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Abstract

We use the existence of homogeneous coordinates for simplicial toric varieties to prove a result analogous
to the Darboux—Jouanolou—Ghys integrability theorem for the existence of rational first integrals for one-
dimensional foliations.
© 2010 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Darboux in his seminal work [8] of 1878 provided a theory on the existence of first integrals
for polynomial differential equation based on the existence of sufficient invariant algebraic hy-
persurfaces. The Darboux’s work has been inspired several researchers as for instance Poincaré
who called it “admirable” and “oeuvre magistrale” [18].

The improvement and generalization of the Darboux theory of integrability was given by
Jouanolou in [12] characterizing the existence of rational first integrals for Pfaff equations on P,
where k is an algebraically closed field of characteristic zero. Namely, let @ be a twisted 1-form
w € HO(P, ‘Q]II"Z ® OPZ (m+ 1)), where m was called by Jouanolou the degree of . Then follows

from [12, Theorem 3.3, p. 102] that w admits a rational first integral if and only if possesses an
infinite number of invariant irreducible hypersurfaces. More generally, Jouanolou proved in [13]
that on a complex compact manifold X satisfying certain conditions on its Hodge-to-de Rham
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spectral sequence, a Pfaff equation w € HO (X, 52)1( ® L), where L is a line bundle, admits a
meromorphic first integral if and only if possesses an infinite number of invariant irreducible
divisors. Moreover, if w does not admit a meromorphic first integral, then the number of invariant
irreducible divisors is at most

dime (H(X, 2% ® £)/o AHY (X, 24)) + p(X) + 1,

where p(X) is the Picard number of X.

E. Ghys in [10] drops all hypotheses given by Jouanolou showing that this result is valid
for all compact complex manifold. M. Brunella and M. Nicolau in [2] proved this same result
for Pfaff equations in positive characteristic and for non-singular codimension one transversal
holomorphic foliations on compact manifolds. A discrete dynamical version of Jouanolou’s the-
orem was recently proved by S. Cantat. In [3] he proved that if there exist k invariant irreducible
hypersurfaces by a holomorphic endomorphism f : X O with

k > dim(X) +h"1(X)

then f preserves a nontrivial meromorphic fibration.

In this work we are interesting to proof a version of this results for vector fields on com-
plete simplicial toric varieties. Let P be a simplicial toric variety associated by a fan A and
TPA = Hom(.QHLA, Op,) the Zarisk’s sheaf of Pa. Since IP5 is a complex orbifold then 7P =~
i*@PA,mg, where i : Pa g — Pa is the inclusion of regular part P e :=PA — Sing(IPA) and
Op Areg is the tangent sheaf IPA e, see [6, Appendix A.2]. A singular holomorphic foliation F
on Py is a global section of 7P ® K £, where K r is an invertible sheaf on Po. We denote T”
the torus acting on P and we call a T"-invariant Weil divisor as T"-divisor. We shall use the
existence of homogeneous coordinate for simplicial toric varieties to prove the following result.

Theorem 1.1. Let F be an one-dimensional foliation on a complete simplicial toric variety Pa
of dimension n and Picard number p(Pp). If F admits

N®a, Kr) =h’(Pa, O(KF)) + p(Ba) +n

invariant irreducible T"-divisors, then F admit a rational first integral.

Observe that, in general P4 is a singular variety with quotient singularities. Therefore, in two
dimension this result show that the Darboux—Jouanolou—Ghys’s theorem is valid for a class of
singular toric variety.

The affine and non-singular version of this result was proved by J. Llibre and X. Zhang in [14],
they showed that if the number of invariant algebraic hypersurfaces of a polynomial vector field
X in C" of degree d is at least

N(n,d):<d+:_1>+n

then X admits a rational first integral.

Remark 1. It follows from Hirzebruch—Riemann—Roch theorem for toric varieties (see [9]) that

n

1
H(Pa, O(KF)) =) o deg(IKFI* N Tk (Py)).
k=0 "
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where T'd;(IPa) is the k-th homology Todd class. Therefore, we have that

G
N®a.Kr)=) i deg(IK 71" N Tdi(Pp)) + rk(As—1(Pa)) +n.
k=0 """

This paper is organized as follows. In Section 2 we recall some basic definitions and results
about simplicial complete toric varieties emphasizing Cox’s quotient construction and homoge-
neous coordinates. In Section 3 we use the generalized Euler exact sequence for simplicial toric
varieties in order to consider a holomorphic foliation as a polynomial vector field in homoge-
neous coordinates. Finally, in Section 4 we proof Theorem 1.1.

2. Generalities on toric varieties

In this section we recall some basic definitions and results about simplicial complete toric
varieties. For more details, we refer reader to the literature (e.g., see [7,5,9,17]).

Let N be a free Z-module of rank n and M = Hom(N, Z) be its dual. A subsetc C N ®7 R =~
R" is called a strongly convex rational polyhedral cone if there exists a finite number of elements
Y1, ..., U in the lattice N such that

o={a1 + - +aP; a; R, a; > 0}.

We say that a subset T of o given by some a; being equal to zero is a proper face of o, and
we write T < 0. A cone o is called simplicial if its generators can be chosen to be linearly
independent over R. The dimension of a cone o is, by definition, the dimension of a minimal
subspace of R" containing o.

Definition 2.1. A non-empty collection A = {07, ..., 05} of k-dimensional strongly convex ra-
tional polyhedral cones in N ®7z R >~ R” is called a complete Fan if satisfy:

(i) ifcoeAandt <o, thent € A;
(ii) if 05,07 € A, theno; Noj <o; ando; Noj <0}
(iii)) NQzR=01U---Uos.

The dimension of a fan is the maximal dimension of its cones. An n-dimensional complete
fan is simplicial if all its n-dimensional cones are simplicial.

Let A be a fan in N ®z R. It follows from Gordan’s lemma (see [9]) that each k-dimensional
cone 0¥ in A (let say us generated by v; ;) defines a finitely generated semigroup ok N N. The
dual (n — k)-dimensional cone

5={m€M®ZR, (m,vij)>0}

is then a rational polyhedral cone in M ®z R and ¢ N M is also a finitely generated semigroup.
An affine n-dimensional toric variety corresponding to o is the variety

Uy :=SpecClg N M].

If a cone 7 is a face of o then T N M is a subsemigroup of & N M, hence U, is embedded into
U, as an open subset. The affine varieties corresponding to all cones of the fan A are glued
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together according to this rule into the toric variety Po associated with A. Is possible to show
that a toric variety P5 contain a complex torus T" = (C*)" as a Zariski open subset such that
the action of T” on itself extends to an action of T" on PA. A toric variety P determined by
a simplicial complete fan A is projective and has quotient singularities, i.e., P is a compact
complex orbifold. For more details see [9].

Example 1. T, C" and P" are toric varieties.

Example 2 (Weighted projective spaces). Let @ = {wy, ..., @y} be the set of positive integers
satisfying the condition gcd(wy, ..., @w,) = 1. Choose n + 1 vectors e, ..., e, in R”, such that
R" is spanned by eo, ..., e, and there exists the linear relation

woeo + -+ -+ wpe, =0.

Define N to be the lattice in R” consisting of all integral linear combinations of e, ..., e,. Let
A(w) be the set of all possible simplicial cones in R” generated by proper subsets of {eg, ..., e,}.
Then A(w) is a rational simplicial complete n-dimensional fan. The corresponding variety Pa ;)
is the n-dimensional weighted projective space P(wy, ..., @,). We will see in the next section
that P(wy, ..., @y,) is a quotient of Ccntl \{0} by the diagonal action of the torus C*,

(20, - zn) > (A20,...,A7"z,), A eC*.

In particular, if (@y, ..., @,) =(,..., 1), then P(1,...,1) =P".

Example 3 (Multiprojective spaces). If X and Y are toric varieties then X x Y is so. Thus, the
multiprojective spaces P"! x - -- x P are examples of toric varieties.

2.1. The toric homogeneous coordinates

Let PA be the toric variety determined by a fan A in N >~ Z". The one-dimensional cones of
A form the set A(1) = {1, ..., 0,4}, where ©J; denote the unique generator of one-dimensional
cone. If o is any cone in A, then o (1) = {; € A(1); p C o} is the set of one-dimensional faces
of 0. We will assume that A(1) spans Nr := N ®z R.

Each ¢; € A(1) corresponds to an irreducible T"-invariant Weil divisor D; in P, where
T" = N ®z C* is the torus acting on P . It is known that the of T" -invariant Weil divisors on Pp
is a free abelian group of rank n + r, given by Z"*" = @:’:{ Z - D;. Thus an element D € Z"t"
isasum Y"1 a; D;. The T"-invariant Cartier divisors form a subgroup Divy: (Pa) C Z"+.

Each m € M gives a character x” : T" — T, and hence x™ is a rational function on Po. As
is well known, x™ gives the Cartier divisor

n+r
Div(x™) = Z—(m, 9:)D;.
i=1
We will consider the map
n+r
M7 m— Z—(m, %) D;.
i=1
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This map is injective since A(1) spans Nr. By [9, §3.4], we have a commutative diagram

0—— M ——Divy(PA) ——Pic(PA) ——0

T

0 M /il Ap—1(Pr) —0.

In particular, the Picard number of Py is given by p(Pa) =7.
For each 9; € A(1), we introduce a variable z;, and consider the polynomial ring

S=Clz; v € A(D].

. a . . . . .
Note that a monomial [/} z, determines a divisor Y"/] a; D; and to emphasize this relation-

ship, we will write the monomial as z”. We will grade S as follows, the degree of a monomial
7P is deg(zD ) =[D] € A,—1(Pa). Using the exact sequence (1), it follows that two monomi-
als [T"27 2% and [T"Z] 2% in S have the degree if and only if there is some m € M such that
a; = (m, )+ b; foreachi=1,...,n+r. Then

s= @ s
O‘EAnfl(PA)

where Sy = P eg(:0)=a C - zP. Note that S¢ - Sg C Se+p. The ring S is called homogeneous
coordinates ring of the toric variety P .

Let O(D) be the coherent sheaf on P determined by a Weil divisor D, then it follows from
[4] that

Sdeg(D) = H° (Pa, O(D)),

moreover there is a commutative diagram

Sdeg(D) ® Sdeg(E) Sdeg(D+E)

l |

H(Pa, O(D)) @ H'(Pa, O(E)) —=H’(Pa, O(D + E)),
where the top arrows is the polynomial multiplication. If P is a complete toric variety, then:
(i) S is finite-dimensional for every «, and in particular, Sy = C.

(ii) If « = [D] for an effective divisor D = Z;’;’f a; D;, it follows from [4] that dim¢ S, =
#(Zp N M), where

Pp={meMg; (m,9)>—a;foralli=1,....n+r}.
2.2. Quotient construction

We get the monomial
Vi ¢o

which is the product of all variables not coming form edges of o € A. Then define Z(A) =
V(z°; o € A) c C"*". Applying the functor Homz(—, T) to the exact sequence
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0> M—>Z"" - A,_1(Px) = 0 2)
we get the sequence

1— HomZ(An_l(IP’A), T) — T 5 T — 1.
It is possible to show that the group G(A) := Homz(A,—1(Pa), T) C T" given by

r
G(A): (tl,...,tr) ETr; l—[l‘i(ej’z}i) =1, ]: 1,...,}"}.
i=1

Define the action of G(A) on C*™" — Z(A), given by
G(A) x (C"" = Z(A)) — C" = Z(Q),
(g, (1, ..y Zn+r)) = (g(Dl)Zl, s g(Dn+r)Zn+r)~

Theorem 2.1. (See D. Cox [4].) If Pa is an n-dimensional toric variety where V1, ..., Opyr
span R", then:

(i) P is a universal categorical quotient (C"" — Z(A))/G(A);
(ii) P is an orbifold (C'*" — Z(A))/G(A) if and only if Pa is simplicial.

To describe the action of G(A) when it has no torsion we consider the lattice of relations
between generators of A, i.e. r linearly independent over Z relations between 91, ..., 0,4,

ai P+ +armtn Oarr =0,
: 3)
ar1 + -+ ar(n—&-r)ﬁn—t-r =0.
Thus by (1) the isomorphic to T" factor of G defines an equivalence relation on (C**" — Z(A))/
G(A):letu,v e C"" — Z(A) be, withv = (v1, ..., Ustr), then u ~ v if and only if
I, h) €T u= (A - A0y, AT AT ). )
Therefore, when G(A) has no torsion, the equivalence relation on (C"*" — Z(A))/G(A) is
given by this formula. If f € S, it follows from [1, Lemma 3.8] the Euler’s formula
iR df =06i(a) f,
where 0; € C and R; = ;’J:r; aijzij%, i=1,...,r.Moreover, Lie(G) = (R, ..., R,), see [4].
Anelement @ € A,_1(Pa) gives the character x% : G(A) — T. The action of G(A) on C**"
induces an action on § with the property that given f € S, we have

feSy & flg-=x"@f(k), VgeG(A), zeC". (5)

The graded pieces of S are the eigenspaces of the action of G(A) on S. We say that f € S, is
homogeneous of degree «. It follows that the set { f (z) = 0} is well defined in P5 and it defines
a hypersurface.

We shall consider the following subfield of C(zy, ..., Z,+r) given by

~ P
K(PA)Z{EEC(ZI’-“’ZVH-V); PESa, QESﬂ}
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Thus, the field of rational functions on Pa, denoted by K (IPp), is the subfield of K (Pa), such
that deg(P) = deg(Q).

3. One-dimensional foliations

Let PA be a complete simplicial toric variety of dimension #, and denote Op, := O. There
exists an exact sequence known by generalized Euler’s sequence [4]

n+r
0— 0% - @O(Di) — TPA — 0,

i=1

where TPp = Hom(.Q]A, ) is the so-called Zarisk’s sheaf of PA. Let i : X(A) — Pa be the
inclusion of regular part X (A) :=Px — Sing(Pa). Since Px is a complex orbifold then 7P ~
ixOx(a), see [6, Appendix A.2]. Let O(dy, ..., dp+r) = O(Zf:{ d; D;) be, where Z:':]r d; D; is
an effective divisor. Tensorizing the Euler’s sequence by O(dj, ..., dy+r) We get

n+r
0= 01, ....dy1 )" > @POW.....di +1.....dysy) > TPaW, ....dy1r) = O,

i=1

where TIPaA(dy, ..., dptr) :=TPA ® Oy, ..., dn+r).

Definition 3.1. A holomorphic foliation F on P of degree (dy, ..., d,+,) is a global section of
TPA ROy, ...,dy+r). We denote by K := O(dy, ..., d,+,) the canonical sheaf associate to
foliation F.

From above exact sequence we conclude that a foliation on P of degree (dy, ..., d,) is given
by a polynomial vector in homogeneous coordinates of the form

n+r
ad

X= Pl_9
, 9z;
i=1

where P; is a polynomial of degree (dy,...,d; +1,...,d,) foralli =1, ..., r, modulo addition
of a vector field of the form Zf:lr gi R;. Therefore

Sing(F) =n({p e C"*; Ri A+ A Rupr A X(p) =0}),

where 7 : (C"" — Z(A))/G(A) — P is the canonical projection. Moreover, we have the
following proposition.

Proposition 3.1. Let Fol((dy, ..., du+r), Pa) be the space of foliations of degree (dy, ..., dy4r).

Let D/ = (d; + )D; + Y"T d;D; be and D = Y""X] d; D;. Then Fol((d\, ..., dn4,), Pa) is
i#]

isomorphic to a complex projective space PN =1, where

n—+r
N = Z#(?D_/ NM)—r-[#(Ppn M)
j=1
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It is follows from (5) the polynomials F, G € S, define a rational function ® : Pp --» P!
by ® = £. Let F be a foliation on P and V = {f = 0} a hypersurface. We say that V is F-
invariant if and only if X (f) = hf, where X is a vector field which defines F in homogeneous
coordinates. Also, a rational function @ is a rational first integral for F if X (®) =0.

3.1. Examples

Rational scroll. Let ap, ..., a, be integers. Consider the T2-action on (C2 — {0}) x (C" — {0})
given as follows:

T2 x (C* — {0}) x (C" — {0}) — (C* - {0}) x (C" - {0}),
(), (X1, x2), (215 -2 Z0)) = ((x1, Ax2), (UAT Nz, o, AT 2,).
The rational scroll F(ay, ..., ay) is the quotient variety of (CZ—{0}) x (C*—{0}) by this action.
Let £ = @?:1 Opi (a;) be the vector bundle over PL. Write P(E) for the projectivized vector
bundle
P(E) — P!

and let Op(g)(1) be the tautological line bundle. It is possible show that F(ay, ..., a,) is the
image of P(E) by the embedding given by Op(g) (1), see [11].
Tow examples of this construction are:

(1) FQ,...,0)~P! x P,
(2) F(a, 0) is a Hirzebruch surface; see [19].

We have that Pic(F(ay,...,a,)) >~ ZL & ZM, where L is the class of a fibre of = and
M the class of any monomial x{’xé‘zi, with b + ¢ = a;. If all the a; > 0, then M is the

divisor class of the hyperplane section under the embedding F(ay,...,a,) C prtYiciai=l,
Let O(dy,d>) := O(d|L + dyM). Thus, a foliation on F(ay,...,a,) is a global section of
TF(ay,...,a,) ® O(d, d>) and has a bidegree (d1, d»). In this case Euler’s sequence is given by

0— 0925 01,002 @O(—ai, 1) > TF — 0,
i=1

and tensorizing by O(d1, d») we get the sequence

n
0— O@d1,d)®* - OWdi +1,d)** & P Od) —a;, d + 1) > TF @ O(d1, d3) — 0.
i=1
Therefore, a foliation on F(ay, ..., a,) is given, in homogeneous coordinates, by a vector field
3 3 9
X=01—+ 02—+ Pi—,
Qi 0x1 2 X IZ(‘: "9z

where Q; is bihomogeneous of bidegree (d; + 1, d>) and P; bihomogeneous of bidegree (d| —a;,
dr 4+ 1), modulo g1 Ry + g2 R», where

"9 9 9 " 9
R — i— R — _ _ —a;7; —
1 ;Zl 9z 2 =X1 ax + x2 9% +; a;Zj 3z,

and g; has bidegree (d1, d2).
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Multiprojective foliations. The Euler’s sequence over the multiprojective space P(1:+"7) is
given by

.
®r ®n;+1 ny,....nr)
0— 0O —>691(9(0,..., 1,...,0%ut 5 7P —0.
j= j

Tensorizing this sequence by O(d; — 1, ...,d, — 1) we get the exact sequence

.
0= 0@~ 1.....d: =D > PO ~1.....di.....dp = !
i=1
— TP (g —1, ... d. — 1) — 0.

We conclude that a foliation on PU!1:-7r) of multidegree (d] — 1, ..., d, — 1) can be represented
in multihomogeneous coordinates of CXi=1 @i+ for g polynomial vector field of the form

,
X = Z X;
i=1
with X; = Z;’;O P; j%ij’ and P;; is a multihomogeneous polynomial of multidegree (di — 1,
..,di,...,d. — 1) modulo

.
ZgiRi,
i=1

where g; has multidegree d = (d; — 1,...,d, — 1) and R; = Z'}":Ox,-jﬁ—ﬁ.

Weighted projective foliations. The Euler’s sequence on P(z) can be see since an exact se-
quence of orbibundle

n
0—->C— @Op(w)(wi) — TP(w) — 0
i=0
where C is the trivial line orbibundle on P(z), see [15]. It follows that a quasi-homogeneous
vector field X induces a foliation F of P(w) and that gR,, + X define the same foliation as X,
where R,, is the adapted radial vector field Ry =Y 7 @iz 3%, with g a quasi-homogeneous
polynomial of type (@Y, ..., @,) and degree d — 1.

4. Proof of Theorem 1.1

Proof. Let fi, fa,..., fn+n+r be the F-invariant irreducible hypersurfaces, where N =
hOPa, O(K 7). Let X = Z:’:{ P; 337’_ be a polynomial vector fields that defines F in homo-
geneous coordinates. It is follows from invarianceness that
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We get the following relations
Miht +Ahy +2i3h3 + -+ Ay b1 =0,
Aoohy + A2zhz + -+ oAy + Aow+ g2 =0,
A33h3 + Azahg + -+ A3 hvi2 + A3y hngs =0,

Ajjhj+XjGenhjr 4+ A+ phn+j =0,

where j =n +r. We can suppose that A;; # 0, foralli =1, ..., n. Define the rational 1-form on
C"*" given by

N+k f
nk—ZAk, k=1,...,n4+r.
j=k f]

Observe that by construction [9;]co 7 [17]co for all i # j, where | - |, denote the set of poles.
Contracting by X we get

N+k N+k

. X(f})
lxnk=z?»kj fl Z)»kjh =0,
j=k ! j=k
for all k =1,...,n + r. We affirm that 71, ..., n,4+, are linearly dependent over the rational

functions field K (PA). Otherwise, there exists a rational function R # 0 such that

N=mMA - Alpyr =Rdzi A+ NdZy4r.

Contracting n by X = Y17 P, a we have Ri, (dzi A -+ Adzpyr) =0, since i, nx = 0, for all
k=1,...,n+r.But R#0, thus

n+r
O0=1,(dz1 A--- ANdzy) =Z(—1)i+‘Pidzl /\-~~/\Jz\,~ A ANdZptr.
i=1

This implies that P = --- = P,4, =0, i.e., X =0, a contradiction. Let V be the I?(]P’M—linear
space generated by {11, ..., a4,}, suppose that dimgp )V =k and

V= (7“7 777]()E(]PA)7

for some 1 < k < n + r. There exist rational functions Ryp,..., Ri, Rx+1 € f(IP’A), with
Ri41 # 0, such that

Rini+---+ Rink + Rey1me+1 =0,

multiplying this equation by lem(Ry, ..., Ry+1) we obtain

Om+---+ Ok + Okr1mk+1 =0,

where each Q; is a homogeneous polynomial in the Cox ring of Po. Now, we multiply this
equation by F = ]_[N At g

Q1M+ -+ Qi + Qr+1Mir1 =0, (6)
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where 7; = Fn;. Since 7; are all homogeneous of the same degree, we can extract from rela-
tion (6) a relation

Qi iy + -+ + Qigfliy + Qiw17kx1 =0,
where deg(Q;;) =deg(Q+1),ij €{l,...,k}and j =1,..., € <k. Hence, we get

Figvr = Riy Fniy + -+ Riy F iy (7
where R;; = QQ,( IH € K(Pa). Dividing by F and differentiating

0=dRi1 /\77ij ++de[ /\771'('
Now, contracting by X results
OZX(RH) * iy ++X(Rl[) * Nig -

Since £ < k then X(R;;) =--- = X(R;,) = 0. That is, the rational function Ri;, j= 1,...,¢,1s
either a first integral for the foliation F induced by the vector field X or it is constant. It remains
to observe that at least one rational function R; i is not constant. Indeed, this follows from relation
(7) and the fact that the set of poles |1;;|occ # i, |oo, forall j #r. O

Example 4. It follows from [16] that

n
di+n-—1 di+n—1
hO(F(al,...,a,,),(’)(dl,dz)):<Za,~>(1 . )+(d2+1)<1n_1 >
i=1
Let F be a foliation on F(ay, ..., a,) of bidegree (d1, d»). If F admits
n
di+n—1 d+n—1
N, ....an.dr.dym) =) a; (‘ )+(d2+1)<‘ >+n+2
= n n—1

invariant irreducible algebraic hypersurfaces, then F admits a rational first integral.

Example 5. Let F be a foliation on P"1--"") of degree (dy — 1, ...,d, — 1). If F admits

J\f(nl,...,nr,dl,...,d,)—l_[<d+nl > an—i-r

i=1

invariant irreducible algebraic hypersurfaces, then F admit a rational first integral.
Acknowledgements
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