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A VERIFIED PROLOG COMPILER 
FOR THE WARREN ABSTRACT MACHINE 

DAVID M. RUSSINOFF 

D We extend the theory of Prolog to provide a framework for the study of 
Prolog compilation technology. For this purpose, we first demonstrate the 
semantic equivalence of two Prolog interpreters: a conventional SLD-refu- 
tation procedure and one that employs Warren’s “last call” optimization. 
Next, we formally define the Warren Abstract Machine (WAM) and its 
instruction set and present a Prolog compiler for the WAM. Finally, we 
prove that the WAM execution of a compiled Prolog program produces 
the same result as the interpretation of its source. a 

1. INTRODUCTION 

One reason for the dominance of Prolog [6] as the canonical language of logic 
programming is its susceptibility to efficient implementation. D. H. D. Warren’s 
contribution to the art of Prolog compilation [lo] represents a major breakthrough 
in this area. Most high-performance Prolog systems are based on the Warren 
Abstract Machine (WAM), and considerable current research is devoted to various 
modifications and extensions of the WAM. These include investigations of its 
applicability to areas beyond the realm of logic programming, such as automatic 
theorem proving [5] and expert systems technology [4]. 

Prolog inherits a well-established mathematical foundation from its logical roots 
-its semantics are clearly defined and thoroughly understood [8]. In contrast, 
advances in the implementation of Prolog are generally results of engineering 
efforts rather than mathematical investigations. Consequently, there is no rigorous 
theory of Prolog compilation. In particular, the principles underlying the design of 
the WAM have not been adequately explicated. 

Just as the semantic development of Prolog has benefited from its grounding in 
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logic, the advancement of Prolog technology could be facilitated by the establish- 
ment of a theoretical framework for compilation. In the absence of such a 
framework, our confidence in the correctness of the WAM must be largely based 
on successful testing. Any new implementation or functional extension, therefore, 
requires further testing. As these extensions continue to grow in complexity, a 
more convincing verification method becomes increasingly desirable. 

The purpose of this paper is to extend the theory of Prolog to provide a 
mathematical basis for Prolog compilation technology, including a specification of 
the WAM and a proof of its correctness. In Section 2, we begin with a review of the 
syntax of Prolog and define its semantics in terms of an SLD-refutation procedure 
[2]. We then present a modified Prolog interpreter, incorporating Warren’s last call 
optimization technique, and prove that Prolog semantics are preserved by this 
modification. 

In Section 3, we present an abstract definition of the WAM and its instruction 
set. This definition is intended to capture the central features of Warren’s design 
[ll], including the tail recursion and last call optimizations. However, we are 
interested only in formalizing the essential WAM and establishing its correctness, 
not in explaining why it is optimized precisely as it is. Thus, we introduce a number 
of minor modifications, designed to simplify our model of the WAM and thereby 
facilitate its analysis. None of these modifications, however, significantly affects 
either its functionality or the validity of our results: 

(1) 

(2) 

(3) 

(4) 

Several specialized WAM instructions, which were added by Warren to 
allow various local performance optimizations, are eliminated. Thus, the 
instructions GET - LIST, PUT-LIST, GET-NIL, PUT-NIL, UNIFY- 

NIL, and UNIFY -VOID are subsumed by the more general GET- 

STRUCTURE, PUT-STRUCTURE, GET-CONSTANT, PUT-CONSTANT, 

UNIFY-CONSTANT, and UNIFY-VARIABLE, respectively. 
Environmenf trimming, a technique for minimizing the size of the local stack, 
is eliminated. This results in simplification of the CALL instruction as well as 
the definition of permanent variable. It also allows the environment register 
to point to the top, rather than the bottom, of the current environment. The 
backtrack register similarly points to the top of the most recent choice point, 
thus allowing the top of the stack to be computed as the maximum of the 
values of these two registers. 
The process of allocating a structure on the heap is modified so that the 
arguments of a new structure are initialized as unbound variables. This 
eliminates write mode and UNIFY - LOCAL -VALUE and simplifies the other 
unification instructions. 
Our most radical departure is the elimination of indexing. Choice points are 
allocated and maintained by means of the TRY -ME- ELSE, RETRY-ME - 

ELSE, and TRUST-ME - ELSE - FAIL instructions; the other indexing in- 
structions, TRY, RETRY, TRUST, and the SWITCH- instructions, are not 
used. 

Section 4 discusses Prolog compilation on the WAM and the execution of 
compiled programs. We present a complete compiler for pure Prolog (although in 
the interest of brevity, we ignore various opportunities for local optimization& and 
prove the equivalence between the execution of a compiled Prolog program and 
the interpretation of its source. That is, we show that the interpretive semantics of 
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Prolog, as defined in Section 2, are implemented by the WAM emulator and 
compiler of Sections 3 and 4. The proof involves a correspondence between WAM 
states and the states of a Prolog interpreter. 

While this paper is intended to be technically self-contained, it will not foster 
motivation for anyone who is unfamiliar with the subject. The uninitiated reader is 
advised to consult other sources on both the interpretive semantics of Prolog 16, 81 
and the WAM 11, 7, 111. 

Our theory, which is influenced by the work of Boyer and Moore [3], is based 
solely on naive set theory and relies heavily on mathematical induction and 
recursive function definition. We assume the existence of a universal set U, which 
is the disjoint union of the set N = IO, 1, 2,. . . } of natural numbers and various 
other sets, which will be introduced as we proceed: 

An expression is defined recursively to be an element of U or an ordered pair of 
expressions. The complexity of an expression E is defined as follows: if E E U, then 
complexity(E) = 1, and if E = (I?,, E,) $?4 U, then complexity(E) = complexify(E,) + 
complexity( E, 1. 

In order to facilitate the definitions of various complicated recursive functions, 
including those that comprise the compiler, we adopt a pseudocode notation (see 
Figures 1-7). This notation should be self-explanatory. Moreover, it should be 
apparent that each of these definitions could be rewritten (at the expense of 
readability) in a more standard mathematical notation, e.g., as a formula of 
predicate logic. 

In dealing with ordered pairs, we borrow the function names cur and cdr from 
LISP: if z is the ordered pair (x, y), then x = cur(z) and y = cdr(z). We also 
borrow from LISP the symbol NIL, which we shall assume to be an element of the 
set K (and hence an element of U). For convenience, we define car(NIL) and 
cdr(NIL) to be NIL. A fist is defined recursively to be either the symbol NIL or an 
ordered pair z such that cd-(z) is a list. The list NIL will also be represented as 
( >, and a non-NIL list z will be represented as (a,, . . . , a,), where a, = cur(z) 
and (a,_ L,. . . , a, > represents c&(z). The length of a list (a,, . . . , a,) is defined to 
be the natural number n, and a,,... , a, are its members. Thus, NIL is the unique 
list of length 0, and (x, y, z) = (x, (y, (z, NIL))) is a list of length 3 with members 
x, y, and z. 

A list y is a tail of a list x if either y =x or y is a tail of c&(x). y is a sublist of 
x if (a) y = NIL; (b) x = (u,u), and y is a sublist of u; or (c) x = (u, u) and 
y = (u, w), where w is a sublist of u. 

Let x= (a,,..., a,> be a list. In accordance with the standard LISP definition, 
wedefineif nzkkland member(u,,x)tobethetail(u,,u,_,,...,u,)if ui#uk 
for rz 2 i > k, while if b is not any of the ui, then member(b, x> is defined to be 
NIL.Ify=(b,,,,..., b,)isasecondlist,then uppend(x,y)= (a, ,..., u,,b, ,..., b,). 
If z = uppendx, y), then we may also write x = z -y. 

For any expressions x and E, x occurs in E if either (a) x = E or (b) E @ U and 
x occurs in either cur(E) or c&(E). Clearly, if x occurs in E and x # E, then 
complexity(x) <complexity(E). If S is a set of expressions, then the expression x 
occurs in S if x occurs in E for some EES. If L=(E,,,...,E,) is a list of 
expressions and x occurs in some member Ek of L but not in any E, such that 
n 2 i > k, then we say that the first occurrence of x in L is in Ek. 
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2. PROLOG 

2.1. Syntax 

We shall define a language based on the four sets F, P, K, and V. The elements of 
F and P are called function symbols and predicate symbols, respectively. Associated 
with each of these is a natural number, its arity. While allowing predicates of arity 
0, we shall assume that every function symbol has positive arity. Elements of V are 
called uariable symbols, and elements of K are called constants. We assume that 
NIL is a constant and that V is countably infinite. 

A term is an expression that is either a constant, a variable symbol, or a 
compound term, i.e., a pair t = <f, a), where f=funct(t) is a function symbol of 
arity n and a = a&t> is a list of n terms. A literal is a pair L = (p, a), where 
p = x(L) is a predicate symbol of arity n, called the characteristic predicate of L, 
and a is a list, of n terms, the arguments of L. For clarity, we shall sometimes write 
args in place of cdr. 

A Horn clause is any list of literals. The characteristic predicate of a Horn clause 
C, x(C), is x(car(C)>, where ,y(NIL) is defined to be NIL. A Horn clause may also 
be called a goal clause, and the term program clause will refer to a non-NIL Horn 
clause. If C = (h, b) is a program clause, then h = head(C) and b = body(C). The 
members of body(C) are called the goal literals of C. Considered as a goal clause, a 
Horn clause is intended to represent the conjunction of its literals; as a program 
clause, it is intended to represent the disjunction of its head literal and the 
negations of its goal literals. 

A program is a list of program clauses. For convenience, we shall always assume 
that the members of a program are distinct clauses. (Thus, the clauses of a program 
have a well-defined order, which will be useful in our discussion of semantics). For 
any Q, the dejinition of Q with respect to a program P, denoted def(Q, PI, is the 
sublist of P consisting of all clauses of characteristic predicate Q. The list whose 
members are all the predicate symbols that occur in P, in the order of their first 
occurrence, is denoted preds( P). 

Let f3={(u,,t,) ,..., (u,, t,)} be a finite set of ordered pairs such that each y E V, 
u, # uj for i #j, and each ti is a term distinct from u;. Then 6 is called a 
substitution. Given an expression E, the expression EB is defined as follows: if 
E = uj for some i, then Et3 = t;; otherwise, if E E U, then E8 = E; if E @ U, then 
E8 = (cat-(&I, cdr(E)B). 

For any expression E, the list of all variable symbols that occur in E, in the 
order of their first occurrence, is denoted uars(E). A substitution 8 is a substitution 
for E if for each (vi, tj> E 8, u, is a member of cars(E). For an arbitrary 8, the 
restriction of 8 to E is the result of deleting (vi, ti> from 8 for each u; that does not 
occur in E. 

If 8 = Ku,, t,>, . . . ,(u,,, t,)} and u = {(w,, s,>, . . . ,(w,, s,)] are two substitutions, 
then the composition Oo is the substitution obtained from 

{(q,fl+.., (u,,t,~),(W,,Sl),...,(W,,S,)) 

by deleting any pairs (vi, tic) such that tic= ui, and any pairs (w,, si) such that 
wi E{U,,..., u,}. It is easily verified that E(f?a) = (EB)a and that if p is also a 
substitution, then 8(ap> = (6u)p. Note that the empty set, 0, is a substitution and 
that EO = E. 
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Let E and F be expressions. E is an instance of F if E = FB for some 
substitution 8. E and F are variants if they are instances of each other. Two 
substitutions (T and r for E are equiualent for E if Ea and ET are variants. 

A substitution (T = ((u,, t,), . . . , (u,, t,)} is cariable pure if each ti E V. In this 

case, if tj #t, whenever i #j, then & will denote the substitution {(t,, II,>, . . . ,(t,, 
II,>}, and g and & are called renamings. If it is also the case that (tl, . . . , It,} - 

{u ,, . . . , u,) contains no variable symbols occurring in the expression E, then Ea is 
a variant of E, since Eu&= E. In this case, if (T is a substitution for E, then v is a 
renaming for E. 

E and F are unijiable if Ef9 = FO for some substitution 8. 0 is then called a 
unifier for E and F. 8 is also called a most general unifier (mgu) for E and F if for 
any unifier (T for E and F, there is a substitution p such that u= 19p. It is well 
known [9] that any two unifiable expressions have a’mgu. 

2.2. Semantics 

In the sequel, P will denote a fixed program and G will denote a fixed non-NIL 
goal clause. Informally, we think of a Prolog interpreter as a procedure that 
accepts P and G as input and returns a sequence of substitutions called computed 

answer substitutions. The process by which these substitutions are derived is a 
special case of SLD-rksolution [2], as described below. 

Definition2.1. Let H= (A ,,..., A,,)beagoalclause,letC=(A,B,,...,B,)bea 
program clause, and let 8 be a mgu for A and A,. The goal clause 

(B,o,..., B,tI, A,@,..., A, 0) is called the resolvent of H and C via 0. 

Definition 2.2. An SLD-derivation for P and G is a list D = (37, %?, O), where 

(a> 5 is a list (G,,, . . . , G,,) of goal clauses with G,, = G; 
(b) 55’ is a list CC,,..., C,) of clauses of P; and 
cc> 0 is a list (0,,, . . . , 8, > of substitutions such that for 1 5 k I n, G, is the 

resolvent of’ G,_ , and some variant c, of C, via ok, and 6, has no 
variables in common with either G,_ , or GB, ... 8,_ ,. 

If G,, = NIL, then D is also called an SLD-refutation. In this case, the restric- 
tion to G of the composition 8, .*. 0,, is called the computed answer substitu- 
tion of D. If D’ = (Z’,%?‘, 0’) is another SLD-derivation for P and G and 
g = %F’, then D and D’ are equivalent. The characteristic? predicate of D, 
x(D), is defined to be x(G,,). 

Wit’h respect to a suitable declarative semantics, it may be shown [8] that an 
instance of G is a logical consequence of P if and only if it is an instance of GB 
for some computed answer substitution 0. Our attention will be confined, however, 
to the procedural semantics of Prolog. We shall require the following technical 
lemma. 

Lemma 2. I. Let H,, H,, H,, H,‘, Hi, and Hi be goal clauses, let C and C’ program 
clauses, and let CY, 0, 8, and 0’ be substitutions such that 

(a) H,cu=H;, H,cw=H;,andCp=C’; 

(b) C has no lsan’ables in common with either H, or H,; and 
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(c) H, (resp., Hi) is the resolvent of H, and C via 8 (resp., Hi and C’ via 0’). 

Then there exists a substitution 6 such that H3S = Hi and H, 88 = H,‘tI’. 

PROOF. We may assume, without loss of generality, that cy is a substitution for the 
expression (H,, H,) and that /3 is a substitution for C. Then y = a U /3 is a 
substitution. Moreover, H, y = H,‘, H, y = Hi, and Cy = C’. 

Since 8 ’ is a unifier for car( Hi) and head( y8 ’ is a unifier for car( H,) and 
head(C). Since 8 is a mgu for these expressions, we have y/3’ = 86 for some 
substitution 6. Hence, 

H,S=append(cdr(H,)f?,body(C)8)6 

=append(cdr(H2)08,body(C)M) 

= append(cdr( H,)ye’, body(C)y 

= append(cdr( H;) 8’, body( C’) 0’) 

=H; 

and 
H,BS=H,yB’=H;8’. 0 

Lemma 2.2.. Let D = ((CL’, . . . ,GA), (C,, . . . ,C,), (e,,‘, . . . , t?,‘)) and D’ = 
(CC,: ,..., GA), (C “,..., C,>, (0; ,..., 0,‘)) be equivalent SLD-derivations for P 
and G = G, = Gh. 

(a) There exists a substitution 6 such that G,, 6 = Cd and GtI, ..- tI,6 = Go,’ **- t3,,‘; 
(b) If D is an SLD-rebtation, then so is D’ and the computed answer substitutions 

of D and D’ are equivalent substitutions for G. 

PROOF 

(a) Note that for n = 0, the statement is satisfied by 6 = 0. We proceed by 
induction, assuming that G,,_ , (Y = Gi_, and that G8, *** e,_, (Y = Go; **a 
e;_ i. -Let cn and Ci be variants of C,, such that G,, is the resolvent of G,, _ 1 
and C, via f?,,, and GA is the resolvent of G,‘_ 1 and 6; via e,,‘, in accordance 
with the definition of SLD-derivation. There exists a substitution p such that 
c,, p = c;. Thus, we have a case of Lemma 2.1, with H, = G8, *.* fI,,=,, 

H, = G,-1, H3=G,,, H; =Ge; ... t?,,_,,, H; =G;_,, H; =G,, C=C,, 

and C’ = CA. 
(b) By symmetry, it follows from (a) that G, and Gi are variants, and so are 

G4 --. 6, and Ge; ... 6;. 0 

If (T is a substitution for G, then ij; will denote the class of substitutions for G 
that are equivalent to u. The equivalence class of an SLD-derivation D will be 
denoted by 0. 

Definition 2.3. The SLD-tree for P and G is the set of all equivalence classes of 
SLD-derivations of P and G, ordered as follows: if D = (F?, 5F, 0) and D’ = 
(g’, %Y’, O’), then 5 is an ancestor of fi’ iff @? is a tail of g’. 

Let 9 be the SLD-tree for P and G. The root of 7 is the class Ba = {D,), 
where D, = ((G), NIL, NIL). Any node B of Z with D = (g,%Y’,@) and 
.Y= (G,,..., G,), has a subnode corresponding to each clause of P with a variant 



VERIFIED PROLOG COMPILER FOR THE WAM 373 

whose head is unifiable with car(G,,). This correspondence between the subnodes 
of B and the clauses of P, together with the order on the clauses of P, induces an 
order on the subnodes on B and hence a depth-first order on 5 

A Prolog interpreter performs a depth-first traversal of S; searching for SLD- 
refutations and recording computed answer substitutions. 

Definition 2.4. Let no be the root of the SLD-tree of P and G and let 0; be the 
successor of Bj_, with respect to the depth-first ordering for 1 <i in. Let 
(Djk’..., o;,,) be the sublist of all refutation classes of the list (En,. . . , Do). Let 
CT,, be the computed answer substitution of D;,, for j = 0,. . . , k. The list 

( ai,9. . .V iFi,,> is called an interpretation of P and G. 

In order to compute an interpretation of P and G, we must have a means of 
computing the depth-first successor of a node of the SLD-tree. This is provided by 
the following function. 

Definition 2.5. Let N = B be a node of the SLD-tree T of P and G, where 
D=((G,, ,... ,G,),(C, ,..., C,>,@,, . . . . 8, >>. Let L be a tail of def( ,y(D), PI. 
Then next(N, L) is determined as follows: 

(a) If n = 0 and L = NIL, then next(N, L) is undefined. 
(b) If n > 0 and L = NIL, then next(N, L) = next(N’, L’) (if defined), where 

N’ =purent(N) and L’ = cdr(member(C,, def( x(N’), PI)). 
(c) If L # NIL and N has a subnode M corresponding to car(L), then 

next(N, L) =M. 
Cd) If L # NIL and N has no subnode corresponding to car(L), then 

next( N, L) = next( N, cd4 L)) (if defined). 

Lemma 2.3. Let N = D be a node of the SLD-tree 7 for P and G. Unless N is the 
unique depth-first maximum node of S; the depth-first successor of N is next(N, 
def( ,y( D), PI). 

PROOF. Given a sublist L of P, let B(N, L) be the set of all nodes M of Ysuch 
that either (a) A4 is a descendant of a subnode of N corresponding to some 
member of L, or (b) M is preceded by every descendant of N. Using induction, we 
shall prove that if B(N, L) # 0, then next(N, L) is the minimal node (with respect 
to the depth-first order) of B(N, L). We assume that this statement is true for all 
N’ and L’, where either N’ is an ancestor of N distinct from N, or N’ = N and L’ 
is a tail of L distinct from L. 

Case I: L = NIL. We may assume that N is not maximal, and hence n > 0 and 
next(N, L) = next(N’, L’), where N’ and L’ are as defined in case (b) of Definition 
2.5. Since every element of B(N’, L’) is preceded by every descendant of N and 
therefore belongs to B(N, L), it suffices to show BCN, L) cB(N’, L’). 

Let ME B(N, L). If M is a descendant of N’, then since M is preceded by N, 
the subnode of N’ of which M is a descendant corresponds to some member of 
L’, and hence M E BCN’, L’). If N is not a descendant of N’, then M and N’ have 
ancestors P and Q, respectively, such that P and Q have the same parent and P 
precedes Q. In this case, M is preceded by all descendants of N’, and again we 
have ME B(N’, L’). 
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Case 2: L f NIL. If N has a subnode M corresponding to car(L), then h4 = 
nexl(N, L) and M is the minimal node of B(N, L). If N has no such subnode, then 
next( N, L) = next( N, cd+(L)) and B( N, L) = B( N, cdd L>). 0 

2.3. Last Call Optimization 

If we were to base;a Prolog interpreter on a procedure that computes the function 
next, then a state of our interpreter would consist of an SLD-derivation D and a 
list of clauses L to be matched against the first literal of the leading goal of D. It is 
possible, however, to construct a somewhat more efficient interpreter, by means of 
a technique known as last call optimization. This technique is based on the 
observation that some of the information about the history of a computation that is 
contained in an SLD-derivation is irrelevant to the ultimate result. Specifically, 
instead of recording a clause C, that was successfully matched.with a goal G,_ ,, we 
may record a list of the clauses that remain to be tried for this goal. In the event 
that this list is empty, the goal may be deleted from the derivation. 

We conclude this section by establishing a theoretical basis for this optimization. 
4 As an alternative to SLD-derivations, we introduce the following. 

Definition 2.6. An interpreter state for P and G of length n 2 0 is a list R = 

((G,,,..., G,), (‘L ,,,..., L,), (a,, ,..., a,)) such that for i=l,..., n, 

(a> Gj is a goal clause, and Gj # NIL if i <n; 
(b) L, is a tail of def( x(Gj), P), and Lj # NIL if i <n; and 
(c) ‘T, is a substitution for G. 

R is called a refutation state if G,, = NIL. In this case, a,, is called the refutation 
substitution of R. If 

R’ =((G,;,..., G;),(L:,,...,L;),( d,...,q’)) 
is another interpreter state for P and G, then R and R’ are equivalent if for 
i=l , . . . , n, L, = L: and there exist substitutions pLi and _rl, such that G, pLi = G/, 

Ga, /1( = GO,,‘, G,‘n, = G,, and Gu~‘~, = Ga. I’ 

E will denote the equivalence class of an interpreter state R for P and G. We 
define a transformation on the set of such equivalence classes as follows. 

Definition 2.7. Let R=((G ,,,..., G,), (L, ,..., L,), (a, ,..., a,)) be an inter- 
preter state for P and G. The successor of the class R is the class 3 = succ(&, 
where 

(a> 
(b) 

(c) 

(d) 

if n = 1 and L, = NIL, then s is undefined; 
if n> 1 and L,=NIL, the S=succ(R’), where R’= ((G,_,,...,G,), 

(L ,,_, ,...,L,), (a;,-,,...,a,)); 
if L,, # NIL and there is no variant of car(L,,) whose head is unifiable with 

car(G,), then ,? = succ(R’), where R’ = ((G,,, . . . , G,), (cdr(L,,), 
L n _,,“., L,),(%...,fl,)); 
if L,, f NIL and G,,~i-, is the resolvent of G,, and C via 19, where C is a 
variant of car(L,,) that has no variables in common with either G,l or Gu,,, 

then S= ((G,,+ ,,..., G,), CL,,,, cdv(L,), L,,_,,...,L,), (~,+,,...,a,>> if 
cdr(L,,)#NIL, and S=((G,,+,, G,,_,,...,G,), CL,.,, L,,-l,...,L,), 
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(%+I, a,- ,,...,u,)) if cdr(L,)=NIL,where L,,+i =def(x(G,+,),P) and 
a;l+ , is the restriction of u, 8 to G. 

Lemma 2.1 guarantees that this successor function is well defined. Our goal in 
this section is to show that it provides an alternative model for a Prolog interpreter. 

Theorem 2.1. Let R, be the interpreter state c(G), CL), (0)) for P a@ G, where 
L = def( x(G), P). For 1 _< i I II, let Ri be the successor of Ri_ , . Let ( Rlk,. , . , Ri,, > 
be the sublist of the list ( R, , . . . , if,) consisting of all classes of refutation states. Let 
a,, be the refutation substitution of Ri,, for j = 0,. . . , k. Then the list ( Zjk,. . . , ai,, > 
is an interpretation of P and G. 

The proof of Theorem 2.1 is based on a mapping from SLD-derivations to 
interpreter states. 

Definition 2.8. Let D = ((G, ,..., G,), (C, ,..., C,>, (6, ,..., 19,)) be an SLD-de- 
rivation of P and G, and let L be a tail of def( x(D), P). The reduction of D 
and L is the interpreter state R = red(D, L), defined as follows: 

(a) If n = 0, then R = (NIL, NIL, NIL) if L =,NIL, and R = c(G), (L), 
(0)) otherwise. 

(b) If n > 0, then let R’= ((Hk ,..., H,), (Lk ,..., L,), (ok ,..., a,>> be the 
reduction of ((G,-, ,..., G,,), (C,_ ,,..., C,), (0,_, ,..., 0,)) and L’, where 
L’ = cdr(member(C,, def( ,y(G,, _ ,I, P))). If L = NIL and def( x(D), P) # 
NIL, then R = R’; otherwise, 

R=((G,,H,, . . . . H,),(L,Lk,...,L,),(a,a,,...,a,)), 

where u is the restriction of 8, ... 0, to G. 

In the case L = def( x(D), P), red(D, L) will also be denoted by opt(D). 

As an immediate result of this definition, we have the following. 

Lemma 2.4. Except in the case where L = NIL and def( x(D), P) + NIL, red(D, L) 
and D have the same leading goal clause. red(D, L) is a refutation state iff D is an 
SLD-refutation. If D is an SLD-refutation, then the computed answer substitution 
of D is the refitation substitution of red(D, L). 

The following is a consequence of Lemma 2.2 and Definitions 2.6 and 2.8. 

Lemma 2.5. Let D and D’ be equivalent SLD-deriuations for P and G. Let L be a tail 
of def( x(D), P). Then red(D, L) and red(D’, L) are equivalent interpreter states. 

- 
Lemma 2.5 implies that the functions red and opt induce functions red and opt, 

defined on the SLD-tree of P and G. 

Definition 2.9. Let D be a node of the SLD-tree for P and G and let L be a tail of 

def( x(D), P). 
-- 

(a) If R = red(D, L), then red(D, L) = R. -- 
(b) If R = opt(D), then opt(D) = R. 
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Theorem 2.1 will be derived from the following. 

Lemma 2.6. Let D- ((G,, ,..., G,), (C, ,..., C,>, (0, ,..., 0,)) be an SLD-deriva- 
tion for P and G and let L be a tail of def( x(D), P). If next(D, L) is defined, then 

-- 
$(next(B,L))=succ(red(D,L)). 

PROOF. We follow the same induction scheme as in Lemma 2.3. 

Case I: L = NIL. In this case, next(D, L) = ne.xt(D’, L’), where 

D’=((G,_ ,,..., G,),(C,_,,...,C,),(8,-,,...,e,)) 

and L’ = cdr(member(C,, def( x(D’), P))). Let 

red(D’,L’) = ((Hk,...,H1), (Lk ,..., L,), (gk ,..., a,>>. 

If def( x(D), P) = NIL, then 

red(D,L)=((G,,,H, ,..., H,),(NIL,L, ,..., L,),((+,ak,...,fl,)) 
-- -- 

and succ(red(D, L)) =succ(red(D’, L’)). If def( x(D), PI # NIL, then red(D, L) = 
red(D’, L’). In either case, 

,,t(next(O, L)) =opt(next(E’, L’)) 
-- 

= succ(red( D’, L’)) 
-- 

= succ(red( D, L)). 

Case 2: D has a subnode corresponding to car(L). Since L Z NIL, we may again 

write 

red(D, L) = ((G,,H, ,..., H,), (L,L, ,..., L,), (@,~k,...,~,)> 

for some k 2 0, where u is the restriction of 8, .** 0, to G. next(D, L) = B’, for 
some 

D’=(<G,+ ,,..., G,),(C,+ I,... ,C,>,(e,,+,,...,e,>>, 

where C,, , = car(L) and G,, ,’ , is the resolvent of G,, and some variant of C,, , 
via I!$+,. 

Consider the subcase cdr(L) # NIL. If L’ = def( x(D’), PI, then redid’, ~5’) is 

((Gn+,,G,,,&,..., H,), (L’,cdr(L),Lk,...,L1), (P,~,~~~...~~I)), 
-- 

where p is the restriction of 8, ..* t9,,+, to G. The successor of red(D, L) is the 
class of 

((G,,+,,G,,&,...r H,), (L’,cdr(L),L,,...,L,), (T,(+,~~,...,~I)), 

where T is the restriction of a0,+, to G. Since Gr = GuB,, + 1 = GP, 

opt(next(E, L)) =a(next(E, L), L’) 
-- 

=red( D’, L’) 
-- 

= succ(red( D, L)). 
-- -- 

The s&case cdr(L) = NIL is the same, except that red(D’, L’) = succ(red(D, L)) 
is the class of 

((G,,+,,Hk ,..., H,),(L’,& ,..., L,),(v~,....,(+,)). 
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Case 3: L # NIL and B has no subnode corresponding to car(L). In this case, 
next(B, L) = next(D, cdr(L)) and 

,pt(next(D,L)) =,,t(next(D,cdr(L))). 

Let 

red(D, L) = ((G,,H, ,..., HI), (L, L, ,..., L,), (a, flk ,... ,a,>>. 

If cdr(L) # NIL, then 

red(D,cdr(L))= ((G,,H,,...,H,),(cdr(L),L,,...,L,),(cr,a,,...,a,)); 

otherwise, 

red(D,cdr(L)) =((Hk, . . . . Hi),{& ,..., Ll),(rk ,..., vi>>. 
-- -- 

In either case, succ(red(D, L)) = succ(red(D, cdr(L))), and the result follows from 
the inductive hypothesis. •i 

Proof of Theorem 2.1. If R, is the interpreter state ((G),(L,),((Zi)), where 
L, =def(~(G), PI, then R, = opt@,), where D, = ((G),NIL, NIL). For i = 
1 ,*..> n, let Lj = def( ,y(D;_ ,>, PI and D; = next(Di_ i, Lj_ ,I. By induction on n, we 

have 

Ri =succ(R,J 

-- 
=succ(red(lI_,,L;_,)) 

=opt(next(D,+ L;J) 

-- 
=opt(D;). 

The theorem now follows from Lemma 2.4. 0 

3. THE WAM 

3.1. WAM States 

We assume that R = {h, b, e, t, a, p, c, s} is a set of order 8, and each of the sets A, S, 

H, T, and C is countably infinite: A=(A,,A, ,... 1, S={S,,S, ,... 1, H= 

{H,,N,,... 1, T={T,,T,,... I, and C={C,,C, ,... ). Our formal construction of the 
Warren machine architecture is based on the set 

M=RuAuSuHuTuC 

called the WAM memory. 
An element of M is called a cell. Each element of R is called a register and each 

element of A is an argument register, also called a temporary variable. The sets S, II, 
T, and C are the local stack, heap, trail, and code area, respectively. We shall refer 
to the subscript of a cell in M - R as its address. (For example, Hk is the cell at 
address k in the heap.) 

Machine states will be formalized as functions defined on the domain M. The 
values of these functions will represent the contents of memory cells. 
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.Defnition 3.1. A WAM state is a function W: M -j U such that W(r) E N for each 
r E R. If W is a WAM state and m E M, then W(m) is called the contents of m 
with respect to W. 

The execution of a WAM program will be defined as a sequence of WAM states, 
each of which is derived from the preceding state by applying a state transforma- 
tion that corresponds to some machine instruction. Each of these transformations 
will be defined in terms of the following primitive operation, by which a value is 
stored in a memory cell. 

Definition 3.2. Let c E M and let W be a WAM state. For any x E U, the state 
W[(c *xl is defined by 

W[c -Km> = 
ifm=c 

ifmEM-(c); 

W[c, +x,1-.. [c, +x,1 will also be written as W[c, +-x1,. . . , c, +x,1. 

As described below, each register in R is associated with one of the other WAM 
memory areas: H, A, S, T, or C. The contents of a register with respect to a WAM 
state is a natural number, to be interpreted as an address in its associated area. 

The registers p and c are both associated with the code area C, where WAM 
instructions (Section 3.7) are stored. The register p, called the program counter, 
generally contains the address in C that corresponds to the next instruction to be 
executed. The value 0, however, has special significance. 

Definition 3.3. A WAM state W is a success state if W(p) = 0. 

We define the following operations pertaining to p. 

Definition 3.4, Let W be a WAM state. 

(a) jump(p, WI = W[p + pl 
(b) aduancecn, W) = W[p + W(p) + nl 
Cc) red(n, W) = W(CWcp)+n) 

The set of clauses comprising the definition of a Prolog predicate is compiled 
into a list called a WAM procedure (Section 4.4). Each of these procedures 
corresponds to an address in the code area. One procedure may pass control to 
another by storing its address in the program counter by means of the jump 
operation. (These notions of procedure and control shall remain informal and will 
be used only to motivate our definitions.) 

The continuation pointer, c, is used to store return addresses for procedure calls. 
Thus, immediately before jumping to the called procedure, the current value of the 
program counter is stored in c. 

Definition 3.5. For any WAM state W, 

set-return-address(W) = W [c + W(p)] . 

Upon successful termination of the called procedure, the return address is copied 
back into the program counter. 
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Definition 3.6. If W is a WAM state, then 

proceed( W) =jump( W(c), W) . 

The areas H, T, and S, which are used to store WAM objects (Section 3.21, are all 
manipulated as stacks. The stack pointers associated with H and T are the heap 
pointer h and the trail pointer t, respectively. The lock stack S has two associated 
stack pointers: the encironment pointer e and the backtrack pointer b. These 
registers correspond to the two distinct types of structures that are stored in S: 
environments (Section 3.3) and choice points (Section 3.41, respectively. The top of S 
is determined by the maximum of the contents of these two pointers. 

The structure pointer, s, is a second register associated with the heap. It contains 
a heap address that is incremented by the WAM unification instructions (Section 
3.6) by means of the following. 

Definition 3.7. If W is a WAM state, then 

next-arg( W) = W[s + W(s) + 11. 

The arity register a is associated with the area A, which is used to store 
arguments to WAM procedures. When a procedure is called, its arguments are 
passed in some initial segment (A,, . . . , A,J of A. The number n, which is the arity 
of the Prolog predicate that produced this procedure, is stored in a when the 
procedure is called. 

Definition 3.8. If W is a WAM state and q is a predicate symbol of arity n, then 

set-arity( q, W) = W[a + n]. 

With respect to any given WAM state, only a finite number of cells are of 
interest, determined in part by the contents of various registers. 

Definition 3.9. Two WAM states W and W’ are equivalent, and we write W = W’, if 
W(m) = W’(m) for each m E M that satisfies any of the following: 

(a) m E (h,t,a,b,e,c,p) Cd) m =A,, ks W(a) 
(b) m=H,, ks W(h) (e> m = S,, k I ma-x( W(b), W(e)> 
(cl m=T,, ksW(t) (f> mEC 

3.2. WAM Objects 

In he context of a WAM state, Prolog terms are represented as memory cells in the 
stack and in the heap. An unbound variable, which is the internal representation of 
a variable symbol, is a cell that contains a reference to itself, while a bound Llariable 
contains a reference to its binding. Compound terms are represented by cells in the 
heap called structures. 

Definition 3.10. Let W be a WAM state. 5 is an object of W if any of the following 
holds: 

(a> 6 is a constant. 
(b) 5 = Hk, k I W(h) and either W( 5) = 5 or W( 5) is an object of W. In this 

case, 5 is a heap variable of W. 
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(cl 5 = S,, k _S W(e), and either WC 5 1 = 5 or WC 5 1 is an object of W. In this 
case, 5 is a permanent variable of W. 

Cd1 (=Hk, ks W(h), W<()=f IS a function symbol of arity n, and Hk +j is a 
heap variable of W for j = 1,. . . , n. In this case, 5 is a structure of W with 
functor f and arguments Hk+,,...,Hk+,,. The list (Hk+l,...,Hk+n) is 
denoted args( 5, W). 

A heap variable or permanent variable of W is unbound if WC 5) = 6. Otherwise, 
5 is bound and WC 5 ) is its binding. 

Thus, each WAM object is constructed from constants and unbound variables by 
a finite number of instantiations of Definition 3.10. A number of inductive 
arguments concerning these objects will be based on the following. 

Definition 3.11. For any object t of a WAM state W, count( 5, WI is 

(a) 1, if ( is a constant or an unbound variable of W, 
(b) 1 + count( p, W), if 5 is a variable of W with binding p; 
(c) 1 + Cl=, count(a,, WI, if .$ is a structure of W and a& 5, W) = (a,, . . . , a,>. 

Dejinition 3.12. Let u be a variable of a state W, and let 5 be an object of W. Then 
u occurs in 5 with respect to W if one of the following conditions holds: 

(a) 5= u. 
(b) 5 is a bound variable of W and u occurs in the binding of 5. 
Cc) 5 is a structure of W and u occurs in one of the arguments of 5. 

As an immediate consequence of these definitions, we have the following. 

Lemma 3.1. Let u be a variable of a state W and let 5 # u be an object of W. if u 
occurs in .$ with respect to W, then count(u, W) < count< 5, W). 

The process of variable dereferencing is a basic WAM operation, essential to the 
unification procedure described in Section 3.6. 

Definition 3.13. Let x be an object of a state W. The dereferenced value of x with 

respect to W is 

deref( x, W) = 
( 

deref(W(x),W) if x is a bound variable of W 

X otherwise. 

In order to interpret the objects of a state W as Prolog terms, we must first 
assign a variable symbol to each unbound variable of W. 

Definition 3.14. Let N be an injection from the set of variables of a WAM state W 
into the set V of variable symbols and let x be an object of W. The term 
represented by x with respect to W and N, denoted by [xl, N, is 

(a) x, if x is a constant; 
(b) N(x), if x is an unbound variable; 

Cc> [deref(x, W,, N, if x is a bound variable; 

Cd) (f,[a,l,,.,..., [a,],, N), if x is a structure with functor f and arguments 

a ,,..., a,. 
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For convenience, we shall let N: H U S + V be an arbitrary fixed injection such 
that the range of N contains no variable symbols occurring in either P or G. If x is 
an object of a state W, then [x]~,~ will be abbreviated as [xJw. 

By a simple inductive argument based on the count function, we have the 
following. 

Lemma 3.2. Let u be an unbound uariable of a state W, and let 5 be an object of W. 
Then v occurs in 5 with respect to W iff [II],+, = N(v) occurs in [ [lw. 

3.3. Environments 

One of the two uses of the local stack is to store structures called encironmenfs. An 
environment contains data used by a WAM procedure that must be preserved 
across a call to another procedure. 

Since the contents of the continuation pointer c are generally altered by a 
procedure call, the contents of c before the call (i.e., the return address of the 
calling procedure) is one of the data that must be saved in an environment. Since 
the allocation of the environment itself alters the contents of the environment 
pointer e (i.e., the address of the most recently created environment), the prior 
contents of e must also be saved. Along with these two data, an environment may 
contain an arbitrary number of variables, which are created when the environment 
is allocated. 

Definition 3.15. Let W be a WAM state, let k = ma&W(b), W(e)), and let n E N. 
Then allocate(n, WI is the state 

s k+n+2 6 W(e),e+k+n+2]. 

This operation creates n new unbound variables on the local stack, then pushes 
the contents of c and the old contents of e, leaving e pointing to the new stack top. 
The resulting state is characterized by the following. 

Definition 3.16. Let W be a WAM state with k = W(e) and let n E N. W has an 
environment of order n if WCS,) E N, W(S, _ ,> E N, WCS,) I k - 2 - n, and for 
i=l ,..., r&S,-,_; is a variable of W, denoted by pu(i, W). 

The inverse of the allocate operation is given by the following. 

Definition 3.17. If W is a WAM state that has an environment (of any order) and 
k = W(e), then 

deallocate(W) = W[e+ W(sk),c+ W(S,_,)]. 

Lemma 3.3. Let W be a WAM state and let W’ = allocate(n, W) for some n E N. 
Then W’ has an emironment of order n and deallocate = W. 

For a state W that has an environment, we would like to distinguish between the 
objects of W that are also objects of deallocate(W) and those that are not. 
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Definition 3.18. Let W be a WAM state with an environment, let k = W(e), and let 
6 be an object of W. If 5 = S,, W(S,) <j < k, then 5 is an unstable object of W; 
otherwise, 5 is a stable object of W. 

In particular, if W has an environment of order II, then each of the permanent 
variables pu(i, W), i = 1, . . . , n, is unstable. It is clear that any object of 
deallocate(W) must be a stable object of W. However, if an unstable variable of W 
occurs in a stable object of W, then the converse is false. In Section 3.5, we shall 
introduce a constraint on WAM states that will preclude this situation. 

3.4. Choice Points 

The second function of the local stack is to store structures called choice points. A 
choice point is a block of information that essentially characterizes a WAM state. 
As the execution of a WAM program proceeds from this state, the choice point 
remains intact, so that it may be used later to reconstruct the state from which it 
was derived. The process of reconstruction is called backtracking. 

A choice point is constructed by pushing the contents of various registers and 
argument registers onto the local stack, along with a code area address. The 
address of the new stack top is then saved as the contents of the backtrack pointer. 
All of this is performed by the following transformation. 

Definition 3.19. Let W be a WAM state, a = W(a), k = mu&W(b), W(e)), and 
p E N. Then try-me-else(p, W) is the state 

WI.%+, + W(A1)Y...Jk+u 6 J+V.)Jk+a+l -J,+,+, +- W(e), 

Sk+u+.i + W(t),Sk+0+4 + W(c),Sk+a+5 + W(h)JSk+a+h + W(b)7 

s k+a+,+p,b+k+a+7]. 

The goal of backtracking is to restore the state that existed immediately after 
the last choice point was created. One aspect of this process is the unbinding of 
variables that have become bound since the creation of the choice point. The 
purpose of the trail T is to record these variables as they become bound. The first 
phase of backtracking is the unwinding of the trail, i.e., the unbinding of variables 
that are read from the top of the trail W(t) down to the trail address t that is 
stored in the choice point. 

Definition 3.20. Let W be a WAM state and let 0 <t I W(t). Suppose that 
[=W(T,>isavariableof Wfori=t+l,...,W(t).Then 

unwind(t,W)=W[ttt,~,(,,c5w(t,,...,5r+,t5,+,]. 

Along with the unwinding of the trail, backtracking consists of copying values 
from the local stack into various registers and argument registers. 

Definition 3.21. Let W be a WAM state and let k = W(b). Suppose that k 2 7 and 

that p = W(S,), b = W(S,_,), h = W(S,_,), c = MS,-,), t = W(S,_,), e = 
W(S,_ s), and a = W(S,_,) are all natural numbers, with b < k, h < W(h), 
t< W(t), e<k, and ask-7. Let x~=W(.S_,_~+~) for i=l,...,a. Suppose 
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also that II’(T,) is a variable of W for t < i I W(t). Then W has a choice point 
and backtrack(W) is the state 

unwind(t, W)[p +p,h *h,c*c,e+e,a+a,A,+.x ,,..., A,+x,]. 

An obvious consequence of this definition is the following. 

Lemma 3.4. If W is a WAM state and W’ = try-me-else( p, WI, then W’ has a choice 
point and backtrack = jump(p, WI>. 

The main property of the backtracking operation is that it is unaffected by 
composition with any of various other state transformations. 

Lemma 3.5. Let W be a WAM state that has a choice point and let n E N. In each of 
the following cases, the state W’ also has a choice point and backtrack = 
backtrackc W 1: 

(a) W’ = W; 
(b) W- = W[m * nl, where m E {a, c, p); 
(c) W’ = W[h + n] and n 2 W(h); 
(e) W’ = allocate(n, W); 
(f) W has an emlironment and W’ = deallocated W ). 

We shall require two other operations pertaining to choice points: one for 
altering the code address stored in a choice point and another for removing a 
choice point from the local stack. Since S,(,, is the cell that contains the code 
address component of the choice point of a state W, the first of these operations is 
given by the following. 

Definition 3.22. If W is a WAM state that has a choice point, then 

retiy-me-else( p, W) = W [ S,(,, + p] 

Since SwCLj_, contains the contents of b prior to the creation of the choice 
point, the following operation effectively removes a choice point. 

Definition 3.23. If W is a WAM state that has a choice point, then 

trust-me-else-fail( W) = W [ b +- W( S,(,,_ ])I . 

As immediate consequences of the above definitions, we have the following. 

Lemma 3.6. If W has a choice point, then 

backtrack( retry-me-else( p, W)) = jump( p, backtrack(W)). 

Lemma 3.7. If W’ = try-me-elsecp, W>, then trust-me-else-fail(W’) = W. 

3.5. Binding Variables 

We would like to define the operation of variable-binding in such a way that it is 
reversed by backtracking. In order to allow this, variables are recorded on the trail 
as they are bound. Note that an unbound variable u of W (either in the local stack 
or in the heap) must be trailed only if W has a choice point and u is also a variable 
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of backtrack(W). Since the local stack top and the heap top of backrack are 
stored in the local stack at the addresses W(b) and W(SWCb)_2) respectively, our 
binding operation is defined as follows: 

Definition 3.24. Let x be an object of a WAM state W and let u be an argument 
register or an unbound variable of W. If W has a choice point and either 
u= Hk, k < W&,,C,,_,), or u = S,, k < W(b), then 

bind(u,x,W)=W[t+-W(t)+l,T,,,C,,,,+u,u+x]. 

In all other cases, 

bind(u,x,W) = W[u+x]. 

The above definition is designed so that any variable that is bound after the 
creation of the choice point either becomes nonexistent or is unbounded by 
backtracking. Thus, we have 

Lemma 3.8. Let W be a WAM state and let u be an argument register or an unbound 
variable of W. If W has a choice point, then 

bucktrack( bind( u, x, W)) = backtrack(W). 

Recall that the count of a variable exceeds that of its binding and must be 
exceeded by the count of any object in which it occurs. Thus, if an unbound 
variable u of W occurs in an object X, then u cannot be a variable of the state 
bind(u, x, WI. However, by induction on cot&x, WI, we may easily prove the 
following. 

Lemma 3.9. Let x be an object of a WAM state Wand let u be an argument register or 
an unbound variable of W. If u does not occur in x, then every object of W is an 
object of bind(u, x, W). 

When two unbound variables are unified (Section 3.61, a choice is made as to 
which variable is bound to the other. The primary concern is to avoid any state in 
which a stable variable is bound to an unstable one, since deallocation in this 
situation would result in a dangling reference. This is ensured by the requirement 
that no heap variable is bound to a stack variable, and that no stack variable is 
bound to a stack variable of higher address. 

A secondary concern is one of efficiency: due to the expense of trailing and 
untrailing, it is generally desirable to bind the variable that is less likely to require 
trailing, i.e., to survive backtracking. Thus, when two heap variables are unified, we 
bind the one with higher address. 

The following definition provides a heuristic that governs the choice of binding 
direction. 

Definition 3.25. If u and u are elements of H U S, then u precedes u if any of the 
following holds: 

(a) uEHand uES; 
(b) u=H,,u=H,,and k<l; 
Cc) u = S,, u= S,, and k < 1. 
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During the execution of a Prolog program, no variable will be bound to a 
variable that does not precede it. Thus, the following property of WAM states will 
be preserved. 

Definition 3.26. A WAM state W is directed if for each variable v of W, if W(v) is 
a variable of W, then W(v) precedes v. 

As a result, no dangling references will be created by deallocation. 

Lemma 3.10. Let W be a directed WAM state with an environment and let 5 be an 
object of W. 5 is a stable object of W iff 5 is an object of deallocatd W). 

It is sometimes desirable to construct a state in which two variables (perhaps 
temporary variables) have the same binding, without binding either variable to the 
other. This is achieved by binding both variables to a new variable in.the heap. 

Definition 3.27. Let W be a WAM state and let each of u and v be either an 
argument register or an unbound variable of W. Let h = W(h) + 1 and let 
W’=W[H,,+H,,h+-hl.Then 

stabiZize(u,v,W) =bind(v,Hh,bind(u,H,,W’)). 

We note two obvious properties of this transformation. 

Lemma 3.11. Let W be a WAM state and let each of u and v be either an argument 
register or an unbound permanent variable of W. Let W’ = stabilize(u, v, W). 

(a) backtrackc W’) = backtrackc W); 
(b) If W is directed, then so is W’. 

3.6. Unification 

A number of WAM instructions are based on the unify transformation, as defined 
in Figure 1. The arguments of unify are a WAM state W and two objects x and y 
of W. If the Prolog terms represented by x and y are unifiable, then unifi)(x, y, W) 
is a state in which x and y represent the same term, produced by performing a 
series of variable bindings. On the other hand, if these terms are not unifiable, 
then the state unify(x, y, W) is equivalent to backtrack(W). 

The definition of unify is based on the auxiliary function unify-lists, the argu- 
ments of which are a WAM state W and two lists of objects 1 and m of W. In order 
to see that the recursive definition of unify-lists is valid, i.e., that it is satisfied by a 
unique function, observe that on each recursive call, either W is replaced by a state 
with fewer unbound variables than W, or W is held constant and I= (un,. . . , u, > is 
replaced by a list 1’ = (u:, . . . , u; > such that 

5 count(ul, W) < 2 count(ui, W). 
i=l i=l 

The following definition will be useful in our characterization of unify. 
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Function unify-lists(l, m; W 1; 
(1 and m are lists of equal length of objects of a WAM state W} 
if I= NIL then return W 
else begin 

x + deref(car(f), W); y +- deref(car(m), W); 
if x = y then return unifjt-lists(cdr(l), c&(m), W) 
else if x is a variable then 

if y is a variable then 
if x precedes y 

then return unify-lists(cdr(l), q?(m), bind(y, xi WI> 
else return unijj&ts(cdr(l), c&(m), bind(x, y, WI) 

else if x occurs in y w.r.t. W theri return backtrack(W) 
else return unijjGsts(cdr(l), c&(m), bind(x, y, WI> 

else if y is a variable then 
if y occurs in x w.r.t. W 

then return backtruckt W) 
else return unify-lists(cdr(l), c&(m), bind(y, x, W>) 

else if x and y are structures with the same functor then 
return unijjAists(uppend(args(x, WI, c&U)), uppend(urgs(y, W), cdr(mN, W) 

else return bucktruck( W) 
end. 

Function unifi(x, y, W); 
(x and y are objects of a WAM state W} 
return unify-lists(( x), (y >, WI. 

FIGURE 1. Unification of WAM objects. 

Definition 3.28. Let W and U be directed WAM states and let 8 be a substitution. 
U is an extension of W by 8 if 

Cc) 

U(c) = W(c), U(e) = W(e), and I/CC,) = WCC,) for all k 2 1; 
U has an environment iff W has an environment; if so, then deallocate(U) is 

an extension of deallocate(W) by 0; 
U has a choice point iff W has a choice point; if so, then backtrack(U) = 
backtrackc W 1; 

Cd) for every object 5 of W, 5 is an object of U and [ 5 Iv = 1s Iwe. 

As an immediate consequence of this definition, we have the following. 

Lemma 3.12. Let W, U, and V be directed WAM states and let w and 7 be 
substitutions. If U is an extension of W by g and V is an extension of U by r, then V 
is an extension of W by ur. 

Lemma 3.13. Let W be a directed WAM state, let x be an object of W, and let u be an 
unbound van’able of W. Assume that u does not occur in x, and that if x is a 
variable, then v does not precede x. Then bind(v, x, W) is an extension of W by 

I([vlw, [XIWN. 

PROOF. We show by induction on W(e) that Definition 3.28 holds for U = 
bind(u, x, W> and 8 = {([ul,,[xl,)l: 

(a) is trivially satisfied; 
(b) is trivial if W has no environment. Otherwise, let W’ = deallocate(W) and 

U’ = deallocate(U). If u is a stable object of W, then U’ = bind(u, x, W’) and 
the statement follows by induction. If not, then U’ = W’, [ &&,, = [ -flwr = 
[ ,$lwse for each object 5 of W’, and the statement is again trivial; 
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(c) follows from Lemma 3.8; 
(d) follows from Lemma 3.9 and induction on count( 5, W). q 

Finally, our specification of unify is as follows. 

Lemma 3.14. Let x and y be objects of a directed WAM state Wand let U = unify(x, y, 

W). If [xl, and [y],+, are unifiable terms, then they hate a mgu 6’ such that CT is 

an extension of W by 8. If not, then U = backtrack(W). 

PROOF. For any list p = ( &,, . . . , 5, > of objects of a WAM state W, [PI,+, will 
denote the list of terms ([ tk],,,,, . . . , [ c,lw >. Let 1 = (u,,, . . . , u,) and m = (u,, . . , u, > 
be lists of objects of W and let U = unify-lists(l, m, W). We shall show that if [/I, 
and [mlw are not unifiable, then U = backtrack(W), while if [I[wa= [m],,,u for 
some substitution u, then there exist substitutions 8 and r such that U is an 

extension of W by 8, [l],e = [ml,e, and (T = 07. 
If either I = NIL or W has no unbound variables, then U = W and the claim is 

trivially true with e = 0 and (T = r. We proceed by induction, assuming that n > 0 
and that the claim is true if either W is replaced by a state with fewer unbound 
variables than W, or W is held constant and I= (CL,, . . . , u, > is replaced by a list 
1’ = (UA., . . . , u;) such that 

E count(ui, W) < i count(uI, W). 
/=I i=l 

Suppose n > 0 and let x = deref(u,,, W) and y =deref(u,, W). If x =y, then 
U= unify-lists(cdr(l),cdr(m), W) and [u,], = [xl, = [ylw = [u,lw. Thus, for any CT, 
[llwu= [ml,,,,v iff cdr([ll,)a= cdr([mlw)a, and the claim follows from the 
inductive hypothesis. 

Next, suppose that x and y are structures with the same functor. Let I’ = 
append(args(x, W), cdr(l)) and m’ = append(args(y, W), cdr(m)). Then U = uni&- 
fists(l’, m’, W) and for any U, [Ilw~= [ml,,,, u iff [/‘],a= [m’],a. The claim again 
follows by induction. 

In the remaining case, if neither x nor y is a variable, or if one is a variable that 
occurs in the other, then [xl, and [yl,+, are not unifiable, hence neither are [I], 
and [mlw, and U = backtrack(W). We may assume, therefore, that either x or y is 
a variable that does not occur in the other. Moreover, without loss of generality, we 
may assume that x is a variable that does not occur in y and that if y is also a 
variable, then y precedes X. 

In this case, U = unify-lists(l’, m’, W’), where 1’ = cdr(l), m’ = cdr(m), and W’ = 
bind(x, y, W). By Lemma 3.13, W’ is an extension of W by p = (([x],,[y],)}. If 
[II, and [mlw are not unifiable, then neither are [I’],, = cdr([l],)p and [ml],. = 

cdr(]ml,)p, hence U = backtrack = backtrack(W). Suppose &a = [m],u. 

Let (T’ = (T- (([xl,,[xl,cr>). If z is any variable symbol other than [x]~,,, then 

=Pfl ’ =zu’ =zu, while [xl,pu’ = [ylwu’ = [ylwu= [~],a. Thus, pa’ = u and 
[l’l,,u ’ = cdr([l],)pu’ = cdr([ll,)u = cdr([ml,)a = cdr([mlw)pv’ = [m’],,,,,u’. 

By inductive hypothesis, there exist 0’ and T such that U is an extension of W’ by 
8’, [I’],,B’ = [m’],,,.e’, and U’ = 0’7. Let 8 = pe’. Then 

u=pu ’ = pe17= e7, 
Plw~ = (car( [llw> PO’, cdr( [IIM/)pe’) = ([&,d’, [1’],,) e’ 

= ([rlwN’, [m’h) e’) = (car( [mlw)d’,cdr( [ml,) PO’) = [m],e, 
and by Lemma 3.11, U is an extension of W by e. q 
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3.7. WAM Instructions 

We assume that 0 is a set of order 22: 

0= (TRY-ME-ELSE, RETRY-ME-ELSE, TRUST-ME-ELSE-FAIL, 

BACKTRACK, JUMP, PROCEED, ALLOCATE, DEALLOCATE, CALL, 

EXECUTE, GET-VALUE, GET-VARIABLE, GET-CONSTANT, 

GET-STRUCTURE, PUT-VALUE, PUT-VARIABLE, PUT-CONSTANT, 

PUT-STRUCTURE, PUT-UNSAFE-VALUE, UNIFY-VALUE, 

UNIFY-VARIABLE, UNIFY-CONSTANT}, 

each element of which is called a WAM opcode. We further assume that associated 
with each opcode w is a function Tw, and for convenience, we shall give T, the 
same name as w, for each w E 0. Thus, the first eight opcodes listed above are 
associated with the functions tly-me-else, retry-me-else, trust-me-else-fail, backtrack, 
jump, proceed, allocate, and deallocate, all of which have been previously defined. 
The functions associated with the remaining opcodes will be defined later in this 
section. 

For w E 0, the function T, may have any positive arity. Its last argument is 
expected to be a WAM state, and the number of remaining arguments is called the 
a&y of w. Thus, if T, is a function of arity n, then the arity of w is n - 1. The first 
n - 1 arguments of T, may be natural numbers, constants, predicate and function 
symbols, or elements of the sets X and Y. These are assumed to be countably 
infinite sets, X = {X,, X,, . . .} and Y = {Y,,Y,, . . .}, of objects called temporary 
symbols and permanent symbols, respectively. Temporary and permanent symbols 
refer to temporary and permanent variables, respectively. We define the following 
mapping. 

Dejinition 3.29. Let W be a WAM state. 

(a> For each X, E X, IXjlw =A;. 
(b) For each x E Y, I~Iw =pu(i, W). 
cc> For each z E X U Y, [zl,,,, = [W(lzl~&,. 

Definition 3.30. A WAM instruction is a list ( w, x,, . . , x,, >, where w E 0, n = 
a&y(w), and x,ENUKUPUFUXUY for lrin. The xi are called the 
arguments of the instruction. 

Aninstruction I= (0,x ,,..., x,) is encoded in the WAM memory by storing its 
members in n + 1 consecutive cells in the code area. Suppose that with respect to a 
WAM state W, I is stored at address k, i.e., W(C,) = w and HJ’(C,+~> =xi, for 
i=l ,..., n. If W(p) = k, then Z is the instruction to be executed in this state. After 
the program counter is advanced by n + 1, resulting in a state W’, the function T, 
is applied to the II + 1 arguments x,, . . . , x,~, W’. The function that performs this 
execution is defined as follows. 

Definition 3.31. Let W be a WAM state. Suppose that w = read(0, W) E 0 with 
arity( w) = n. Let xi = read(i, W) for i = 1,. . . , n, and let W’ = adr’anceh + 1, IV). 
Then 

step(W) = T,(x,,x,,W’). 
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Dejinition 3.32. If W,, . . . , W, is a sequence of WAM states such that q = 

step(q_ ,> for i = 1,. . . , n, then 
w, -+ w,. 

Definition 3.33. A WAM state W fails if W + W’, where either 

(a> W’ = backtrackc W ), or 
(b) W’ is not a success state and step(W’) is undefined. 

Definition 3.34. Let W be a WAM state and let k E N. Let 

L = <W(C,),...,W(C,,)), 
where k I n. Then k points to L with respect to W. If k = 1, then L is loaded 
w.r.t. W. 

It is useful to reformulate Definition 3.31 in terms of Definition 3.34. 

Lemma 3.15. Let W be a WAM state and let I = ( 6.1, x,, . . . , x,,) be a WAM 
instruction. If W(p) points to append(I, L) for some list L, then 

step(W) = T,( x,, . . , x,, W’), 
where W’ = jump( j, W) and j points to L w.r.t. W. 

As we shall see in Section 4.4, if the program P is compiled and loaded with 
respect to a state W, then the contents of the first 2r cells of the code area, 

(WCC,),..., W(C2,>), is the list (s,, a,, . . ., q,-,a,), where {q,,. . . ,q,l is the set of all 
predicate symbols that occur in P and a, is the address in the code area where the 
compiled procedure for q, is stored. Thus, the following function may be used to 
compute the address of the procedure for a given predicate. 

Definition 3.35. Let W be a WAM state, let q be a predicate symbol, and let n be 
the least natural number for which W(C,,) = q. Then 

procedure-address( W, q) = W( C,, + , ) . 

The instructions EXECUTE and CALL are both used for jumping to a WAM 
procedure. 

Definition 3.36. Let q be a predicate symbol defined in W. 

(a) executecq, W> = jump(procedure-address(q, W), set-aritycq, W>>; 
(b) call(q, W> = executecq, set-return-addressc W>>. 

The four GET- instructions are used to unify the contents of a temporary 
variable with some other WAM object. 

Definition 3.37. If W is a WAM state, x E X, z E X U Y, and c E K, then 

(a) get-r~alue(z, x, WI = unify(W(lzlrc;>, W(lxlw), W); 
(b) get-Lsatiable(z, x, W) = bind(lzlw, W(lxl~), WI; 
(c) get-constant(c, x, W> = unify(c, w(JxJ~l, WI. 

In order to define GET- STRUCTURE, we need an operation that creates a 
structure by pushing a function symbol and a block of unbound variables onto the 
heap and setting the structure pointer to the address of the new structure. 
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Definition 3.38. Let W be a WAM state, let f be a function symbol of arity n, and 
let k = W(h) + 1. Then push-structmre(f, W> is the state 

W[H,+f,H,+, ~Hk+,,...,Hk+ntHk+n,htk+n,s’k]. 

We shall also require an operation that sets the structure pointer to the address of 
the first argument of an already existing structure. 

Defmition 3.39. If x = Hk is a structure of a WAM state W, then 

set-structure-pointer( x, W) = W[s c- k]. 

Definition 3.40. Let W be a WAM state, let x E X, f E F, and let dx = 
deref(W()xlw), W). Then get-structurecf, x, W> is the state 

(a) unify(dx, H ,+,(,,)+ ,, push-structure(f, W>>, if k is a variable of W; 
(b) set-structure-pointer(dx, W), if dx is a structure of W with functor f; 
Cc> backtrackc W ), otherwise. 

The PUT- instructions are used to store WAM objects into temporary variables. 

Definition 3.41. If W is a WAM state, x E X, c E K, z E X U Y, y E Y, and 
dy = deref(lyl,, WI, then 

(a) put-ualue(z, x, W) = bidlxlw, W(Izlw), W>; 

(b) put-variablecz, x, W> = 
1 

bind(Ixl~,Izl~,W) if zEY; 

stabilize(lxlw,lzlw, W) if zEX; 
Cc> put-constandc, x, WI = bind(Ixlw, c, W); 
(d) put-structure(f, x, W> = bind(IxI W, H,(,, + , , push-structure(f, W 1); 

(e) put-unsafe-vafue( y, x, W) = 
stabilize( lxlw , dy, W) if dy is unstable. 

bind(Ixlw,dy,W) otherwise. 

The UNIFY- instructions, which are only called after either GET - STRUCTURE or 
PUT - STRUCTURE, attempt to unify heap variables with other WAM objects. 

Definition 3.42. If W is a WAM state, z E X U Y, and c E K, then 

(a) uni&vatiabfe(z, W> = bidlzlw, Hwcsj+ ,, next-a&W>); 
(b) unify-value(z, W) = unify(W(lzlw>, Hwcsj+ ,, next-a&V>); 
(c) unify-constandc, W) = unifi(c, Hwcsj+ ,, next-arg(W)>. 

4. PROLOG ON THE WAM 

4.1. Specification of the Compiler 

We shall define two functions, compile-program and compile-goal, such that for any 
program p and any goal clause g, compile-program(p) and compile-goal(g) are lists 
of elements of U. Program execution is defined in terms of these two functions as 
foilows. 
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Definition 4.2. Let p be a program and let g be a goal clause with r:ars(gl = 

(n ,, . . . , v,). Let W, be a WAM state such that 

(a) W,(b) = W,(e) = W,,(c) = IV&t> = 0; 
(b) W,,(a) = W,(h) = n; 
(c) W,(A,)=W,(H,)=H,,f0r i=l,...,n; 
(d) compile-program(p) is loaded w.r.t. W,; and 
(e) W,(p) points to compile-goal(g) w.r.t. W,. 
Let (W,,..., W,) be a list of success states such that W, -+ W, and 

backtrack( W) + W+ I 

for i= l,..., k - 1. For i = 1,. . . , k, let 

and let Zj denote the set of substitutions for g that are equivalent to uj. Then 
(Zk,..., i?,) is called a WAM execution of p and g. 

Once we have defined compile-program and compile-goal, our goal will be the 
proof of the following theorem. 

Theorem 4.1. Let Z be a list of equivalence classes of substitutions for G. Then Z is a 
WAM execution for P and G if and only if C is an interpretation of P and G. 

In the sequel, W, will denote a fixed WAM state that satisfies Definition 4.1 
with respect to our fixed program P and goal clause G. For any WAM state W, we 
shall assume that W(C,> = W,,(Cj) for all i L 1. In this context, the statements k 
points to L and L is loaded will be unambiguous. If uars(G) is the list (u,, . . . , u,), 
then CT,,, will denote the substitution {(u,, [El,],,,), . . . , (I+,, [H,],)}. 

4.2. Symbol Tables 

A variable symbol occurring in a program clause corresponds at run-time either to 
a permanent variable or to a temporary variable of the WAM, according to 
whether or not it must be saved across a subroutine call. 

Definition 4.2. Let u be a variable symbol that occurs in a program clause C. If u 
occurs in two distinct goal literals of C, or if u occurs in both the head literal 
and some goal literal other than the first, then u is permanent with respect to C. 
Otherwise, u is temporary with respect to C. The set of all variable symbols that 
are permanent w.r.t. C is denoted perms(C). 

The permanent variable symbols of a clause are further dassified as safe or 
unsafe. 

Definition 4.3. Let / be the last goal literal of a program clause C and let 
u~perms(CI. Then u is safe with respect to C if any of the following holds: 

(a) u does not occur in /; 
(b) u occurs in head(C); 
(c) u occurs in a compound term occurring in C - (d); 
(d) the first occurrence of u in E’ is in a compound term. 
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Otherwise, u is unsafe w.r.t. C. The set of all unsafe variable symbols w.r.t. C is 
denoted uns(C). 

The significance of an unsafe variable symbol is that the value of its correspond- 
ing run-time variable may be an unstable object at the time that it is passed as an 
argument to the procedure call corresponding to the last goal literal of a clause. 
Since the current environment is deallocated immediately before passing control to 
this procedure, special precautions (as described in Section 4.3) are necessary in 
the presence of unsafe variable symbols in order to avoid dangling references. 

The correspondence between variable symbols and permanent and temporary 
variables is represented as an object of the following type. 

Definition 4.4. A symbol table is a finite subset 8 of V X (X U Y) such that if (x,, z,> 
and (x,, z,> are distinct elements of 8, then xl #x2 and z, # z2. 

Note that in the context of a WAM state, a symbol table determines a 
substitution. 

Definition 4.5. If W is a WAM state and 8 = ((u,, z,), . . . ,(v,, z,>) is a symbol table, 
then 

Each literal / of a program clause C is compiled in the context of a symbol 
table 6. Of the variable symbols that occur in /, the ones that occur in b are 
precisely those that also occur in some literal of C that precedes J’. As new 
variable symbols are encountered during the compilation of F’, a new symbol table 
b’ is constructed as an extension of 6. Thus, if a variable symbol u has its first 
occurrence in /, then u is assigned to a permanent or temporary symbol and this 
assignment is recorded in b’. 

If u~pemzs(C), then the permanent symbol of lowest index that does not 
already occur in (the partially constructed) b’ is selected. The selection of a 
temporary symbol, in the case uepemts(C), is in general restricted by two other 
parameters: a list r of temporary symbols that are already in use for some other 
purpose and a natural number n, which represents a strict lower bound on the 
index of a selected symbol. The latter restriction is imposed in order to avoid 
allocating temporary variables that are reserved for procedure arguments. 

The following functions are used in the construction of 6’. 

Definition 4.6. Let b be a symbol table, let n E N, and let r be a list of temporary 
symbols. 

(a) new-pem(b) = Y,, k being the least i such that y does not occur in b; 
(b) new-temp(b, r, n) =X,, k being the least i such that i > n and X, does not 

occur in either r or b. 

The resulting symbol table is described in terms of the following. 

Definition 4.7. Let b be a symbol table, let p CV be a set of m variable symbols, 
and let n E N. Then b respects p and n if for each (x, z) E b, either 

(a) x=pand z=Y, forsomei<m;or 
(b) x@p and z=Xj for some j>n. 
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The unstable variables of a WAM state corresponding to permanent symbols 
that have not yet been assigned to variable symbols require special attention. 

Definition 4.8. Let b be a symbol table, let W be a WAM state, and let 5 =pu(k, WI 
be an unstable variable of W. If Y, does not occur in b, then 5 is a reserved 
variable of W with respect to b. 

Definition 4.9. Let b be a symbol table and let W be a WAM state. A permanent 
variable 5 of W is free with respect to b if ,$ is unbound, no variable of W is 
bound to 6, and for all Xi occurring in b, W(Aj) # g. If p is a set of m variable 
symbols, then W is compatible with b and p if W(lz(w ) is an object of W for all 
(x, z) E b, and if m > 0, then W has an environment of order m and each 
reserved variable of W w.r.t. b is free w.r.t. b. 

4.3. Compiling Literals 

This section describes three functions on which our definitions of compile-program 
and compile-goal will depend: compile-head-literal, compile-goal-literal, and extend- 
table. We begin by presenting specifications for these functions-that is, we state 
three lemmas that together characterize their desired behavior. We then give 
definitions for the three functions and prove that they satisfy these specifications. 

The function extend-table returns the symbol table b’ that is constructed during 
the compilation of a (head or goal) literal of a program clause. Its arguments are 
the list I of arguments of the literal, the set p of permanent variable symbols of 
the clause, the symbol table b in the context of which the literal is compiled, and a 
natural number n restricting the choice of temporary symbols, as previously 
described. For a goal literal, n is the number of its arguments (i.e., the length of t); 
for a head literal, n is the number of arguments of the leading goal literal (or n = 0 
if the body is NIL). The behavior of extend-table is specified by the following. 

Lemma 4.1. Let t be a list of terms, p c V, n E N, b a symbol table that respects p and 
n, and b’ = extend-table(t, b, p, n). Then b’ is a symbol table that respectsp and n, 
b z b’, and the variable symbols that occur in b’ are all of those that occur in either 
b ort. 

The function compile-head-literal is designed to generate code that attempts to 
match the arguments of the head of a clause with the actual arguments of a 
procedure call, which have been stored in argument registers. It takes three 
arguments: the argument list t of the head literal, the set p of permanent variable 
symbols of the clause, and the number n of arguments of the first goal literal of the 
clause. (The last argument is used to ensure that the first n argument registers are 
reserved for the arguments of the first subroutine call.) The properties of this 
function that we shall require are collected in the following. 

Lemma 4.2. Let t = (t ,, . , . , t, > be a list of terms in which no element of range(N) 
occurs. Let n E N, p c V, and b = extend-table(t, 0, p, n). Let W be a directed 
WAM state compatible with 0 and p such that W(p) points to 

append( compile-head-literal( t , p, n) , d) . 
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Assume that W(A,) is an object of Wfor i = 1,. . . , k and let 

If t and u are not unifiable, then W fails. Otherwise W -+ U, where 

(a) U(p) points to d; 
(b) lJ is an extension of W by some substitution 8 such that [b], z 8 and 13 is a 

mgu for t and u; 
(c) if 5 is a free variable of W w.r.t. Oand e# ]z]v for all (x, z) E b, then .$ is a 

free variable of U w.r.t. b; in particular, U is compatible with b and p. 

Suppose further that W(A,) is a stable object of Wfor i = 1,. . . , k. Then for each (x, 
z) E b, lz]v is a stable object of U. 

The code for each goal literal of a clause is generated by compile-goal-literal, 
which takes four arguments: the list t of arguments of the literal, the set p of 
permanent variable symbols of the clause, the symbol table b in the context of 
which the compilation occurs, and a set u up. In the case of the final goal literal of 
a clause, u is the set of unsafe variable symbols of the clause; otherwise, u = 0. 
The resulting code has the effect of storing objects that represent the arguments of 
the literal into argument registers. The precise specification of compile-goal-literal 
is given by the following. 

Lemma 4.3. Let t = (t ,, , . . , t, > be a list of terms, p c V, b a symbol table that respects 
p and n, and b’ = extend-table(t, b, p, n). Let u~p such that for all x E II, (x, 
z) E b for some t E Y, and let W be a directed WAM state compatible with b and p 
such that W(p) points to 

append( compile-goal-literal( t , b, p, IJ) , c) . 

Then W + U, where 

(a) U(p) points to c; 
(b) U is an extension of W by some renaming substitution 8 such that [b’ - b]v c 0 

and for each (x, y) E 8 there is a variable 5 of U such that N( 5 ) = y and if 5 is 
a variable of W, then 5 is reserved w.r.t. b; 

(c) if 5 is a free variable of W w.r.t. b and 5 # 1.~1~ for all (x, z) E b’, then 5 is a 
free variable of U w.r.t. b’; in particular, U is compatible with b’ and p; 

Cdl [Ai]v=tjCb’]v fori=l,...,k; 
(e) for each (x, z) E 6’ - b, if x occurs in a compound term that occurs in t, then 

U(lzlv) is stable. 

Suppose further that for each x EP - v that occurs in t, either (i) there exists a pair 
(x, z) E b such that W(lz]w) is stable, or (ii) the first occurrence of x in t is in a 
compound term. Then for j = 1,. . . , k, U(l X;, Iv) is stable. 

The functions compile-head-literal, compile-goal-literal, and extend-table are de- 
fined in Figures 2, 3, and 4 in terms of the auxiliary functions compile-literal, 
compile-term, and extend-table-aux. In our design of these definitions, simplicity was 
a greater consideration than efficiency. However, since our proof of Theorem 4.1 
depends on these definitions only insofar as they satisfy the three lemmas stated 
above, they may be optimized in any way that preserves the truth of these lemmas. 
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Function compile-literalch, t, r, b, p, u, n); 
begin 

if t = NIL then return NIL 
else if car(t) is a constant then 

i + (concatch, CONSTANT), car(t), car(r)) 
else if car(t) is a compound term then 

begin 
if car(r) =X, with j > II 

then i + (GET- STRUCTURE,fimt(car(t)), car(r)) 
else i t (concatch, STRUCTURE), finct(car(t)), car(r)); 

return append& compile-tetm(h, atgsgs(car(t)), cdr(t), cdr(r), b, p, a, n)) 
end 

else if car(t) E u and (car(t), z) E b then *(unsafe variable)* 
i+ (PUT--UNSAFE-VALUE,z, car(r)) 

else if (car(t), z) E b then *{previously encountered variable)* 
i + (concat(h, VALUE), z, cur(r)) 

else *{first occurrence of variable}* 
begin 

if car(t) Ep 
then z + new-perwz(b) 
else z + new-temp(b, r, n); 

b + {(car(t), z)} u b; 
i * (concat(h, VARIABLE), z, car(r)) 

end; 
return uppend(i, compile-literalch, cdr(t), cdr(r), b, p, a - {car(t)}, n)> 

end. 

FIGURE 2. Compiling a literal. 

Function compile-tennth, a, t, r, b, p, u, n); 
begin 

if a = NIL then return compile-literalth, t, r, b, p, u, n) 
else if car(a) is a constant then 

i + (UNIFY - CONSTANT,car(a)) 
else if car(a) is a compound term then 

begin 
t + (car(a), t); r + (new-temp(b, r, n), r); 
ic (UNIFY-VARIABLE,car(r)) 

end 
else if (car(a), z) E b then i +- (UNIFY-VALUE,Z) 
else begin 

if car(a) E p 
then z C- new-petm(b) 
else z +- new-temp(b, r, n); 

b + ((car(a), z)} U b; 
i+ (UNIFY-VARIABLE,Z)) 

end; 
return appendci, compile-tetmth, cdr(a), t, r, b, p, u, n) 

end. 

Function compile-head-literalct, p, n>; 
return compile-hteraf(GET-, t, (X,, . . . , Xlengrh(,)), 0, p, 0, n). 

Function compile-goal-literaltt, b, p, v); 
return compile-hterat(PUT-, t, (X,, . . . , Xleng,,,(,,), b, p, v, length(t)). 

FIGURE 3. Compiling a term. 
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Function extend-table-au..xfa, t, r, b, p, n); 
begin 

if a = NIL then 
begin 

if t = NIL then return b 
else if car(t) is a compound term then 

return extend-table-au&a&car(t)), cd&t), cd&), b, p, n) 
else if car(t) is a variable symbol occurring in b or a constant then 

return extend-table-a&NIL, cd&), cdr(r), b, p, n) 
else begin 

if car(t) Ep 

end 

then b +- {(car(t), new-per&b))} U b 
else b + ((car(t), new-temp(b, r, n))) u b; 

return &end-table-a&NIL, cd&), cdr(r), b, p, n) 
end 

else if car(a) is a variable symbol not occurring in b then 
if car(a) E p 

then b +- ((car(a), new-pem(b))) U b 
else b + {(car(a), new-temp(b, r, n))} U b 

else if car(a) is a compound term then 
begin 

t + (car(a), t); r + (new-temp(b, r, n), r) 
end; 

return extend-table-au.x(cdr(a), t, r, b, p, n) 
end. 

Function extend-tableit, b, p, n); 
return extend-table-a&NIL, t, (X,, . . . , XIengthCr)), b, p, n). 

FIGURE 4. Building a symbol table. 

Note that the functions compile-literal and compile-term serve to generate the 
code for both head and goal literals. The main difference between these two cases 
is that the code for a head literal reads objects from argument registers by means 
of the GET- instructions, whereas the code for a goal literal writes objects into 
argument registers by means of the corresponding PUT- instructions. The value of 
the argument h to compile-literal and compile-temz is expected to be either GET- or 
PUT-, according to the type of literal being compiled. The function concat is 
assumed to return the WAM opcode that corresponds to the concatenation of its 
two arguments, e.g., ConcdPUT-, VALUE) =PUT-VALUE. 

The three auxiliary functions take another argument, r, which is a list of 
temporary symbols corresponding to the argument registers from which arguments 
are to be read or into which arguments are to be written. The functions compile-term 
and extend-table also take an argument a, representing the arguments of a 
compound term being compiled. 

Lemmas 4.1,4.2, and 4.3 will be derived as consequences of three more general 
statements about the functions compile-term and extend-table-aux. These will all be 
proved according to the same induction scheme, based on the structure of the 
expression (a, t), where a and t are lists of terms. The inductive hypothesis is that 
the proposition to be proved is true if a and t are replaced by G and f, where either 
complexity((a’, 3) < complexity((a, t 11, or complexity((a’, f’I) = complexity((a, t) and 
length(C) < length(a). 

Using this induction scheme, the proof of the following is a straightforward case 
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analysis based on the definition of extend-table-aux. Note that Lemma 4.1 is the 

special case where a = NIL and r = (X,,. . . , Xlength(,)). 

Lemma 4.4. Let a and t be lists of terms, r a list of temporary symbols of the same 
length as t, p c V, n E N, b a symbol table that respects p and n, and b’ = extend- 
table(a, t, r, b, p, n). Then b’ is a symbol table that respects p and n such that 
b c b’ are the variable symbols that occur in b’ are all of those that occur in either b 
or t. 

Lemma 4.2 is a special case of the following, with != 0, r = (X,, . . . , X, >, and 
b = 0. 

Lemma 4.5. Let a = (a,, . . . , a,) and t = (t , , . . . , t, > be lists of terms in which no 
element of range(N) occurs. Let r = ( Xi,, . . . , X;,) be a list of temporary symbols, 
n E N, and p c V. Let b be a symbol table that respects p and n such that no 
member of r occurs in b, and let 

b’ =extend-table-aux(a,t,r,b,p,n). 

Let W be a directed WAM state compatible with b and p such that W(p) points to 

append(compife-tem(GET-,a,t,r,b,p,0,n),d). 

Assume that W(A,) is an object of W for i = 1,. . . , k and that ti = Hw(s,+i is a 
variable of W for i = 1, . . . , f. Let 

L =( Law ,.,.,[%l,,[~i,]w~...~[x;~]~) 

and M = append(a, t)[b],. 
If L and M are not unifiable, then W fails. Otherwise, W--f U, where 

(a) U(p) points to d; 
(b) U is an extension of W by some substitution tI such that [b’ - b], c 8 and 8 is 

a mgu for L and M; 
(c) if 5 is a free variable of Ww.r.t. b and g# Izlv for all (x, z> E b’, then 5 is a 

free variable of U w.r.t. b’; in particular, U is compatible with b’ and p. 

Suppose further that W(IX,,IW) is stable for j = 1,. . . , k. Then for each (x, z) E b’ 
- 6, U(Izlv) is stable. 

PROOF. The subcases considered below are determined by the definitions of 

compile-literal and compile-term. In each subcase, the statement of the lemma is 

deriv_ed from some instance of the inductive hypothesis, obtained by replacing “_v 

by W= step(W), and a, t, r, b, L, and M by some Z, f, F, b, L, and M, 
respectively. 

Case I: a # NIL. This has four subcases, determined by the definition of com- 
pile-term. In each of these, i = cdr(a). 

Subcase I.l: a, is a constant. Here, I@= unify-constant(a,, advance(2, WI). If 

[51lw and a,[b], = a, are not unifiable, then neither are L and M. In this case, 
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I@= backtrack(W) and the proposition holds true. Assuming they are unifiable, W 
is an extension of W by 

i 

{([!$,],,a,)}, if[E,], isavariablesymbol ~= 

0, if [ 5, lw = aI. 

Let t”= t, ?= r, and 6 = b. Then 

and kf = cdr(M)r. If L and M are not unifiable, then neither are L and G, and 
hence W fails. If L and M are unifiable, then so are L and k, which must then 
have a mgu 6 such that W+ U, where U is an extension of W by 6. But then U is 
an extension of W by 8 = re’ and 6~ is a mgu for L and M. 

Subcase 1.2: a, is a compound term. Here, 6 = b, f= (a,, t), r’= (X,, r), where 
X, = new-temp( b, r, n), e = unify-uariable(X,, aduance(2, W)), 

and 

A= (a,, . . . . a,,a,,t, ,... ,t,)[b],. 

Since W is an extension of W by 0 and [ ,I$,]~ = [X, Ia, the result follows from the 
inductive hypothesis. 

Subcase 1.3: a, is a variable symbol occurring in b. For some z E X U Y, 
(a,, z) E b. Thus, a,[ b], = [z],,, and W = unify-ualue(z, aduance(2, W)). The proof 
is the same as for Subcase 4.1.1, except that when [zlw and [ (,I are unifiable, r is 
replaced by the mgu provided by Lemma 3.14. 

Subcase 1.4: a, is a variable symbol not occurring in b. J# = step(W) = unify- 
oariable(z, aduance(2, W)), t’= t, ? = r, and 6 = {(a,, z)} U b, where 

i 

new-perm( b), if a, Ep 

‘= new-temp(b,r,n), if a, +Zp. 

Since W is compatible with b and p, [&I, = [blWT, where r= ((a,,[ (l]w)}. Thus, 
f. = cdr(L)T, and It-? = cdr(M). The result follows from the observation that if U is 
an extension of W by 6, where 8 is a mgu for i and A that includes [b’ - &I,, 
then (since we may assume that a, does not occur in 6) 0 = 76 is a mgu for L and 
M that includes [b’ - b],. 

Case 2: a = NIL. In this case, W(p) points to append(compile-literal(GET- 
, t, r, b, p, 0, n), c). According to the definition of compile-literal, there are four 
subcases. In each of these, /= 0, t’= cdr(t), and F = cdr(r). 

Subcase 2.1: t, is a constant. Here, a’ = NIL, 6 = 6, and W = get- 
constant(t,, X,,, aduance(3, W)). If [X,,], and t,[b], = t, are not unifiable, then the 
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proposition holds as in Subcase 4.1.1. Otherwise, $ is an extension of W by 

7= (([X;,]r+,,l,)), 

( 

if [Xj,lr+, isavariablesymbol 

0, if [Xt,lw=f,. 

Thus, L = ([Xi&, . . . , [X,,]a) = &(L)T and k = cdr(M)~. The result follows as 
in Subcase 4.1.1. 

~ubcuse 2.2: t, is a compound term. Let t, = ( f, e,, . . . , e, >, where f is a 
function symbol of arity m. Then W = get-structure((f, Xl!), aduance(3, WI>. We may 
assume that dx = deref(W(lX,,lw), W) is either a variable or a structure with 
functor f, for otherwise L and A4 are not unifiable and W fails. In either case, 
& = deref(dr, w’) is a structure of @ with arguments 5, = Ntics,+ ;, i = 1,. . . , m. We 
have b=b, Z=(e, ,..., e,), 

i=(ri,l~,...,rs,l~,[x,:].,...,[xil]d, 
and 

ti=(e I ,... ,e,, z ,... , t 4mls. 
Suppose ak is a structure HK of W, so that du = &. Then 

LV = set-structure-pointer( g, W) , 
funct( cur( L)) =f=finct( car( M)), 

L =uppend(urgs(cur(L)),cdr(L)), 

and 

ti=uppend(qs(cur(M)),cdr(M)). 

Thus, a substitution is a mgu for L and M iff it is a mgu for L and A?. 
In the remaining case, du is an unbound variable-of W and 6’(k) = & is a 

structure of F at heap addLess W(h) + 1. In fact, W is an extension of W by 
r= {(N(dx),[dxl~)l, where [dulti = (f, N([,),. . . , NC &,,I>. If 

f. = append( ( N( l, ) ,...,N( L)>,cdr(L)T) 

and 

h;l=uppend((e,,...,e,)[b]w~,cdr(M)) 

are not unifiable, then W fails, and since none of the variable symbols N( &> occurs 
in L or M, cdr(Lh and cdr(Mh must not be unifiable. But then neither are L 
and M, for if LB = Mf3, then ~8 = 6, and hence cd?-(L)70 = cdr(M)~O. Thus, we 
may assume W --) U, where U is an extension of 6’ by 6, and 6 is a mgu for L and 
A?. But then U is an extension of W by ~6, and hence also by 

o={(V) E r&g {N( li),...>N( ‘&,)}}. 

We shall show that 8 is a mgu for L and M. 
First, since 
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LO = MB. Now suppose that Lo = Ma, and let Cr = 417, where 

4={(N(~;),ei[b]w)li=l,...,m}. 
Then i6 = R6-, and hence 6 = 6fi for some p. Let 

P=(~-{(N(5i),N(~i)~)li=1,...,~})((N(5i),N(5i)(+)li=I,...,~}. 

To show that CT = 0p, let x be any variable symbol. If x = &, 1 I i 5 m, then 
xa=xp=xBp. If x=N($x), then xa=t,[b], u = ~74~ =x75 =x&p = xep. In all 
other cases, xa=xG=xf?p =xr@ =xep. 

Subcase 2.3: t, occurs in b. For some z E X U Y, (t,, z) E b. Thus, t,[b], = [zIw 
and W = get-ualae(r, aduance(3, W)). The proof is the same as for Subcase 4.2.1, 
except that when [t],,, and [Xi,] are unifiable, T is replaced by the mgu provided by 
Lemma 3.14. 

Subcase 2.4: t, is a variable symbol not occurring in b. W = get- 
oariuble(z, aduunce(, W)) and fi = NIL. The proof is the same as for Subcase 4.1.4, 
with t, in place of a,. 0 

Similarly, Lemma 4.3 is a special case of the following, with /= 0, r = 
(X ,,..., X,>,and b=0. 

Lemmu4.6. Letu=(u ,,..., up> undt=(t ,,..., tk) belistsofterms, nEN,r= 
(X;,,..., Xi, > a list of temporary symbols, p c V, b be a symbol table that respects p 
and n, b’ = extend-tubleO, r, b, p, n), and ucp such that for all x E v, (x, z) E b 
for some z E Y. Let W be a directed WAM state compatible with b and p such that 
W(p) points to 

uppend(compile-tem(PUT-,u,t,r,b,p,v,n),c) 

and for i = 1,. . . , k’, Hwcsj+i is an unbound variable of W. Suppose that for each 
member Xi, of r, if ij > n, then Xi, does not occur in b and WC A;,) is an unbound 
heap variable Hm, of W, where the mi are distinct from each other and from 
W(s) + i, i = 1,. . . , E?. 

Then W + U, where 

(a) U(p) points to c; 
(b) U is an extension of W by (4 U $N3, where 

4= ((N(H,,,,+i),ai[b’],)li=l,...,~], 
ICI= ((N(Hm,),tj[b’],)lXi, isumemberofrandij>n), 

(4 

and 8 is a renaming substitution such that [b’ - b], c 8 and for each (x, 
y) E 8 there is a variable .$ of U such that N( 5 ) = y and if 5 is a variable of W, 
then .$ is reserved w.r.t. b; 
if ,EJ is a free variable of W w.r.t. b and 5 # Jzl” for’all (x, z) E b’, then .$ is a 
free variable of U w.r.t. b’; in particular, U is compatible with b’ and p; 

Cd) [X,,l,=t.[b’l, forj= l,...,k; 
(e) for each i x, z) E b’ - b, if x occurs in a compound term that occurs in t, then 

U(Izl~) is stable; 
(f) if j I n and Xi does not occur in r, or if j > n and Xi does occur in r, then 

W(Aj) = U(A,). 
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Suppose further that for each x EP - v that occurs in t, either (i) there exists a pair 
(x, z) E b such that W(lzlw) is stable, or (ii) the first occurrence of x in t is in a 
compound term. Then for j = 1, . . . , k, U( 1 Xj, 1” 1 is stable. 

The proof of this lemma is a case analysis that mirrors the proof of Lemma 4.5. 

4.4. Compiling Programs and Goals 

Let C= (Y,,..., /,) be a program clause with head /‘,, and body (e,, . . . , k”,>. Let 
p =perms(C) b e a set of order m and let u = uns(C). For i = 0,. . . , s, let qi be the 
predicate symbol X(4), let tj be the argument list a&<.), and let n, = length(t;). 

Naturally, /, is compiled in the context of the trivial symbol table 0. The 
symbol table constructed during this compilation is 

b 1 = extend-table( t, ,0, p, n, ) . 

Note that none of the temporary symbols X,, . . . , X,, occurs in b,, as the 
corresponding argument registers are reserved for the arguments of the first 
subroutine call. 

The leading goal literal /‘, (if s > 01 is compiled in the context of the symbol 
table b,. In general, a goal literal /; is compiled in the context of some symbol 
table b;, which will be required to have the following property: every variable 
symbol occurring in both (./‘,,, . . . , f,_ ,> and (/,, . . . , /,> also occurs in b;. For 
i > 1, this holds for the subset of the symbol table constructed during the compila- 
tion of /;.- , consisting of all pairs corresponding to permanent variable symbols. 
Thus, for i > 1, 

b, = {(x,.z) E extend-table(ti_,,bj_,,p,ni_,)lzEY}. 

The WAM code generated by the clause C is a list returned by the function 
compile-clause, defined in Figure 5. This list takes one of three forms, depending on 
the number s of goal literals of C: 

s = 0: s = 1: 

compile-head-literal( t, ,0,0) compile-head-literal(t,,, 0, n ,I 
(PROCEED) compile-goal-literalct , , b, ,0,0) 

(EXECUTE, q,) 

s 2 2: 

(ALLOCATE, m) 
compile-head-literal p, n , ) 
compile-goal-1iteraK t , , b,, p, 0) 
(CALL, q, > 

compile-goal-literal(t, _ , , b, _ , , p, 0) 
(CALL, qS- , > 
compile-goal-literalc t, , b, , p, u ) 
(DEALLOCATE) 
(EXECUTE,q,). 

As described in Lemma 4.2, executing the code for /, has the effect of 
attempting to match the list t, with a list of arguments represented by the contents 
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Function compile-body(g, b, p, u, e); 
begin 

t + arg~(car(g)); n + length(t) 
if g = NIL then return (PROCEED) 
else if cdr(g) = NIL then 

begin 
cc (EXECUTE,x(g)); if e then C+ append((DEALLOCATE),c); 
return append(compile-goal-literalct, b, p, u), c) 

end 
else 

begin 
c + append(compile-goal-literaltt, b, p, 01, (CALL, x(g))); 
b + ((x, z) E extend-tabfe(t, b, p, n)lz E Y}; 
return appendcc, compile-body(cdr(g), b, p, u, e)> 

end 
end. 

Function compile-clause(c); 
begin 

t + a&head(c)); n + fength(args(car(body(c)))); 
g + compile-head-literal(t, perms(c), n); 
if length(body(c)) > = 2 

then begin 
g +- append((ALLOCATE,length(pems(c))), g); e +- TRUE 

end 
eke e + FALSE; 

b 6 extend-table(t, 0, perms(c), n); 
return append(g, compile-body(body(c), b, perms(c), u&c), eN 

end. 

Function compile-goal(g); 
return compile-clause((( R, uars(g)), g)). 

FIGURE 5. Compiling a clause. 

of argument registers. If this attempt fails, backtracking occurs. Otherwise, the 
code generated by the body of C is executed. 

If the body of C is NIL, then it generates the single instruction (PROCEED). 
Otherwise, for each goal literal 4, a call to compile-goal-literal returns the code for 
writing the argument list ti into argument registers, as described by Lemma 4.3. 
This is followed by a CALL instruction or, in the case of the final goal literal, an 
EXECUTE instruction. If C has more than one goal literal, then there are two 
additional instructions for allocating and deallocating an environment. 

The function compile-goal, on which Definition 4.1 depends, is also defined in 
Figure 5. In this definition, g is a goal clause and R is assumed to be an arbitrary 
predicate symbol of arity n, where uars(g) = (v,, . . . , II,,). The value returned is 
compile-clause(c), where c is the clause with head (R, ul,. . . , u,) and body g. Note 
that the validity of the definition rests on the observation that compile-clause(c) is 
independent of x(c). 

The code for the definition of a predicate symbol q is returned by compile-predi- 
cute, defined in Figure 6. The arguments of this function are a list d = (C,, . . . , C, > 
of program clauses comprising the definition of q and a natural number i. This 
second argument represents the address in the code area at which the compiled 
code for q is to reside. It is required, at least in the case k > 1, in order to compute 
the arguments of the TRY-ME - ELSE and RETRY-ME - ELSE instructions. 
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Function compile-altematir’es(I, i); 
begin 

c + compile-clause(car(l)); 
if cdr(t) = NIL 

then return append((TRUST-ME-ELSE-FAIL), C) 

else begin 

end. 

j + length(c) + i + 2; 
c - append((RETRY-ME-ELSE,j),C); 

return appendcc, compile-altematic>es(cdr(l), j)) 
end 

Function compile-predicatdd, i); 
begin 

if d= NIL then return (BACKTRACK) 

else if cdr(d) = NIL then return compile-clause(car(d)I 
else begin 

c + compile-clause(car(d)); j 6 length(c) + i + 2; 
c +append((TRY -ME-ELSE,j),c); 

return append(c, compile-altematit~es(cdr(d), j)) 
end 

end. 

FIGURE 6. Compiling a predicate. 

In the case k = 0, the predicate symbol q has no defining clauses and the 
compiled code for q consists simply of the instruction (BACKTRACK). If k = 1, the 
code for q is the same as the code for its sole defining clause C,. The more 
interesting case k > 1 involves the instructions for creating, modifying, and deallo- 
cating choice points: 

A,: 

A k-2' 

A k-l: 

(TRY-ME-ELSE,A,) 

compile-clause(C, > 
(RETR~-ME-Jx~E,A~) 

compile-clause(C, ) 

'(RETRY-ME-ELSE,A~_,) 

compile-clause(Ck 1) 
(TRUST-ME-ELSE-FAIL) 

compile-clause(C, 1. 

Note that the argument A, of the initial TRY-ME - ELSE instruction is the address 
at which the code following the code for C, is to be stored. Similarly, for 
j=2 , . . . , k - 1, the argument Aj of the RETRY-ME - ELSE instruction preceding 
the code for C, is the address at which the code following the code for C, is to be 
stored. 

The following is a consequence of Lemmas 3.4 and 3.6. 

Lemma 4.7. Let d be a list of program clauses of length at least 2 and let W be a WAM 
state with W(p) = k. Suppose that either 

(a) k points to compile-predicatdd, k) w.r.t. W, or 
(b) k points to compile-altematines(d, k) w.r.t. Wand backtrack(W) 2: W. 
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Let W’ = step(W). Then W’(p) points to compile-clause(car(d)) w.r.t. W and 
backtrackc W’) = jump( j, W’), where j points to 

compile-aftematties ( cdr ( d ) , j ) 

w.r.t. W. 

We turn now to the function compile-program of Figure 7. If preds(P) = 

(4 I,“‘, qk >, then it follows from the definitions of Figure 7 that since compile-pro- 
gram(P) is loaded, so is the list (q,, a,, . . . , qk, ak >, where ai E N points to compile- 
predicate(def(q,, p), a,) for i = 1,. . . , k. Thus, by Definitions 3.35 and 3.36, the 
following holds. 

Lemma 4.8. Let q be a predicate symbol that occurs in P. If for some state W, 
W’ = execute(q, W), then W’(p) points to 

compile-predicate( def ( q, P) , W’(p)) . 

4.5. Verification of the Compiler 

The proof of Theorem 4.1 is based on a correspondence between interpreter states, 
as defined in Section 2.3, and certain WAM states that occur during the execution 
of a program. We begin by characterizing states in which the code for a goal clause 
is about to be executed, i.e., immediately after executing either (a) the code for the 
head of a program clause with a non-trivial body or (b) the PROCEED instruction. 
Such a state is called a goal state and in case (b), it is also called a continuation 
state. We define these two simultaneously with the following definition. 

Definition 4.10. Let W be a directed WAM state, let H be a goal clause, and let F 
be a set of variables of W. W is a goal state supporting H with free variables F 

Function compile-defs(q, p, i); 
begin 

if q = NIL then return NIL 

else begin 
c + compile-predicate-def7car(q), p), i); 
return append(c, compile-defs(cdr(q), p, length(c) + i)) 

end 
end. 

Function get-addressedq, p, i); 
begin 

if q = NIL then return NIL 
else begin 

j +- i + length(compile-predicateidef(car(q), p, i); 
return append(( car(q), i), get-addresses(cdr(q), p, j)) 

end 
end. 

Function compile-program(p); 
begin 

q +-preds(p); i + 2 x length(q) + 1; 
return append(get-addresses(q, p, i),compile-defs(q, p, i)) 

end. 

FIGURE 7. Compiling a program. 
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if either (i) H = NIL, F = 0, and W is a success state, or (ii) H = append(J, K), 
J # NIL, F = D u E, and W(p) points to compile-body(f, b, p, u, e), where for 
some program clause C of P, 

(a) f is a non-NIL tail of body(C); 
(b) b is a symbol table that respects p and arity( x(J)), such that each variable 

symbol that occurs in both f and C -f also occurs in b, and such that if Xi 
is a temporary symbol occurring in b, then WU,) is an object of W; 

(c) p =pemdCk 
(d) u = u&C). 
(e) e = TRUE ii length(body(C)) > 1; otherwise, e = FALSE; 
(f) J = f[b],,,,T, where T is a renaming for C such that no variable symbol that 

occurs in Cr occurs in K or P or range(N); 
(g) v is a continuation state supporting K with free variables E, where 

i 

proceed( deaflocate( W)) , if e = TRUE v = 

proceed(W), if e = FALSE; 

(h) if e = TRUE and p is a set of order m, then W has an environment of order 
m and D is the set of all reserved variables of W w.r.t. b; otherwise, D = 0; 

(i) if e = TRUE, then for each (x, z) E b such that x occurs either in head(C) 
or in a compound term occurring in body(C) -f, W(] zlw ) is stable; 

Cj> F is a set of free variables of W w.r.t. b. 

If W satisfies condition (i) or condition (ii) with e = TRUE, then W is also called 
a continuation state. 

Lemma 4.9. Let W be a goal state supporting H with free variables F and let 
~EHuS. ZfN(t) occurs in H, then 5 is an unbound variable of Wand 5 P F. 

PROOF. We may assume that H = append( J, K) and F = D U E as in case (ii) of 
Definition 4.10. The proof is by induction on W(e). First note that if N( 5 ) occurs in 
J, then according to Part (f) of the definition, N( 5 1 occurs in [b], and the result 
follows from (b) and <j>. We may assume, therefore, that N( 5) occurs in K. 

Consider the case e = TRUE. Here, V=proceed(deallocate(W)) is a goal state 
supporting K with free variables E. By inductive hypothesis, 5 is an unbound 
variable of V, and hence of W, and (6Z E. But then 5 cannot be an unstable 
variable of W, hence (4 D either. 

Suppose that e = FALSE, so that D = 0 and V=proceed(W) is a continuation 
state supporting K with free variables E. Since l,‘(e) = W(e), we may revert to the 
case e = TRUE and conclude that 5 is an unbound variable of V, and hence of W, 
and 5eE. 0 

Lemma 4.10. Let W be a continuation state supporting H with free variables F, let 0 be 
a substitution such that each variable symbol occurring in O occurs in either P or 
range(N), and let W’ be an extension of Wby 8 with W’(p) = W(p) such that every 
element of F is a free variable of W’ w.r.t. 0. Then W’ is a continuation state 
supporting HO with free variables F. 

PROOF. An inductive proof similar to the proof of Lemma 4.9 may be easily 
constructed once we establish, in the notation of Definition 4.10, that JO = f [ b],TO 
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=f[b],,,r. To this end, let x be a variable symbol occurring in f. If x occurs in b, 
then ~[b]~~~=x[b]~~=~[b]~~~=x[b]~,~. IF x does not occur in b, then 
x[b],78=x78=x7=x[blw,T. 0 

Next, we characterize the states that exist immediately after (i) a CALL or 
EXECUTE instruction has been executed or (ii> backtracking has occurred. 

Definition 4.11. Let W be a directed WAM state and let q be a predicate symbol 
such that W(a) = a&y(q) = n. Let L be a list of program clauses of characteris- 
tic q. Let H be a goal cause with car(H) = (q, [ X, I,,+,, . . . , [ X,, I,,,. > and such that 
proceed(W) is a continuation state supporting c&(H). 

(a) W is a calling state supporting H if W(p) points to compile- 
predicate( L, W(p)); 

(b) W is a backtrack state supporting H if W(p) points to compile- 
alternatives(L, W(p)>, L # NIL, and backtrack(W) = W. 

Lemma 4.11. Let W be a calling state that supports a goal clause K such that WCp> 
points to compile-clause(C) for some program clause C with x(C) = x(K). If 
head(C) and car(K) are not unifiable, then W fails. Otherwise, W + W’, where 
backtrackc W’) = backtrackc W> and for some mgu 6’ for head(C) and car(K), 

[@IuP is the restriction of [ 01~8 to G and W’ is a goal state supporting the 
resolvent of Cp and K via 8, where Cp is a variant of C with no variables in 
common with K or G[ cr lw . 

PROOF. Let x(K) = q, a&y(q) = m, and r’= ([X,1,, . . . , [X,1, >. Then according 
to Definition 4.11, car(K) = (q, r’) and for some set E of variables of W, proceedc W) 
is a continuation state supporting cdr(K) with free variables E. Let t = 
a&head(C)), n = length(args(car(body(C)))), 

b = extend-table( t, 0, perms( C) , n) , 

and 

g = compile-head-literal( t , perms( C) , n) . 

If length(body(C)) 2 2, then let e = TRUE and 

h = uppend( (ALLOCATE, length( perms( C)) >, g) ; 

otherwise, let e = FALSE and h = g. According to the definition of compile-clause, 
w(p) points to append(h, compile-body(body(C), b, pen&C), uns(C), e)). Let 

w = step(W) ife= TRUE 
1 W ife= FALSE. 

Then by Lemma 3.5, backtradk( W,) = backtrack(W). 
If head(C) and car(K) are not unifiable, then neither are ? and t, and the result 

followsfrom Lemma 4.2. Therefore, we may assume that head(C) and car(K), and 
hence r’ and t, are unifiable. By Lemma 4.2, W, + W,, where W, is an extension of 
W, by some mgu 8 for r’ and t such that [bl, c 8, and W,(p) points to compile- 
body(body(C), b, perms(C), uns(C), e>. By Definition 3.28, backtruck = 
backtruck( W, I= backtrack(W) and [ CT[ w, is the restriction of [ u lw 8 to G. 
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By Part (c) of Lemma 4.2, each variable in E is a free variable of W, w.r.t. 6. If 
e = FALSE, then proceed(W,) is an extension of proceed(W,) =proceed(W) by 0, 
and hence 

proceed(W,)(p) = W,(c) = W(c) =proceed(W)(p). 

We may assume that 8 satisfies the hypothesis of Lemma 4.10, allowing the 
conclusion that proceed(W,) is a continuation state supporting c&(K)0 with free 
variables E. On the other hand, if e = TRUE, then proceed(deallocate(W,)) is an 
extension of proceed(deallocate(W,)) by 0. By Lemma 3.3, 

deallocate( W, ) = advance( 2, W) , 

and hence 

proceed( deallocate( W, ) ) = proceed( W) . 

Thus, by the same reasoning as in the case e = FALSE,proceed(dealfocate(W,)) is a 
continuation state supporting cdr(K)O with free variables E. 

Suppose that body(C) = NIL. Then W,(p) points to (PROCEED) and W+ 
proceed(W,). Let W’ =proceed(W,). Then W’ is a continuation state supporting 
cdr(K)O, which is the resolvent of CT and K via 0. 

We may assume, therefore, that body(C) # NIL. Let T be a renaming for C 
such that no variable occurring in CT occurs in cdr(K)B, P, or range(N). Let 

p = {(u, u) E T)U does not occur in head(C)} 

and let 

J=body(C)[b],+= body(C) p[ b],, = body(C) p0. 

Then J is the resolvent of Cp and K via 8, and CT has no variables in common 
with either K or range(N). We shall show that according to Definition 4.11, 
W’ = W, is a goal state supporting 

H=append(J,cdr(K)e). 

First note that by Lemma 4.1, b = {(x,, z,), . . .,(x5, 2,)) represents perms(C) and 
arity( x(body(C))) and Ix,, . . . , x,1 is the set of all variable symbols that occur in 
head(C). In the case e = FALSE (i.e., length(body(C)) = l), it follows that W’ is a 
goal state supporting H with free variables E. 

Finally, in the case e = TRUE, (g)-(i) of Definition 4.10 must be verified. Let m 
be the order of the set pew&C). Since W, has an environment of order m, so 
does W,. Let D be the set of all reserved variables of W’ w.r.t. 6. By Part (c) 
of Lemma 4.2, each element of D is a free variable of W’ w.r.t. b. For 1 I 
i 5 m, IXJW, is a stable object of W,, and hence by Lemma 4.2, lzil is a stable ob- 
ject of W’ for 1 I i IS. Thus, W’ is a goal state supporting H with free variables 
DUE. q 

Next, we define a correspondence between WAM states of the various types 
defined above and interpreter states. 

Definition 4.22. Let W be a WAM state and L be a list of program,clauses. W uses 
L if any of the following holds: 

(a) W is a goal state supporting H and L = def( x(H), P); 
(b) W is a calling state and W(p) points to compile-predicate(L, W(p)); 
(c) W is a backtrack state and W(p)‘points to compile-alternatiues(L, W(p)). 
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Definition 4.13. Let R= ((Gk ,..., G,), (Lk ,..., L,), (ok ,..., a,)) be an inter- 
preter state and let W be a goal state, a calling state, or a backtra ck state. W 
realizes R if 

(a) W supports G,; 
(b) W uses L,; 
(c) a/( = [al)+/; 
(d) W’ has a choice point iff k > 1, where 

W’ = 
i 

W, if W is a goal state or a calling state 

trust-me-else-fail(,W) , if W is a backtrack state 

if k > 1, then backtrack is a backtrack state that realizes 

((Gk _,,..., G,), (Lk_ ,,..., L,), (u,_,,...,o,>>. 

The following is an obvious consequence of the definitions. 

Lemma 4.12. Let W be a WAM state that realizes an interpreter state R. If W’ = W, 
then W’ realizes R. 

Lemma 4.13. Let W be a calling state or a backtrack state that realizes an interpreter 
state R. If succ( R) is defined, then W + W’, where W’ realizes R’ and succ( R) = R’. 
If succ(R) is undefined, then Wfails. 

PROOF. Let R=((G, ,..., G,), (Lk ,..., L,), (Us ,..., a,)),where L, isalist of 
program clauses of some common characteristic q. We proceed by induction, 
assuming the statement true if k is replaced by k - 1 or if k is held constant and 
L, # NIL is replaced by cdr(L,). 

Let m = a@(q). Then W(a) =m, car(G,) = (q,[X,l,,...,[X,,,l,), proceed(W) 
is a goal state supporting cdr(G,), and Us = [a I,+,. Let 

R’=((G,_, ,..., G&o,_ ,,..., L,),(o,_, ,... ,a,>>. 

Case 1: W is a calling state. W(p) points to compile-predicate(L,, W(p)), W has a 
choice point iff k > 1, and if so, then backtrack(W) is a backtrack state that 
realizes R’. 

Suppose L, = NIL. Then W(p)) points to (BACKTRACK) and W + W’ = step(W) 
= backtrack(W) if k > 1. If so, then succ@) = succ@‘> and the result follows by 
induction. If not, then k = 1 and succ(& is undefined. 

Let C = car(L,). If L, = (C), then W(p) points to compile-clause(C) and the 
result follows by induction from Lemma 4.11. Thus, we may assume cdr(L,) # NIL. 

Let W, = step(W) and W, = backtrack( By Lemma 4.7, W,(p) points to 
compile-clause(C) and W, = jump(j, W,), where j points to compile- 
alternatives(cdr(L,), j). Since W,(c) = W(c), proceed(W,) is a continuation state 
supporting cdr(G,), and hence W, is a backtrack state supporting G, using 
cdr( L, >. 

Let W, = trust-me-else-fail( W, 1. Since 

W, = jump( j, W,) = try-me-else( j, jump( j, W)), 

W, = jump( j, W) by Lemma 3.7. It follows that W, has a choice point iff k > 1, and 
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if so, then backtruck is a backtrack state that realizes R’. Since ak = [ulw = 
[ ulw2, W, realizes 

((G,,..., G,),(cdr(L,),L,_ ,,.. .,L,),(~j,,...,a,)). 

The result follows by induction from Lemma 4.11 and Definition 2.7. 

Case 2: W iS a backtrack state. W(p) pOintS to compile-ahematives(Lk, W(p)),LI, 
#NIL, and 

backtrack( W) = W. 

Let W, = step( W ), W, = backtrack( W, ), and W, = trust-me-else-fail( W ). If k > 1, 
then backtrackc W) realizes 

((G,_ ,,..., G,),(L,_,,...,L,),(~k-,,...,a,)). 

If k = 1, then backtrack is undefined. 
If cdr(L,) # NIL, then by Lemma 4.7, bucktrack is a backtrack state that 

realizes 

((Gk,..., G,),(cdr(Lk),Lk-,,...,L,),( ckk...,(+r)). 

If cdr(L,) = NIL, then W, = aduance(1, W3). In either case, the result follows from 
Lemma 4.11. •! 

Lemma 4.14. Let W be a goal state that realizes an interpreter state R. If W is not a 
success state, then W + W’, where W’ is a calling state that realizes R’ and R’ = R. 

PROOF. ht R=((G, ,..., G,),(L, ,..., L,), (ok ,..., (+,)),and q=X(G,).Then 
W is a goal state supporting G, using Lk = def(q, P) and uk = [alw. If k = 1, then 
W does not have a choice point; otherwise, backtrackc W) realizes ((G,_ , , . . . , G, >, 
(Lk_l,...,L,),(~k-,,...,‘T1)). 

Thus G, = append(J, K) and W(p) points to compile-body( f, b, p, u, e), where J, 
K, f, b, p, u, e, C, 7, F, D, and E are as described in Definition 4.11. Let 
t = atgs(car(f )), n = arity(q), b’ = extend-tableO, b, p, n), and 

b” ={(x,z) Eb’lzEY). 

Then W(p) points to 

append( compile-goal-literal( t , b, p, u) , c) , 

where 

u= u, 
i 

if cdr(f) =NIL 

0, if not 

and 

i 

(EXECUTE, q), ife= FALSE 

C= (DEALLOCATE, ~ExEcuTE,q), ife= TRUEand cdr(f) =NIL 

uppend( (CALL, q), compile-body( cdr( f), b” , u, e)) , if cdr( f) f NIL. 

In any case, Lemma 4.3 applies with k = n. Let U and 0 be as described in Lemma 
4.3. We shall show that U + W’, where W’ is a calling state supporting Gk83r 
using L,. 
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First, note that we may assume that any variable occurring in 8 must also occur 
in either range(N) or b’. One consequence of this is that Lemma 4.10 applies. 
Another is that if x is a variable symbol that occurs in f, then x[ b], 0 = x[ b’],,. To 
prove this, note that if x occurs in b, then x[bI,8=x[bl,. =x[b’],., while if x 
occurs in f but not in b, then x[b],8==xO=x[b’ -b],,,, =x[b’],.. 

Case 1: e = FALSE. In this case, c&(f) = NIL. Let 

W’ = step(U) = execute( q, aduance( U, 2)). 

Then proceed(W’) is an extension of proceed(W) by 8, and by Lemma 4.10, 
proceed(W’) is a continuation state supporting KB = KS-. W’(p) points to com- 
pile-predicate(L,, W’(p)) and W’(a) = n. By Lemma 4.3, [X,1,. = tj[b’],, for j = 
1 ,...,n, and hence 

(47[x,l,v., [ X,,lw,) = cur( f)[ b”],. = cur( f)[ b],,,e. 

=cur(f)[b]w~%h=cur(J)?tI~. 

Thus, W’ is a calling state supporting uppend(J, K)%= Gk%. 

Case 2: e = TRUE, cdr(f) = NIL. Let W’ = step(step(U)) = 
ewcute(q, uduunce(deullocute(U), 2)). Then proceed(W’) is an extension of 
proceed(deullocute(W)) by 8, and by Lemma 4.10, proceed(W’) is a continuation 
state supporting K8 = K?&. The conclusion will follow as in Case 4.1.~. once it is 
verified that for i = 1,. . . , n, U(Aj) is a stable object of U, so that [X,1,. is defined. 

Let x EP - u such that x occurs in f and the first occurrence of x in f is not in 
a compound term. Since x is safe w.r.t. C, x occurs either in head(C) or in a 
compound term occurring in body(C) -f, and hence (x, z) E b for some z. 
According to Lemma 4.3, it suffices to show that W(lzl~ ) is a stable object of W. 
But this, follows from Definition 4.10, Part (9. 

Case 3: cdr(f). # NIL. In this case, e = TRUE. Let W’ = step(U) = 
cull(q, uduunce(U, 2)). As in Case 1, 

(4,[X,],9..., [X,,]& = car( J)+er= cur(G,i&), 

and we must show that W, =proceed(W’) is a continuation state supporting 

cdr(G;,%h) = uppend(cdr(J)ih, K%). 

Since 

W,(p) = W’(c) =udvunce(U,2)(p), 

W,(p) points to compile-body(cdr(f), b”, p, u, e). Let D’ be the set of all reserved 
variables of W, w.r.t. b” and let F’ =D’ c! 6. We refer to Definition 4.10, 
substituting W’, cdr( f ), b”, cdr(J)%, K%r, and F’, and D’ for W, f, b, J, K, F, 
and D, respectively: 

(a), (c), cd), and (e) hold trivially; 
(b) This follows from Lemma 4.1;’ 
(f) cdr(J)Sh= cdr(f)[b]w%9~= cdr(f )[bl&h= cdr(f )[b’],,,,T= 

cdr(f)[b”l,,T; 



VERIFIED PROLOG COMPILER FOR THE WAM 411 

(g) proceed(deullocate( W,)) is an extension of proceed(deaflocate(W)) by 8 and 

proceed( deallocute( WI ) )(p) = deullocute( WI ) (c) 

= deullocute( W)(c) 

=proceed( deullocute( W))(p) . 

By Lemma 4.10 and Lemma 4.3, Part cc), proceed(deullocute(W,)) is a continuation 
state supporting K8 = KS7 with free variables E. 

(h) 
(9 

<j> 

Since W has an environment of order m, so does W,; 
If x is a variable symbol occurring in both cdr(f) and C - cdr(f), then 
either x occurs in b or x is a permanent variable symbol occurring in 
cur(f). In either case, x occurs in 6”. Let (x, z) E b” such that x occurs in 
either head(C) or a compound term occurring in body(C) - cdr(f). If x 
occurs in a compound term occurring in cur(f), then W,(lzlw,) is stable by 
Lemma 4.3, Part (f). Otherwise, W(lzlw) = W(jzjw,) is already stable, hence 
so is W,(lzl~,); 
This follows from Lemma 4.3, Part (c). 

Thus, in all cases, W’ is a calling state supporting G; = Gk?07 using L,. Let ui 
be the restriction of [aIri,, to G. Note that 

Ga,‘=G[alw,=G[alwe=G[cr],~e~=GakCB~ 

Since bucktrack( W’) = backtruck( WI, W’ realizes 

R’=(G;,G~_,,...,G~),(L~,...,L,),(~~’,~~_~,...,(T,)). 

Using Lemma 4.9, we have 

G&= G,W&= G,%&= G,+r= G, 

and similarly 

G+& = G@& = Grk. 

Thus, i? = R. q 

The following is a consequence of Lemmas 4.13 and 4.14. 

Lemma 4.15. Let W be a WAM state that realizes an interpreter state R and let R’ be a 
refutation state. There exists a success state W’ such that W + W’ and W’ realizes 
some representative of R’ iff there exists a list of interpreter states ( R,, . . . , R,) such 
that R = Ro, R’ = R,, Ri = succ(i?_ ,) for 1 _< i 5 k, and Ri is not a refutation 
state for 1 < i < k. 

Finally, we may prove Theorem 4.1. Note that the state W,, of Definition 4.1 is a 
calling state that supports the goal clause 

((R,N(H,),...,N(H,))) 

and such that W,(p) points to compile-clause(C) where 

C=((R,u,,...,v,,),G) 

and vurs(G) = (u,, II,,). Also, W,, does not have a choice point and [a],,,,, is a 
renaming for G. lt follows from Lemma 4.11 that W, + W’, where W’ is a goal 
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state that realizes some interpreter state equivalent to the state ((G), 
(def( x(G), PI), 0). The theorem now follows from Lemma 4.15 by induction on 
the length of C. 0 
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