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ABSTRACT Kinetic analysis of the dynamics as measured in multiequilibria systems is readily attained by curve-fitting
methodologies, a treatment that can accurately retrace the shape of the measured signal. Still, these reconstructions are not
related to the detailed mechanism of the process. In this study we subjected multiple proton transfer reactions to rigorous kinetic
analysis, which consists of solving a set of coupled-nonlinear differential rate equations. The manual analysis of such systems
can be biased by the operator; thus the analysis calls for impartial corroboration. What is more, there is no assurance that such
a complex system has a unique solution. In this study, we used the Genetic Algorithm to investigate whether the solution of the
system will converge into a single global minimum in the multidimensional parameter space. The experimental system con-
sistedof proton transfer between four proton-bindingsiteswith seven independent adjustableparameters. The results of thesearch
indicate that the solution is uniqueandall adjustable parameters converge into asingleminimum in themultidimensional parameter
space, thus corroborating the accuracy of the manual analysis.

INTRODUCTION

The signal of measured dynamics can be reconstructed by

a variety of fitting procedures, sum of exponents, polynomes,

damped sinusoid function, etc. These curve fittings can be

very accurate, hardly missing a stray experimental point, yet

their predicting power is limited. The limitations are a direct

consequence of the mode of signal reconstruction. It follows

the shape of the observation, not being the consequence of

the chemistry/mechanism that generates the observation. An

alternative method for reconstructing an observation is to

deduce, on theoretical ground, the reactions that are involved

in the process, to sum them up in a set of coupled nonlinear

differential rate equations and to propagate the equations

over time with suitable adjustable parameters. A systematic

search over a multidimensional parameter space can yield

a combination (or combinations) of the rate constants that

will satisfactorily reconstruct the observed signal. When a set

of parameters that satisfied this demand is encountered, there

is no assurance as to whether it is a global minimum in the

parameter space or is one of many local minima. Once the set

is defined as a global minimum, the rate constants can be

physically interpretable. In this article, we apply the Genetic

Algorithm for the evaluation of the uniqueness of the rate

constants determined for a complex set of reactions where

the mechanism is known, but the rate constants have to be

determined.

The pioneering experiments of fast perturbation of systems

in chemical equilibria were carried out by Eigen (1964). The

analysis, however, was based on linearization of an inherently

nonlinear process. This shortcoming was amended by

Gutman who introduced the laser-induced proton pulse tech-

nique (Gutman andHuppert, 1979), whichmodeled the relax-

ationas anonlinear process (Gutman,1984).Reaction systems

as complex as proteins in solution were pulsed by free pro-

tons that react simultaneouslywith all proton-binding sites pre-

sent on the protein, thus initiating a sequence of reactions that

relax over a wide range of timescale, from the nanoseconds

up tomilliseconds.The analysiswas carried out by reconstruc-

tion of the observed signals by numeric integration of cou-

pled, nonlinear ordinary differential equations with linear and

quadratic terms. The coefficients appearing in these equations

are a combination of rate constants, equilibrium constants,

and the concentrations of the reactants. The system was

solved by a search within the parameter space, for any

combination of adjustable parameters that reconstruct many,

independently measured observations (Checover et al., 1997,

2001; Yam et al., 1988; Marantz et al., 2001; Nachliel and

Gutman, 2001). In such systems, the search for the value of

the unknown parameters is extremely laborious, and the

experience and thorough understanding of the chemical

nature of the reactants become a crucial element for

a successful search. The analysis is also prone to another

kind of criticism as summarized by the general belief: ‘‘Three

parameters are sufficient to draw an elephant and with four it

will also dance.’’ This poses a legitimate question: to what

extent can the reconstruction of many experimental signals

(all gathered under different experimental conditions) by

a single set of kinetic parameters be taken as evidence that it

consists as the only solution of the kinetics problem? The

main goal of this study is to demonstrate that the search

process for the rate constants can be fully automated using the

Genetic Algorithm. This can lead to the subjection of large

multiequilibria systems to detailed kinetic analysis. For this

reason, in this study our goal was not to find a system that
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assures a fast conversion. On the contrary, the algorithm was

set to search over awide range of parameters, tomake sure that

any local minimum in the parameter space will be detected.

Since the first presentation by Holland (1970), the Genetic

Algorithm had attracted a lot of interest and was applied to

a multitude of scientific fields, including molecular model-

ing, polymer design, protein folding, etc. (for review see

Leardi, 2001 and references therein). Yet, its application to

the analysis of complex chemical processes was rather

limited. Attempts to utilize the Genetic Algorithm for solv-

ing chemical kinetic problems are not numerous (Filipic et al.,

2000; Hongqing et al., 1999; Houck and Kay, 1995; Terry

and Messina, 1998), and a system comparable to ours was

described by Viappiani et al. (1998). However, the mech-

anism investigated by Viappiani was rather simple and only

two rate constants were searched for.

In this study, we investigated a system with inherent

complexity made of seven independent variables, and we

tested to what extent the Genetic Algorithm can solve the

various proton transfer pathways. The system consists of

a proton emitter (pyranine), indicator (fluorescein), and the

bicarbonate ion that is made by the solvation of the

atmospheric CO2. What is more, the indicator has two

proton-binding sites: the oxyanion of the xanthene ring and

the carboxylate of the benzene as independent sites, which

can also exchange protons among themselves. Of the four

reactants, only two are directly observed, whereas the other

two have no spectral signature and the dynamics should

be concluded from their modulation of the protonation

dynamics of the observed reactants. The level of complexity

of this system is comparable to the case of studying the

protonation dynamics of an indicator attached to a protein

(Nachliel et al., 1996; Nachliel and Gutman, 2001; Shimoni

et al., 1993; Yam et al., 1988). The rate constants of pro-

tonation of these reactants had been measured previously

by manual analysis and their pK values are directly mea-

sured. To increase the complexity of the system, the concen-

tration of the bicarbonate had to be treated as an adjustable

parameter, its concentration varied daily, reflecting the di-

rection that the wind was blowing CO2 from the nearby

power station.

The search for the uniqueness was carried out using

the Genetic Algorithm under conditions that allowed an

intensive search over the parameters’ space. The first

generation consisted of 100 ‘‘phenotypes’’, each having ran-

domly selected values for the adjustable parameters. The

convergence was rather slow, and the calculations proceeded

well after the fitness function seemed to reach a constant

level, to make sure that the solution was stable and had no

tendency to drift into a new set of adjustable parameters.

What is more, the same set of experimental signals was

subjected to repeat analytic runs and the values of the

adjustable parameters were subjected to statistical analysis,

as to whether the values of each parameter are members of

a single population. The calculations were carried out first

with computer-generated signals, made by the integration of

the differential rate equations with known values assigned

for each adjustable parameter. When the target signals are

noiseless, as in the computer-generated signals, the conver-

gence of the Genetic Algorithm was definitely unique and

the values derived by the program were practically identical

to those used to create the signals. This is an indication that

a global minimum for the fitness function in the multidi-

mensional parameters’ space can be obtained. Experimental

curves are more difficult to analyze due to the electronic

noise and experimental uncertainties, and global minimum

was not observed. Yet, when more than one signal was

subjected to the analysis, the convergence was efficient and

each of the adjustable parameters acted as representing

a single population of values.

EXPERIMENTAL SYSTEM

The system selected for study was of moderate complexity,

and consisted of four proton-binding residues: 1), a pyranine

molecule (FOH), which ejects a proton when excited by

a photon; 2), fluorescein (Flu), a pH indicator that has two

proton-binding sites, the first of which is the oxyanion of the

xanthene ring. The protonation of this site causes a major

spectral shift of the indicator; 3), the second proton-binding

site of fluorescein is the carboxylate moiety of the fluorescein

molecule, a site that differs from the chromophore proton-

binding sites by its pK value and whose protonation does not

bear any spectral signature in the visible range; and 4),

a buffer molecule (BH) with unknown concentration that

reacts with the proton but does not generate a measurable

signal. In this study, the buffer is the bicarbonate anion,

HCO�
3 ;which is spontaneously generated by the solvation of

the atmospheric CO2. When the experiments are carried out

at varying pH values, the bicarbonate concentration

increases with the experimental pH. A further experimental

complication had to be dealt with in this study; due to the

proximity of the laboratory to a power station, the CO2

content in the air varied daily, depending on the wind’s

direction. For this reason, the bicarbonate concentration had

to be introduced as an adjustable parameter.

The measurements were carried out as described in

Checover et al. (1997). Briefly, a 100-mM NaCl aqueous

solution was supplemented with pyranine (20 mM) and

fluorescein (10 mM), equilibrated with the air at two pH

values (6.8 and 7.3), and subjected to a train of laser pulses

(1–1.5 mJ/pulse; 10 Hz, 355 nm, 3 ns full-width half

maximum). The absorption transients were recorded at 458

and 496 nm, where pyranine and fluorescein are, respec-

tively, absorbing. The time resolutions of the measurements

were either 30 ns or 300 ns per data point and the readings

were converted into concentration units using the differential

extinction coefficients 24,000 and 50,000 M�1cm�2 for

pyranine and fluorescein, respectively.
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The kinetics measurements were carried out at each pH

value at two wavelengths, 458 and 496 nm. During the

measurements the pH of the solution was maintained as con-

stant within 60.05 pH unit. The signal/noise ratio of the

signals at the maximal amplitude exceeded 100:1. The

two vectors (concentrations versus time) were analyzed in

tandem.

THE MATHEMATICAL MODEL

The measured system consisted of the equilibria defined

below:

FO
� 1H

14FOH

FLU
� 1H

14FLUH

COO
� 1H

14COOH

FLUH1FO
�4FLU

� 1FOH

COOH1FO
�4COO

� 1FOH

COOH1 FLU
�4COO

� 1 FLUH

HCO
�
3 1H

14H2CO3

H2CO3 1FO
�4HCO

�
3 1FOH

H2CO3 1 FLU
�4HCO

�
3 1 FLUH

At the zero time point, a certain fraction of FOH is

dissociated by a brief laser pulse, and equal increments of

H1 and FO� are generated. The incremental concentration

of these reactants relaxes by reaction with all other proton-

binding sites present in the solution; the two sites on the

fluorescein, the HCO�
3 and the pyranine anion itselfFO�. In

parallel, the protonated states of each compound can deliver,

by a collisional mechanism, a proton to any other site having

a higher pK value.

All these reactions proceed in parallel with velocities that

are given by the products of the reactants on the left side of

the equation times the rate constant minus the product of the

reactant on the right side of the equation times the rate

constant. As the concentrations of all reactants vary with

progression of time, the velocities will vary with time, in

accordance with the temporal concentration of each reactant.

All these relations are incorporated into a set of differential

rate equations having the following form:

d½Ci�=dt ¼ �+kijð½Ci�½CjH�Þ1+k�i�jð½CiH�½Cj�Þ: (1)

The velocity of the reactions is given by the general

expression as in Eq. 1 where Ci and Cj denote the con-

centrations of the unprotonated state of the reactants, and

[CiH] and [CjH] are the concentrations of their proto-

nated forms. ki,j and k�i,�j are the rate constants of the for-

ward and backward rate constants of the proton transfer

reactions with any other reactant (j).

We denote by Vi the deviation in the concentration of

reactant i from its equilibrium level. The initial conditions

are:

V1ð0Þ ¼ X0 and Vi. 1ð0Þ ¼ 0:

X0 denotes the initial increment of the free proton that

was released by the laser pulse and its value depends on

the laser pulse energy. The integration of the differential

rate equations was carried out using the rate constants of the

following reactions as adjustable parameters:

1. The protonation of the pyranine anion (k1).

FO
� 1H

1/FOH:

2. The protonation of the oxyanion of the fluorescein (k2).

FLU
� 1H

1/FLUH:

3. The protonation of the carboxylate of the fluorescein (k3).

COO
� 1H

1/COOH:

In accordance with the Debye-Smoluchowski equation

(Gutman and Nachliel, 1997), the rate constants of reaction

2 and 3 should be the same (k2 ¼ k3). This equality was

imposed as a restriction on the system. Still, as the pK values

are not identical, the dissociation rate constants of the two

reactions were different.

4. The proton transfer from the oxyanion of the fluorescein

to the pyranine (k4).

FLUH1FO
�/FLU

� 1FOH:

5. The proton transfer from the carboxylate of the fluores-

cein to the oxyanion of the same molecule (k5).

COOH1 FLU
�/COO

� 1 FLUH:

6. The protonation of the bicarbonate present in the reaction

mixture (k6).

HCO
�
3 1H

1/H2CO3:

7. The rate of proton transfer from the carbonic acid (gen-

erated by the protonation of the bicarbonate) with the pyra-

nine anion (k7).

H2CO3 1FO
�/HCO

�
3 1FOH:

For the sake of simplicity, the proton transfer between the

fluorescein and the HCO�
3 (both having comparable pK

values) was ignored.
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The proton transfer reaction between the carboxylate and

the pyranine was also omitted from the search, the

electrostatic repulsion between them is strong and the pK of

the carboxylate is low, as a result, the proton dissociation from

the carboxylate is sufficiently fast to deplete the COOH state

well before an encounter between the COOH and FO� ion.

The last adjustable parameters are the concentrations of

the bicarbonate present in the reaction mixture, values that

varied with the pH of the solution. The concentration of the

pyranine and fluorescein were experimentally measured. The

pK values of the two dyes were determined by spectropho-

tometric titrations and that of the bicarbonate was taken as

published (Robinson and Stock, 1959).

Range of unknown parameters

Each adjustable parameter was allowed to vary within a given

range depending on its nature. The rate constants in the

thermodynamic-favored direction were allowed to vary from

the upper limit set by the Debye-Smoluchowski equation

(Gutman and Nachliel, 1997), down to a lower limit, which

was set to be four orders of magnitude smaller than the upper

limit. The rate constants in the reverse direction were related

with the forward ones through the equilibrium constant,

k�i ¼ ki/10
�pKi.

The initial magnitude of the perturbation X0 was estimated

directly by back extrapolation of the absorbance at 458 nm

during the first 0.5 ms to t ¼ 0.

Due to the large variation in CO2, the bicarbonate �

concentration was allowed to vary within a wide range,

5–500 mM.

THE FITTING PROBLEM

To gain high confidence in the results of the analysis, the

fitness function was always calculated for a pair of ex-

perimental results measured at the same pH; one is the

reprotonation dynamics of the pyranine anion (Xt) and the

other is the reversible protonation of the fluorescein (Yt). In
the following text we shall refer to the two experimental

tracings (Xt and Yt) as one signal.
For any given set of values of the unknown parameters,

the ordinary differential equations can be solved using

standard numerical subroutines such as Matlab’s ODE23s.

The level of agreement between the experimental signals and

the numerical solutions can be expressed by a fitness

function (Ft), which is a weighted average of the squares of

the differences between the calculated solutions (Xcalculated
i )

and the measured signals (Xsignal
i ), i.e.,

Ftðadjustable parameter 1�7Þ
¼ +

i
e
Xi=XmaxððXcalculated

i � X
signal

i Þ=Xsignal

i ÞÞ2

1+
i
eYi=YmaxððYcalculated

i � Ysignal

i Þ=Ysignal

i ÞÞ2; (2)

where the i in the summation stands for the value at time ti.
Our past experience with a manual search for the parameters

led us to use the weight functions, eXi/Xmax and eYi/Ymax, as

a measure to make the system more sensitive to these

sections of the observed signal where its amplitude is large.

Thus, the fluctuations of the signal near the zero level, at the

end of the measurement, will make a smaller contribution to

the fitness function than the large signal at the early phase of

the relaxation.

The fitting problem is not only to find all the parameter

combinations that minimize the fitness function. We also

have to determine whether the solution is unique. For this

reason, the analysis is repeated and the values of each

adjustable parameter are subjected to statistical analysis. In

the case where the values conform with normal distribution,

we can consider them as members of a single population,

thus implying that the Genetic Algorithm found the global

minimum. Where the values found for one (or more)

adjustable parameter appear to be members of more than

one population we shall have to conclude that the analysis

failed to find a global minimum in the multidimensional

parameters’ space.

GENETIC ALGORITHM

In cases of high-dimensional optimization problems with

possible nonsmooth fitness function and multiple local

minima, a natural choice for optimization of the fitness

function is the Genetic Algorithm. In this study each

generation consisted of 100 ‘‘phenotypes’’, each of them

having a random set of adjustable parameters, selected

within the permitted range (see above). The program used

these values to reconstruct a signal and to calculate the

fitness. At the end of the generation, the best-fit phenotype

was cloned and replaced the worst-fitting one. Besides that, the

genes were manipulated by the following alternations: two

heuristicXover, two arithXover, two simpleXover, four

boundaryMutation, six multiNonUnifMutation, two nonUn-

ifMutation, and two unifMutation. All these genetic

manipulations are standard procedures and defined in the

GAOT program of Matlab (Houck and Kay, 1995).

The fitness function was calculated for all new combina-

tions and their fitness function values were evaluated among

themselves and in comparison with the fitness function cal-

culated for the previous generation for the unaltered pheno-

types of their parent generation.

Our choice of Matlab as the computational platform is

motivated by its portability across different platforms and by

the availability of the genetic algorithm toolbox GAOT

(Houck andKay, 1995). To demonstrate the robustness of our

methodology, we use the default parameters of GAOT, rather

than trying to optimize performance by varyingwith GAOT’s

parameters (the selection and termination functions, etc.).

In this study the Genetic Algorithm was searching for the

minimum of the fitness function in a seven-dimensional
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space. The length of each run, lasting 3000 generations

varied among the computes used for the calculations,

ranging from 2 to 6 h, depending on the processors.

RESULTS AND DISCUSSION

Reconstruction of the experimental signal by the
Genetic Algorithm

Fig. 1 depicts a set of reconstructions of experimental signals

as they evolve with the number of generations. The frames

on the left side depict how the relaxation of the pyranine,

from its enforced dissociation, progresses with the number of

generations. The curve descends nonmonotonically, yet as it

does not inverse its direction, the convergence is rather fast

and even after 10 generations, the calculated line resembles

the experimental one. The frames on the right reproduce

a more complex feature, characterized by a minimum, so that

the fitting process calls for more generations before the final

shape is attained. The coupling of the two experimental

curves into the same fitting process definitely slows the

convergence, although it ensures that all chemical events are

equally expressed in the reconstruction of the dynamics.

Quantitative evaluation of the fitness function

Fig. 2 depicts the reduction of the fitness function as

a function of the number of generations for 10 consecutive

runs of the same signal. As seen in the figure, the initial

values of the fitness function varied widely, from 300 to 900,

yet by the end of the run, all converged to a narrow range of

0.1 6 0.05. The variation of the fitness function during the

process followed different pathways. In some cases, the

convergence was fast (blue trace), whereas in others the

process was slow and .1000 generations were needed to

reach the same value that the fast converging run had made

within 100 generations.

The convergence of the fitness function implies that, in all

runs, the final shapes of the reconstructed curves are very

similar. However, this does not mean that the adjustable

parameters had converged to a global minimum. It is

FIGURE 1 Snapshots of the reconstructed dynamics during the evolution of the system. The frames on the left side depict the experimental (noisy) and

reconstructed (smooth) curves of the reprotonation of the pyranine. The frames on the right depict the reversible protonation of the fluorescein chromophore.

The generation number and the values of the fitness function are indicated in the figure.
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possible that more than one combination of adjustable

parameters can yield curves that resemble the experimental

signal to the same extent: i.e., there may be few local minima

in the parameter space and each of them can reproduce a good

macroscopic fit. For this reason, we tested to what extent

the Genetic Algorithm can reproduce rate constants whose

values are predetermined. Accordingly, a ‘‘benchmark

signal’’ was generated by the differential rate equations

using a known set of parameters all of which, except one

(reaction 4 in Table 1), were determined by the ‘‘manual’’

analysis of experimental results. As a test for the accuracy of

the analysis, the value of reaction 4 was deliberately set to be

100 times smaller than the actual rate constant, to verify

whether the Genetic Algorithm is capable of determining

a slow reaction in the presence of fast ones. These parameters

were used to generate noiseless signals (one for the pyranine

and one for the fluorescein) that were fed as a ‘‘target’’ for

the Genetic Algorithm search. The analysis was repeated 10

times and the divergence of the various parameters from the

initial value was calculated.

As shown in Table 1, the values reached by the Genetic

Algorithm were within a few percent from the input values. It

is of interest to point out that when the rate constants are

initially small, the relative error is large. The relative

contribution of the pathways characterized by small rate

constants to the overall flux is minor. Consequently, the

random search procedure is less sensitive to these reactions

and may compensate for their partial flux by small variation

of other rate constants. This simple test demonstrates the

robustness of the Genetic Algorithm; when the system is free

of experimental noise, the calculation converges to values

that generated the signal with minimal deviation. Appar-

ently, the shape of the experimental curves bears sufficient

information to force the system to find the global minimum

in the multiparameter space.

Analysis of experimental signals

In contrast to the zero-noise input signal, the experimental

data are noisy and the convergence can, at most, fit into

a band defined by the spread of the experimental points. It

is possible that the inherent uncertainty, caused by the width

of the target signal, will interfere with the convergence of

the fitness function, and end up with more than one set of

FIGURE 2 The evolution of the fitness function as

calculated for eight consecutive simulations of the target

signal presented in Fig. 1.

TABLE 1 Comparison between input values of rate constants used to generate signals and the average values derived by

10 independent runs of the Genetic Algorithm

Reaction Input Output Standard deviation

FO� 1 H1 / FOH k1 5.00E 1 10 4.96E 1 10 2.88E 1 08

FLU 1 H1 / FLUH1 k2 3.00E 1 10 3.01E 1 10 7.81E 1 07

FLUH11FO� /FLU 1 FOH k4 1.00E 1 07 1.83E 1 07 0.83E 1 07

Intramolecular proton transfer k5 2.00E 1 11 1.95E 1 11 1.40E 1 09

HCO�
3 1H1/H2CO3 k6 2.50E 1 10 2.53E 1 10 9.40E 1 07

H2CO3 1FO�/HCO�
3 1FOH k7 2.50E 1 08 2.81E 1 08 1.55E 1 07
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parameters, each of them reconstructing curves that fit within

the width of the input signals. The spread of the values

can represent a single population, meaning that the conver-

gence had reached a global minimum, which can be either

well defined or shallow. Alternatively, the spread may be

a combination of local minima, each represented by

a different combination of values that all reproduce curves

with the shape of the experimental observation. Naturally,

the spreading of the results into a family of local minima

undermines the utilization of the kinetics analysis of the

experimental observations.

Fig. 3 depicts the variation of the adjustable parameters

during eight independent runs corresponding to the conver-

gence curves presented in Fig. 2. Although the signal has

a relatively low noise level (see the experimental signal in

Fig. 1) and the fitness function converged from 103 down to

0.1 6 0.05 (Fig. 2), the values of the adjustable parameters

exhibit large variations. In two runs, the value of intra-

molecular proton transfer (Fig. 3 C) had drifted to the upper

limit that is allowed for the rate constant, with no noticeable

effect on the quality of the fit. Such an observation is con-

sistent with the existence of more than one local minimum

in the parameters’ space.

Simultaneous analysis of more than one
pair of signals

The divergence of the solutions attained during the re-

construction of a single signal implies that the restrictions

imposed on the system were not sufficiently limiting. For

this reason, it was investigated whether a simultaneous

reconstruction of two pairs of signals, each measured at

a different initial condition, would be more restrictive,

forcing the system to converge into one minimum. The

argument for this reasoning is that the rate constants are

independent of the reactant concentrations; thus, when the

results of two experiments that were measured at differ-

ent reactant concentrations are analyzed simultaneously, the

algorithm will search for those values that are concentration

independent. The outcome of this strategy is represented in

Fig. 4, which summarizes the analysis of two signals, one

measured at pH ¼ 6.8 and the other at pH ¼ 7.3. The

difference in the initial conditions seems rather small, but

sufficient to change the concentrations of the reactants by

approximately threefold and make the shape of the signals

clearly distinguishable.

There are 10 frames in this composite figure; each presents

the convergence of one adjustable parameter along the

generation axis. In contrast to the pattern detected in Fig. 3,

where some of the parameters drifted far away, in this case the

restrictions imposed by the variance of the reactant con-

centrations were sufficient to enforce a better convergence.

We can classify the adjustable parameters into two

categories. The first category comprises those associated

with the directly observed reactants, the pyranine and the

indicator. The concentration of these reactants is accurately

measured and precisely recorded at any time. Accordingly,

the convergence of the parameter associated with these

reactants is very effective (Table 2).

The other category is that of reactants whose concentration

is not predetermined and whose state of protonation is not

observable. In this study, the only member of this category is

the bicarbonate. When protein dynamics are analyzed, the

number of unobserved reactants is larger (Nachliel et al.,

2002; Nachliel, and Gutman, 2001). The convergence of the

adjustable parameters of the compounds in this category

FIGURE 3 The spreading of the values of the adjust-

able parameters during the repeated analysis of a single

pair of experimental signals, measured at pH ¼ 6.8.

Panels A–D depict the convergence of the rate constant

for the protonation of the pyranine; the protonation of

the fluorescein; the intramolecular proton transfer from

the carboxylate residue of the fluorescein to the

oxyanion; and the proton transfer from the fluorescein

to the pyranine.
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operates within a space having more degrees of freedom than

compounds in the first category; the search is carried out both

for the concentration and the rate constant of the reactant. As

a result, the spread of both values, rate constants and

concentrations, are somewhat higher (Table 2). The rate

constant of protonation of the bicarbonate was 2.6 6 1.3

1010 M�1s�1 and the concentration of the bicarbonate was

28 6 18 and 50 6 28 mM, depending on the pH of the reac-

tion mixture. In comparison with the other parameters, these

values seem to be less accurately determined, yet a close

examination of the rate constants reveals that for those runs

where the rate constant was high, the derived concentrations

of the bicarbonate were low. When the rate constant con-

verged to a lower value, the concentration of the bicar-

bonate was high. On the other hand, the time constant for

the protonation of the bicarbonate converged to a con-

stant, single value (see Fig. 4, I and J, and the bottom row

of Table 2).

It should be stressed that the rate constants derived by the

Genetic Algorithm confirm the values that had been

determined by the manual search in the parameters’ space

(see last column in Table 2) (Gutman 1984; Gutman and

Nachliel, 1990; Gutman et al., 1985, 2003).

Statistical evaluation of the solution

The analysis by the Genetic Algorithm is a search process

and even when a noiseless signal is recurrently analyzed, the

parameters of the best-fitted phenotype of the different runs

are not identical and are dispersed (see Table 1). In the case

FIGURE 4 The convergence of the parameters during simultaneous analysis of a pair of signals measured at pH ¼ 6.8 and 7.3. Each frame depicts the

convergence of a single adjustable parameter: (A) protonation of pyranine; (B) protonation of fluorescein; (C) proton transfer from the carboxylate residue of

the fluorescein to the oxyanion; (D) proton transfer from the fluorescein to the pyranine; (E) protonation of the bicarbonate; (F) proton transfer from carbonic

acid to pyranine; (G and H) the bicarbonate concentration at pH ¼ 6.8 and pH ¼ 7.3, respectively; and (I and J) time constant of protonation of bicarbonate at

pH ¼ 6.8 and 7.3, respectively.
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that the target for the fitting is noisy, we needed two signals

for tandem analysis. Accordingly the uniqueness of the

solution should be derived from statistical analysis.

The normal probability plot (QQplot program of Matlab)

is suitable for this kind of analysis. This program displays

a plot of the values of the given parameter (on the y axis)

versus theoretical normal distribution of the values as

calculated from the whole population. If the distribution is

normal, the plot will be close to linear.

The analysis was carried out for all adjustable parameters

used for the analysis of the experimental signal (Figs. 5 and

6). Fig. 5 depicts the results of the analysis where the rate

constants are the analyzed values. As seen in the figure, the

values assigned for each of the rate constants appear to

belong to a single normal population. Thus, even if the

certainty is not high, and the standard deviation is ;20% of

the mean value, the results are still members of one normal

population.

In Fig. 6 we analyzed the distribution of the bicarbonate

concentration, a term that we found too difficult to control

experimentally and decided to add it as another adjustable

parameter. The upper two frames depict the QQplot analysis

of the values of bicarbonate concentrations as calculated for

the experiments measured in the high (left) and low (right)
pH values. Once again, even though the variance is high,

from 10 up to ;100 mM, the values are all members of

a single normal population. To better ascertain this

conclusion, we also analyzed the time constant of pro-

tonation of the bicarbonate, namely the product of the rate

constant times the bicarbonate concentration. The lower

frames in Fig. 6 confirm that the time constants are also

members of a normal population. Thus, each of the

TABLE 2 Tabulations of the rate constants as derived from

tandem analysis of experimental signals

Reaction

Mean rate

constant 1010 M�1s�1

Standard deviation

1010 M�1s�1

H1 1 FO� k1 5.2870 (5.5 6 0.3)* 0.2936

H1 1 FLUy k2 2.0399 (2.0 6 0.2) 0.0983

FLUH1 1 FO� k4 0.14225 (0.15 6 0.05) 0.02676

Intramolecular proton

transferz
k5 3.05 (3.5 6 0.5) 0.3599

H2CO3 1 FO� k6 0.09805 (0.08 6 0.03) 0.01826

H1 1HCO�
3 k7 2.6497 (2.5 6 0.3) 1.2749

t (HCO3)
§ 8 105 s�1 0.1 105s�1

*The numbers in parenthesis were determined by independent ‘‘manual’’

analysis of the signals.
yThe same rate constant applies both for the protonation of the oxyanionof the

xanthene rings and the carboxylate of the benzene ring of the fluorescein.
zThe rate constant for the intramolecular proton transfer between the

carboxylate of the benzene ring to the oxyanion on the xanthene rings of the

fluorescein.
§The time constant for the reaction between the bicarbonate and the free

proton. Calculated for each run as the product of the rate constant times the

bicarbonate concentration.

FIGURE 5 The normal probability plot, as

calculated by the QQplot program of Matlab,

for the rate constants as indicated in the figure.

Ordinate, the values of the adjustable param-

eter; abscissa, the standard normal quantile of

the plotted parameter.
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adjustable parameters needed to reconstruct the observation

is the only minimum along its axis, and the solution itself

represents the global minimum in the multidimensional

parameter space.

CONCLUDING REMARKS

In this study we have shown that the Genetic Algorithm is an

applicable mathematical tool to search for a solution of

kinetics equations where the rate constants are to be

determined. The analysis demonstrated that even when the

concentration of one reactant is unknown, the system had

successfully converged. The experimental uncertainty in

the measured condition, as typical for real biochemistry,

necessitated solving two signals at tandem. Under these

conditions, a complex system consisting of eight adjustable

parameters was successfully solved. The statistical analysis

of the rate constants indicated that the spread of the values

for each of the adjustable parameters is consistent with the

normal distribution of a single population. Thus complex

dynamics systems, where many processes progress in

parallel, can be solved with the certainty that the parameters

represent the global minimum in the multidimensional

parameter space.

Finally, we wish to stress that even though this study is an

empirical search for the uniqueness, it is versatile and readily

applicable for any complex kinetic system, thus it should be

considered as a future standard test, incorporated in kinetic

analysis of multireactions systems.
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