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Abstract

We calculate the corrections to the fine structure constant in the spacetime of a cosmic string. These corrections stem from the general
uncertainty principle. In the absence of a cosmic string our result here is in agreement with our previous result.
0 2005 Elsevier B.VOpen access under CC BY license

The gravitational properties of cosmic strings are strikinglygiven by
different from those of nonrelativistic linear distributions of s oo 5 ) s o
matter. To explain the origin of the difference, we note that fords” = ¢“dt* —dz* — (1 — h)(dp” + p* d¢°), 3

a static matter distribution with energy—momentum tensor, whereG is Newton's gravitational constant, the string mass

_ pL p2 p3 per unit length and
Tv/":dlag(p,——z,——z,——2>, (1)
c c c 8G

_— o . h="2mn(%). @

the Newtonian limit of the Einstein equations becomes 2 0
Introducing a new radial coordinajg as
V2®=4nG<p+pl+p22+p3> 2 g
‘ A—mp?=(1- 8912 (5)

where® is the gravitational potential. For nonrelativistic mat- r= c? P

ter, p; < pc? and V?® = 4w Gp. Strings, on the other hand, S _

have a large longitudinal tension. For a straight string paralWe obtain to linear order ”ECTM’

lel to the z-axis, p3 = —pc?, with p; and p, vanish when 8G

averaged over the string cross-section. Hence, the right-hangl? = ¢2 41?2 — dz% — dp’? — (1 - _2“),0’2 de?. (6)
side of (2) vanishes, suggesting that straight strings produce ¢

no gravitational force on surrounding matter. This conclusiorFinally, with a new angular coordinate

is confirmed by a full general-relativistic analysis. Another fea-

ture distinguishing cosmic strings from more familiar sources is¢/ _ (1 _ ‘K;_ﬂ>¢ @)
their relativistic motion. As a result, oscillating loops of string c? ’
can be strong emitters of gravitational radiation. the metric takes a Minkowskian form
The analysis in this Letter is based on thin-string and weak-
gravity approximations. The metric of a static straight stringds? = ¢?di? — dz> — dp’? — p'?d¢’>. (8)

lying along thez-axis in cylindrical coordinateg, z, p, ¢) is

1 We use the notatiox, z, p, ¢) for cylindrical coordinates and, r, 6, ¢)
E-mail address: nasseri@fastmail.fr(F. Nasseri). for spherical coordinates. Here the mks units have been used.
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So, the geometry around a straight cosmic string is locally idenstring. For a Bohr’s atom in the spacetime of a cosmic string,
tical to that of flat spacetime. This geometry, however is nowe take into account the sum of two forces, i.e., the electrostatic

globally Euclidean since the ang}¢ varies in the range force for Bohr’'s atom in the absence of a cosmic string, given
4G by Eq.(12), plus the electrostatic self-force of the electron in
0<¢' <2n (1— —2) (9) the presence of a cosmic string. Because we assume that the
C

o _ _ proton located at the origin of the cylindrical coordinates and
Hence, the effect of the string is to introduce an azimuthabn the cosmic string and also the plane of electron and proton

“deficit angle” is perpendicular to the cosmic string lying along thaxis, the
8TGu induced electrostatic self-force and the Coulomb force are at
A= 2 (10) the same direction, i.e., the direction of thexis in cylindrical

implying that a surface of constantindz has the geometry of coordinates. Therefore, we can sum these two forces

a cone rather than that of a plajig. 5 e? TGu €? .

As shown above, the metr{6) can be transformed to a flat Frot= < ) )
metric(8) so there is no gravitational potential in the space out- , i ) ,
side the string. But there is a delta-function curvature at thdt can be easily shown that this force has negative value and is

. Gu
core of the cosmic string which has a global effect-the defici@h attractive forcef 7= < 1). o _
angle(10). The numerical value of Bohr radius in the spacetime of a

cosmic string can be computed #8). Using Newton’s second
law, we obtain

— ToR_¢ 13
47reo,o§ 4 c? 47'[60,08 (13)

The dimensionless parameté:% plays an important role
in the physics of cosmic strings. In the weak-field approxi-

mation % < 1. The string scenario for galaxy formation re- ;2 p2 e TG €2 14
quires % ~ 10-® while observations constraifif: to be less  po  mpo  4regp? 4 2 dmeop? (14)
5

than_ 10_ [1]. o wherem is the mass of the electron. Canceling gneand re-
Linetin[2] has shown that the electrostatic field of a Chargedarranging gives

particle is distorted by the cosmic string. For a test charged

particle in the presence of a cosmic string the electrostatic self-o me? o @ (15)

force is repulsive and is perpendicular to the cosmic string IyindD "~ Amegpo 4 c2 )

along thez-axis’

TG 2
fp ~ __5—2, (11) Pnpn =nh. (16)
4 ¢ Areopg

There is a relationship between the radius and the momentum

The product of the radius and the momentum in the left-hand

where /7 is the component of the electrostatic self-force alongg;yq of(16)is the angular momentum. According to Bohr's hy-
the p-axis in cylindrical coordinates ang is the distance be- pothesis, the angular momentuiis quantized in units of.
tween the electron and the cosmic string. This means that

For the Bohr's atom in the absence of a cosmic string, the

electrostatic force between an electron and a proton is given bk, = n#. a7
COUIOmeIaW Substituting(16) into (15) gives
- —e
F = F. 12 2 2
4neor2r (12) nh __me 1_ T Gu , (18)
Pn AT €0pn 4 c?

As discussed if3-5], to obtain the fine structure constant
in the spacetime of a cosmic string we assume that the protd?f
located on the cosmic string lying along theaxis. We also A egn®h®
assume that the proton located in the origin of the cylindrical’r = m
coordinates and the electron locate@ at pg, z = 0 andg = 0.

(19)

4.2

This means that the electron and the proton are in the planghis equation obtains the radius of ti Bohr orbit of the hy-

orthogonal to the cosmic string. drogen atom in the presence of a cosmic string. In the absence
To calculate the Bohr radius in the spacetime of a cosmi®f a cosmic string, the lowest orbit & 1) has a special name

string we consider a Bohr’s atom in the presence of a cosmiand symbol: the Bohr radius

4neoh2 11
2 Linet in [2] has used the mks units and in Eqs. (15) and (162phas ‘B = "2 529x 107" m. (20)
i Z_— £ — . A . .

obtainedf* = f% =0 and Using (19), the Bohr radiusip in the presence of a cosmic

o (25)\(Gu g2 string is
"7 )= 2

b/ c 4reopg 4neoh2

whenu — 0. Indeed we can put the fractio% to be approximately equal B= mez(l _ l%)' (21)
to % . With this substitution we obtai(l1) of this Letter. 4 2
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From(20) and (21)wve obtain Inserting

ap T Gu A ap

—=(1-==). 22) Axi=ap=-——c—, (29)
ag < 4c2> (22) ’ (1- 29

In the limit © — 0, i.e., in the absence of a cosmic string,

; . in (26 ing28)gi the effective Planck constahgs,
apip — 1. Insertlng% ~ 10-6 we obtain in (26) and using28) give us the effective Planck constaings

in the spacetime of a cosmic string
N ag
ap = ﬁ (23)
(1-7% x10° ﬁeﬁzh[
This means that the presence of a cosmic string causes the value
of the Bohr radius increasesy > ap).
Our aim is now to obtain the effective Planck constagt
in the spacetime of a cosmic string by using the generalize
uncertainty principle. In doing so, we use the modified BOhrLP me?(1 — %@)
radius,ap, in the presence of a cosmic string. — = —3C <1 (31)
The general form of the generalized uncertainty principle is a8 AreoMp G
Api Using m = 9.11 x 1031 kg, ¢ = 1.6 x 1012 C, ¢ =
(24)  300x1®Bmst e=885x1012C2N"1m2,G =6.67x
R 10 m3s2kg~t andMp = 2.1768x 108 kg we obtain the
where g is a dimensionless constant of order one dnd= " \gjue of L2 ~ 102 ~ 10-24 is much less than one, we can
(1G/c)? is the Planck length. In the cage= 0, (24)reads  gypand3d). Therefore we have
the standard Heisenberg uncertainty principle

(30)

From(21)andMp = (hc/G)Y? which is the Planck mass, we
pave

+,3AZL2

Ax; = )
! Api P h

. - me?(1— %G—g) 2
AxiApj =2 héij, 1,j=123. (25) fieff > h|:1+ B <—C) ] (32)

- . - AmeoMpG
There are many derivations of the generalized uncertainty prin- . . L
ciple, some heuristic and some more rigorous. &) can So the effect of the generalized uncertainty principle in the pres-
be derived in the context of string theory and noncommuta€MC€ ©f & cosmic string can be taken into account by usifg
tive quantum mechanics. The exact valugdadepends on the nstéad offi. In the absence of a cosmic string, i.g.~ 0,
specific model. The second term in the right-hand sideeej ~ E9- (32) leads us to our previous result[]. In Ref. [3], we
becomes effective when momentum and length scales are of ti@t@ined the fine structure constadt, in the spacetime of a
order of the Planck mass and of the Planck length, respectivel§SmMic string

This limitis usually called quantum regime. Fr¢@#)we solve T Gu

for the momentum uncertainty in terms of the distance uncer¢ = 0‘<1— Z?)’ (33)
tainty, which we again take to be the radius of the first Bohr ,

orbit. Therefore we are led to the following momentum uncer-wheree is the fine structure constant,= ﬁom_ Substituting
tainty the effective Planck constafgs from (32) into (33) we obtain

the effective and corrected fine structure constant in the pres-

Api Ax; (1_ (26 ence of a cosmic string by using the generalized uncertainty

h 2p2L2 principle
The maximum uncertainty in the position of an electroninthe, e? 7 Gu 34
ground state in hydrogen atom is equal to the radius of the firsteff = Areohetic T4 2 ) (34)
Bohr radiusap. In the spacetime of a cosmic string, the max- q btai
imum uncertainty in the position of an electron in the groundFrom(?’Z) and (34pne can obtain
state is equal to the modified radius of the first Bohr radiys, o2 T Gu €2
see(21). Oleff = <47 - = )
. . - meoh 4 A egh
Recalling the standard uncertainty principle;; Ap; > #, one g HOG; )
we define an “effective” Planck constamtx;Ap; > hef. o me (=3 75)
X x|1-pg| ———=5— (35)
From(24), we can write 4 eo M?, G
N Ap; This equation can be rewritten
Axi Ap: >h[1+ﬂ2L§, (7”> } 27) q

A 2 T Gu &2
So we can generally define the effective Planck constant frorfteff = Areohc 4 2 dmeohc
the generalized uncertainty principle -
X [1 — B%? % 9.30 x 10—5°<1— 2% 5 x 10—6)},

R Api \?
heﬁzh[l—i— ﬂzL%( ]f ) } (28) (36)
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where we usedl — T %) ~ (1 -2 x %%) and% ~10°%.  Acknowledgements

From(33) and (36)Necconclude
I thank Amir and Shahrokh for useful helps.

Bt ~ &[1 — B%x9.30x 1o5°<1 —2x % x 106”. (37)  References

. . . . [1] A. Vilenkin, E.P.S. Shellard, Cosmic Strings and Other Topological De-
This equation shows the corrections to the fine structure con-" fects, cambridge Univ. Press, Cambridge, 1994.

stant in the spacetime of a cosmic string from the generalizef] B. Linet, Phys. Rev. D 33 (1986) 1833.
uncertainty principle. In the absence of a cosmic string the exi3] F. Nasseri, hep-th/0509206, Phys. Lett. B, in press.

pression inside the parenthesis in the right-hand sid8 fis [4] E.R. Bezzera de Mello, Phys. Lett. B 621 (2005) 318, hep-th/0507072.
[5] F. Nasseri, Phys. Lett. B 614 (2005) 140, hep-th/0505150.

equal to one and we are led to our previous resynin other o1 £ \acceri’ phys. Lett. B 618 (2005) 229, astro-ph/0208222.
words, in the absence of a cosmic string our result here, given

by (37), is in agreement with our previous resul&j.



	Corrections to the fine structure constant in the spacetime  of a cosmic string from the generalized uncertainty principle
	Acknowledgements
	References


