostatic field of a char

particle is distorted by the cosmic string. For a test char
particle in the presence of a cosmic string the electrostatic
force is repulsive and is perpendicular to the cosmic string ly
along thez-axis2

(11)f ρ � π

4

Gµ

c2

e2

4πε0ρ
2
0

,

wheref ρ is the component of the electrostatic self-force alo
theρ-axis in cylindrical coordinates andρ0 is the distance be
tween the electron and the cosmic string.

For the Bohr’s atom in the absence of a cosmic string,
electrostatic force between an electron and a proton is give
Coulomb law

(12)�F = −e2

4πε0r2
r̂ .

As discussed in[3–5], to obtain the fine structure consta
in the spacetime of a cosmic string we assume that the pr
located on the cosmic string lying along thez-axis. We also
assume that the proton located in the origin of the cylindr
coordinates and the electron located atρ = ρ0, z = 0 andφ = 0.
This means that the electron and the proton are in the p
orthogonal to the cosmic string.

To calculate the Bohr radius in the spacetime of a cos
string we consider a Bohr’s atom in the presence of a cos

2 Linet in [2] has used the mks units and in Eqs. (15) and (16) of[2] has

obtainedf z = f φ = 0 and

f ρ ∼
(

2.5

π

)(
Gµ

c2

)(
q2

4πε0ρ2
0

)

whenµ → 0. Indeed we can put the fraction2.5
π to be approximately equa

to π
4 . With this substitution we obtain(11) of this Letter.
-
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string. For a Bohr’s atom in the spacetime of a cosmic str
we take into account the sum of two forces, i.e., the electros
force for Bohr’s atom in the absence of a cosmic string, gi
by Eq. (12), plus the electrostatic self-force of the electron
the presence of a cosmic string. Because we assume th
proton located at the origin of the cylindrical coordinates a
on the cosmic string and also the plane of electron and pr
is perpendicular to the cosmic string lying along thez-axis, the
induced electrostatic self-force and the Coulomb force ar
the same direction, i.e., the direction of theρ-axis in cylindrical
coordinates. Therefore, we can sum these two forces

(13)�Ftot =
(

− e2

4πε0ρ
2
0

+ π

4

Gµ

c2

e2

4πε0ρ
2
0

)
ρ̂.

It can be easily shown that this force has negative value a
an attractive force (πGµ

4c2 < 1).
The numerical value of Bohr radius in the spacetime o

cosmic string can be computed by(13). Using Newton’s second
law, we obtain

(14)
mv2

ρ0
= p2

mρ0
= e2

4πε0ρ
2
0

− π

4

Gµ

c2

e2

4πε0ρ
2
0

,

wherem is the mass of the electron. Canceling oneρ0 and re-
arranging gives

(15)p2 = me2

4πε0ρ0

(
1− π

4

Gµ

c2

)
.

There is a relationship between the radius and the momen

(16)ρnpn = nh̄.

The product of the radius and the momentum in the left-h
side of(16) is the angular momentum. According to Bohr’s h
pothesis, the angular momentumL is quantized in units of̄h.
This means that

(17)Ln = nh̄.

Substituting(16) into (15)gives

(18)

(
nh̄

ρn

)2

= me2

4πε0ρn

(
1− π

4

Gµ

c2

)
,

or

(19)ρn = 4πε0n
2h̄2

me2(1− π
4

Gµ

c2 )
.

This equation obtains the radius of thenth Bohr orbit of the hy-
drogen atom in the presence of a cosmic string. In the abs
of a cosmic string, the lowest orbit (n = 1) has a special nam
and symbol: the Bohr radius

(20)aB ≡ 4πε0h̄
2

me2
= 5.29× 10−11 m.

Using (19), the Bohr radiusâB in the presence of a cosm
string is

(21)âB ≡ 4πε0h̄
2

me2(1− π
4

Gµ

c2 )
.
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From(20) and (21)we obtain

(22)
aB

âB

=
(

1− π

4

Gµ

c2

)
.

In the limit µ → 0, i.e., in the absence of a cosmic strin
aB/âB → 1. InsertingGµ

c2 � 10−6 we obtain

(23)âB = aB

(1− π
4 × 10−6)

.

This means that the presence of a cosmic string causes the
of the Bohr radius increases (âB > aB ).

Our aim is now to obtain the effective Planck constantˆ̄heff
in the spacetime of a cosmic string by using the general
uncertainty principle. In doing so, we use the modified B
radius,âB , in the presence of a cosmic string.

The general form of the generalized uncertainty principle

(24)	xi � h̄

	pi

+ β̂2L2
P

	pi

h̄
,

where β̂ is a dimensionless constant of order one andLP =
(h̄G/c3)1/2 is the Planck length. In the casêβ = 0, (24) reads
the standard Heisenberg uncertainty principle

(25)	xi	pj � h̄δij , i, j = 1,2,3.

There are many derivations of the generalized uncertainty p
ciple, some heuristic and some more rigorous. Eq.(24) can
be derived in the context of string theory and noncomm
tive quantum mechanics. The exact value ofβ̂ depends on the
specific model. The second term in the right-hand side of(24)
becomes effective when momentum and length scales are o
order of the Planck mass and of the Planck length, respecti
This limit is usually called quantum regime. From(24)we solve
for the momentum uncertainty in terms of the distance un
tainty, which we again take to be the radius of the first B
orbit. Therefore we are led to the following momentum unc
tainty

(26)
	pi

h̄
= 	xi

2β̂2L2
P

(
1−

√√√√1− 4β̂2L2
P

	x2
i

)
.

The maximum uncertainty in the position of an electron in
ground state in hydrogen atom is equal to the radius of the
Bohr radius,aB . In the spacetime of a cosmic string, the ma
imum uncertainty in the position of an electron in the grou
state is equal to the modified radius of the first Bohr radius,âB ,
see(21).

Recalling the standard uncertainty principle	xi	pi � h̄,
we define an “effective” Planck constant	xi	pi � h̄eff.
From(24), we can write

(27)	xi	pi � h̄

[
1+ β̂2L2

P

(
	pi

h̄

)2]
.

So we can generally define the effective Planck constant f
the generalized uncertainty principle

(28)h̄eff ≡ h̄

[
1+ β̂2L2

P

(
	pi

)2]
.

h̄
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-
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Inserting

(29)	xi = âB = aB

(1− π
4

Gµ

c2 )
,

in (26)and using(28)give us the effective Planck constant,ˆ̄heff,
in the spacetime of a cosmic string

(30)ˆ̄heff = h̄

[
1+ â2

B

4β̂2L2
P

(
1−

√√√√1− 4β̂2L2
P

â2
B

)2]
.

From(21) andMP = (h̄c/G)1/2 which is the Planck mass, w
have

(31)
LP

âB

= me2(1− π
4

Gµ

c2 )

4πε0M
3
P G

� 1.

Using m = 9.11 × 10−31 kg, e = 1.6 × 10−19 C, c =
3.00× 108 ms−1, ε0 = 8.85× 10−12 C2 N−1 m−2, G = 6.67×
10−11 m3 s−2 kg−1 andMP = 2.1768× 10−8 kg we obtain the

value of LP

âB
� 10−33

10−9 � 10−24 is much less than one, we ca
expand(30). Therefore we have

(32)ˆ̄heff � h̄

[
1+ β̂2

(
me2(1− π

4
Gµ

c2 )

4πε0M
3
P G

)2]
.

So the effect of the generalized uncertainty principle in the p
ence of a cosmic string can be taken into account by usingˆ̄heff
instead ofh̄. In the absence of a cosmic string, i.e.,µ → 0,
Eq. (32) leads us to our previous result in[6]. In Ref. [3], we
obtained the fine structure constant,α̂, in the spacetime of a
cosmic string

(33)α̂ = α

(
1− π

4

Gµ

c2

)
,

whereα is the fine structure constant,α = e2

4πε0h̄c
. Substituting

the effective Planck constantˆ̄heff from (32) into (33) we obtain
the effective and corrected fine structure constant in the p
ence of a cosmic string by using the generalized uncerta
principle

(34)α̂eff = e2

4πε0 ˆ̄heffc

(
1− π

4

Gµ

c2

)
.

From(32) and (34)one can obtain

α̂eff �
(

e2

4πε0h̄c
− π

4

Gµ

c2

e2

4πε0h̄c

)

(35)×
[
1− β̂2

(
me2(1− π

4
Gµ

c2 )

4πε0M
3
P G

)2]
.

This equation can be rewritten

α̂eff �
(

e2

4πε0h̄c
− π

4

Gµ

c2

e2

4πε0h̄c

)

(36)

×
[
1− β̂2 × 9.30× 10−50

(
1− 2× π

4
× 10−6

)]
,
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where we used(1− π
4

Gµ

c2 )2 � (1− 2× π
4

Gµ

c2 ) and Gµ

c2 ∼ 10−6.
From(33) and (36)we conclude

(37)α̂eff � α̂

[
1− β̂2 × 9.30× 10−50

(
1− 2× π

4
× 10−6

)]
.

This equation shows the corrections to the fine structure
stant in the spacetime of a cosmic string from the general
uncertainty principle. In the absence of a cosmic string the
pression inside the parenthesis in the right-hand side of(37) is
equal to one and we are led to our previous result in[6]. In other
words, in the absence of a cosmic string our result here, g
by (37), is in agreement with our previous result in[6].
-
d
-
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