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Abstract We use NMR spectra to determine protein–protein
contact sites by observing differences in amide proton hydro-
gen–deuterium exchange in the complex compared to the free
protein in solution. Aprotic organic solvents are used to preserve
H/D labeling patterns that would be scrambled in water solu-
tions. The binding site between the mammalian co-chaperone
Aha1 with the middle domain of the chaperone Hsp90 obtained
by our H/D exchange method corresponds well with that in the
X-ray crystal structure of the homologous complex from yeast,
even to the observation of a secondary binding site. This method
can potentially provide data for complexes with unknown struc-
ture and for large or dynamic complexes inaccessible via NMR
and X-ray methods.
� 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

The wealth of information derived from the sequencing of a

number of genomes will only be efficiently utilized when the data

can be applied to the delineation of structure and function in real

molecular systems. One of the most important applications of

the sequence and structural databases will be to elucidate func-

tional complexes between components of biological systems.

Methods for rapid screening of potential ligands are in place

but there are very few methods, short of detailed X-ray structure

determination, for delineating the contact surfaces that are

formed in such complexes. Spectroscopic methods employing

labels that can detect fluorescence resonance energy transfer

[1] or spin labels [2] to detect the close proximity of groups on

different molecules have been extensively used, but they have sig-

nificant limitations. Firstly, the information is obtained only for

the immediate vicinity of the attached label. Labeling sites must

necessarily be designed with some underlying knowledge or

hypothesis about the location of the binding site. Secondly,

the presence of the label may perturb the interaction under

study, rendering the results difficult to interpret. Other NMR-

based experiments to delineate interfaces include the use of para-

magnetic probes [3,4] or saturation transfer detection [5].

In this paper, we describe an alternative approach that uti-

lizes hydrogen/deuterium exchange in solution, followed by
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NMR spectroscopy, to delineate the binding sites between

macromolecules. H/D exchange has been previously employed

for determining the combining sites of antibodies [6], but the

determination of amide proton protection patterns in aqueous

solutions has insurmountable problems that render the data

difficult to interpret. The technique is simple: the hydrogen/

deuterium exchange rates of the amide protons in a protein

are mapped by comparing the NMR spectra of the protein

in water (H2O) solution with the spectrum after transfer into

deuterium oxide (D2O) solution. Since the deuterium nucleus

is invisible in the proton NMR spectrum, the signals of the

amides where the proton has exchanged with deuterium will

disappear. For a folded protein, the solvent-accessible amide

protons close to the outer surface of the protein will be ex-

changed most rapidly; amides that are hydrogen-bonded in

secondary structure and/or sequestered in the interior of a

hydrophobic pocket, will be exchanged more slowly. Some

slowly-exchanging amides may persist for months or years at

room temperature. The H/D exchange experiment to delineate

a binding site involves a comparison of the amide proton pro-

tection pattern in the presence of a binding partner. Formation

of the complex will cause additional sequestration of amides in

the binding site, which should be visible in the NMR spectrum

as an increase in the proton NMR signal over that observed in

the free protein.

The major problem with this experiment when applied to

real protein systems is that the comparison of the amide signals

in the free protein and in the complex is very difficult to make

when the binding partner is of a significant size. If the molec-

ular weight of the complex is significantly greater than that of

the free protein, the signals will be relatively broader. If the

complex is large enough, the signals may disappear. The sig-

nals belonging to a single component of the complex would

still be detectable, but dissociation of the complex in aqueous

solution or D2O would result in loss of the information on

amide proton protection in the complex.

We propose a variation of this protocol where the complex is

dissociated under controlled conditions and the amide proton

protection patterns are preserved by freezing and lyophiliza-

tion of the solution followed by NMR spectroscopy in an

aprotic solvent. The comparison between the ‘‘free’’ and

‘‘bound’’ amide proton protection pattern is made under iden-

tical solvent conditions. Amide proton protection has been

measured in this way to determine the structure of amyloid fi-

brils [7] and in quench-flow protein folding studies of apomyo-

globin [8]. Here, we apply the H/D exchange method followed

by NMR analysis in the aprotic solvent DMSO to delineate

the binding site of the middle (M) domain of human Hsp90
blished by Elsevier B.V. All rights reserved.
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on the cochaperone human Aha1. The binding site observed in

these experiments is entirely consistent with the published X-

ray structure of the homologous complex from yeast [9]. Our

measurements even detect the presence of a secondary binding

site deduced from crystal contacts in the X-ray structure.
Fig. 1. 600 MHz 1H–15N HSQC spectrum of Aha1 in 100% DMSO
solution, showing selected assignments.

Fig. 2. Superposition of a 600 MHz 1H–15N HSQC spectrum of Aha1
in 100% DMSO solution (black) with a spectrum taken under the same
conditions of Aha1 following incubation in 100% D2O at 4 �C for 72 h
(blue). Resonances of amides protected from exchange show compa-
rable intensities in the black and blue spectra, while those that
2. Materials and methods

2.1. Preparation of proteins
Constructs for the middle domain of human Hsp90a (M, residues

293–554) were amplified from a full length clone and subsequently
cloned by standard restriction enzyme methods into the expression vec-
tor pET21a (Novagen). The Hsp90 binding domain of Aha1 (residues
1–162 of human Aha1) was amplified by PCR from a human liver
cDNA library and cloned into pET21a. Proteins were expressed in
M9 minimal medium in the E. coli host BL21 (DE3) [DNAY] with
induction at 15 �C for 12–20 h. Cells were lysed by sonication in
25 mM Tris buffer, pH 8.0, supplemented with 5 mM DTT, a tablet
of Protease Inhibitor Cocktail (Roche) and 2 mM EDTA. The soluble
fraction of the cell lysate was applied to a 60 ml Sepharose Q FF col-
umn equilibrated with 25 mM Tris, pH 7.5, 2 mM EDTA, 2 mM DTT
and proteins eluted with a linear gradient to 1 M NaCl, concentrated
using Centriprep10 (Amicon) and purified by gel filtration chromatog-
raphy on a 350 ml Sephacryl S100HR (2.6 · 65 cm) in 20 mM Tris, pH
7.5, 0.2 M KCl, 2 mM EDTA, 2 mM DTT. Aha1 isotopically labeled
with 15N or with 15N and 13C was obtained by expression of the pro-
tein in E. coli grown in the presence of (15NH4)2SO4, 15NH4Cl and 13C-
glucose as appropriate.

DMSO solutions of Aha1 for resonance assignment were prepared
by dialyzing concentrated protein samples into 20 mM ammonium
acetate pH 7.1, 0.5 mM TCEP. Sample pH was adjusted to 2.7 with
2% TFA immediately prior to freezing in liquid nitrogen and lyophili-
zation. Lyophilized 15N, 13C double-labeled protein was dissolved in
dry DMSO-D6 (CIL) immediately prior to NMR analysis.

2.2. NMR spectra
All NMR spectra were acquired at 20 �C on a Bruker DRX600 spec-

trometer equipped with a cryoprobe. Standard HSQC [10] and triple
resonance spectra, HNCA [11], HNCO [11], HNCACO [12],
HNCACB [13] and CBCA(CO)NH [14] were used to assign the reso-
nances of Aha1 in DMSO solution. Data were processed using NMR-
Pipe [15] and NMRView [16].

2.3. H/D exchange experiments
For the H/D exchange, all samples were dialyzed overnight into

20 mM ammonium acetate buffer, pH 7.1, containing 0.5 mM TCEP.
15N-labeled Aha1 was used at an identical final concentration of
100 lM in the free state and in complex with Hsp90 M domain. The
complex was formed by addition of unlabeled human Hsp90a (293–
554) to 15N-labeled Aha1 in a 1:1 molar ratio. ‘‘Interrupted’’ hydro-
gen–deuterium exchange was carried out as previously described
[8,17]. Exchange of both the free and Hsp90 M domain-bound Aha1
was initiated by manual dilution into a 10-fold volume of the same buf-
fer (20 mM ammonium acetate buffer, pH 7.1, containing 0.5 mM
TCEP) in D2O at 4 �C. After incubation at various times between
24 s and 72 h at 4 �C, aliquots were withdrawn and the H/D exchange
was quenched by adding 0.1% (vol/vol) trifluoroacetic acid solution in
D2O, to give a final pH* (Measured pH value in a D2O solution,
uncorrected for the deuterium isotope effect) of approximately 2.5
for the solution. Each sample was quickly frozen in liquid nitrogen
and lyophilized. The lyophilized proteins were taken up in dry DMSO
for NMR analysis.
exchange show a reduced intensity in the blue spectrum.
3. Results

3.1. Resonance assignments for human Aha1(1–162) in DMSO

solution

In order to determine which of the Aha1 amide protons are

protected from H/D exchange, it is necessary to assign the res-
onances. Further, since the amide protection patterns of the

protein in the presence and absence of Hsp90 M domain are

preserved and detected by NMR analysis in the aprotic solvent

DMSO, it is necessary to obtain assignments for the protein in

this solvent, under the conditions that will be used to deter-
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mine the amide protection patterns. Assignments were made

using standard triple resonance methods.

Aha1(1–162) is completely unfolded in DMSO solution, as

indicated by the tight dispersion of the proton resonances in

the 1H–15N HSQC spectrum (Fig. 1). As previously noted,

the 15N dispersion is similar to that of a folded protein [18].

Despite the poor 1H resolution, the resonances are distinguish-

able due to the narrow linewidth typical of unfolded proteins

[18], and close to complete backbone assignments have been

made.

3.2. H/D exchange of Aha1

The amide proton protection of Aha1(1–162) after 72 h in

D2O at 4 �C is shown in Fig. 2. The underlying black spectrum

shows the cross peaks of free Aha1 before D2O exchange, and

is equivalent to the spectrum in Fig. 1. The overlying blue spec-

trum shows differences in the intensity of a number of cross

peaks, corresponding to the extent to which the amide proton

has been exchanged for deuterium. The cross peaks with un-

changed intensity correspond to the protected amides, which

are normally present in hydrogen-bonded secondary structure
Fig. 3. (a) Ribbon diagram showing the backbone structure of yeast Aha1 f
middle (M) domain of yeast Hsp90. Blue spheres represent the backbone N at
(i.e. cross peak intensity in the black and blue spectra of Fig. 2 are the same).
(ClustalW) of Aha1 from yeast with a number of other eukaryotic Aha1 sequ
acidic in red, aromatic in purple, basic in blue, neutral hydrophilic in yellow, g
the X-ray structure of yeast Aha1 [9] are indicated by black arrows, and a-hel
between the yeast and human sequences, and colons indicate similar residue
and/or sequestered in the interior of the protein, resulting in

the retention of the proton at this position, i.e. its protection

from exchange. Highly protected amides identified from the

spectra in Fig. 2 are shown in Fig. 3a, plotted on the structure

of the homologous yeast protein [9]. The amino acid sequence

alignment between yeast and human Aha1, and other eukary-

otic proteins of this family is shown in Fig. 3b. Although the

sequences share rather low similarity (18% identical, 17% sim-

ilar), the protected amides of the human protein fall into re-

gions that correspond to expected regions of high protection

in the yeast protein structure: the inner surfaces of two helices

and the central strand of the b-sheet. We infer that, while the

structure of the human Aha1 protein may differ in detail, the

overall topology must be similar to that of the yeast protein

for which the structure was obtained.

3.3. H/D exchange of Aha1 in complex with Hsp90 M domain

Small but significant differences are observed in the protec-

tion of amides when H/D exchange is measured in the presence

of the Hsp90 M domain (Fig. 4). This domain has been shown

both by the X-ray structure of the yeast protein [9] and by
rom the X-ray crystal structure of the complex of yeast Aha1 with the
oms of the residues whose amides are fully protected in the free protein
Figure prepared with MolMol [20]. (b) Amino acid sequence alignment
ences. Highly conserved hydrophobic amino acids are shown in green,
lycine and proline in pink and cysteine in gold. Positions of b-strands in
ices are shown by red lines. Asterisks indicate residues that are identical
s between these two sequences.



Fig. 4. Superposition of a 600 MHz 1H–15N HSQC spectrum of the
Aha1 complex with Hsp90 M domain, dissolved in 100% DMSO
solution (black) with a spectrum taken under the same conditions of
the Aha1 complex with Hsp90 M domain, following incubation in
100% D2O at 4 �C for 72 h (green). As for Fig. 2, resonances of amides
protected from exchange show comparable intensities in the black and
green spectra, while those that exchange show a reduced intensity in
the green spectrum. Note that the H/D exchange experiment for the
complex took place in D2O solution, and this solution was subse-
quently quenched and lyophilized before being taken up in DMSO.
The complex is dissociated in DMSO and both proteins are unfolded.
However, despite the presence of the (unlabeled) Hsp90 M domain in
the DMSO solution, it has no effect on the resonances of the (labeled)
Aha1.

Fig. 5. (a) Ribbon diagram showing the backbone structure of the
complex of yeast Aha1 with yeast Hsp90 M domain (PDB 1USU) [9].
Red spheres represent the amides that show the greatest difference in
protection between human Aha1 free and in the complex with human
Hsp90 M domain (intensity ratio difference >2), while orange spheres
show resides with smaller differences (1 < intensity ratio differ-
ence < 2). The residues are identified with reference to the sequence
alignment shown in Fig. 3b. Figure prepared with MolMol [20]. (b)
Crystal contacts between Aha1 and the Hsp90 M domain present in
the same unit cell (left) and in the adjacent unit cell (right). Figure
adapted from Meyer et al. [9] with permission.
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NMR experiments [19] to bind specifically to the Hsp90 M do-

main. Fig. 4 shows a superposition of the 1H–15N HSQC spec-

trum of 15N-labeled Aha1 in the presence of unlabeled Hsp90

M domain. As for Fig. 2, the black spectrum represents the

protein before initiation of H/D exchange, and corresponds

both to the black spectrum of Fig. 2 and to Fig. 1. The overlaid

green spectrum was acquired after the complex had spent 72

hours in D2O, exactly analogous to the blue spectrum of

Fig. 2. A comparison of the overlaid spectra of Fig. 2 with

those of Fig. 4 shows that there is a significant increase in

the intensity of several of the cross peaks, indicating that the

protection of certain amides has been increased in the complex

compared to the free protein. The extent of the difference in

protection was quantified by measuring the intensity of each

cross peak in each spectrum, and then comparing the ratios

of the intensity change for the free protein with that of the

bound protein. For example, the cross peak for Tyr 81 has

an intensity of 10 before exchange in either the free or bound

states (black spectra of Figs. 2 and 4) but the free form has an

intensity of 2 after 72 h in D2O (blue spectrum), whereas the

intensity of the cross peak for the complex is 5 (green spec-

trum). The ratio between the intensities at zero time and 72 h

for the free protein is thus 5.0, while the corresponding ratio

for the bound protein is 2.0. The difference between these

two numbers, 3.0, represents one of the larger changes in pro-
tection between free and bound Aha1. A total of 13 amides

showed a difference of greater than 2 in the intensity ratio be-

tween free and bound Aha1, and another 30 amides showed a

smaller difference (1 < intensity ratio difference < 2). Fig. 5

shows the positions of these amides plotted onto the structure

of the complex between yeast Aha1 and the M domain of yeast

Hsp90.
4. Discussion

The positions of the amides whose level of protection is in-

creased in the complex with the Hsp90 M domain differ from

those that were fully protected in the free protein (Fig. 3a). In-

deed, this must be so, since the fully protected amides could

not be expected to increase their protection in a complex; the

only circumstance where these amides could change their pro-

tection would be if the protein were to unfold in the complex,

giving decreased protection. The level of protection of the
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amides that are fully protected in the free protein remains com-

plete in the bound protein, demonstrating that human Aha1

remains folded in the complex with human Hsp90 M domain,

as expected from the published crystal structure of the yeast

complex [9].

The dissociation constant for the interaction of yeast Aha1

with the M domain of yeast Hsp90 is 1.75 ± 0.15 lM [9], and

we have measured the equivalent dissociation constant for

human Aha1 and Hsp90 M domain as 1.0 ± 0.3 lM by iso-

thermal titration calorimetry. We anticipate that interactions

with dissociation constants <1 lM would be amenable to

investigation by the technique described in this paper. Infor-

mation on weaker interactions would also be available if the

solution conditions and temperature were adjusted to maxi-

mize differences in the free and bound H/D exchange, for

example, by lowering the temperature of the exchange reac-

tion.

The major contact site for Hsp90 M domain on Aha1 is

shown by the group of red spheres, indicating a large difference

in protection between the free and bound proteins, at one end

of the molecule. This site corresponds well with part of the

contact surface in the yeast complex (Fig. 5), and several sites

on the remainder of the contact surface in the crystal structure

show significant groups of red and orange spheres, indicating

the presence of additional amide proton protection in the com-

plex. Since the homology between the yeast and human se-

quences for Aha1 is quite low, we would expect some

difference in detail between the structures, but certainly the

topology of this surface appears well represented in the H/D

exchange measurements.

However, there also appears to be a significant level of in-

creased protection on the opposite face of the molecule.

Although this could be construed as evidence that the observed

increase in amide protection in the presence of Hsp90 M do-

main is non-specific, we believe that it accurately represents

the presence of a secondary binding site in solution. The report

of the X-ray crystal structure of the yeast Aha1 in complex

with the yeast Hsp90 M domain [9] specifically comments on

the observation of contacts between Aha1 and two M domain

molecules, in different asymmetric units. These crystal contacts

cannot be inferred directly from the deposited coordinates

(PDB accession 1USU), but an examination of Fig. 2A from

Meyer et al. [9] shows that the contact surfaces of the central

Aha1 with the two flanking Hsp90 M domain molecules corre-

spond very well to the surfaces indicated in Fig. 5. Meyer et al.

[9] speculate that the secondary binding site shown in the crys-

tal structure might be associated with client protein binding to

the Hsp90–Aha1 complex. Our results do not address this

speculation, but rather confirm that the Hsp90 M domain

may contact two different surfaces of Aha1 in solution.

Our observations show that the hydrogen–deuterium ex-

change method, with the protection patterns of labeled pro-

teins detected in solution in non-aqueous solvents, is a

powerful means to probe the contact sites between protein do-

mains in solution. In cases where the complex may be unable

to be crystallized, this method potentially provides valuable

first-round information on the location of sites, which can then

be further probed by other spectroscopic means such as fluo-

rescence resonance energy transfer or spin labeling. In contrast

with traditional NMR or X-ray crystallographic methods,

complexes can be prepared and H/D exchange can be per-

formed at relatively low protein concentration under condi-
tions more representative of the biological state. Our

technique has the added advantage that the interactions be-

tween the components of the complex are not perturbed to

any significant degree by the experimental conditions, as fre-

quently occurs, for example, by the covalent attachment of

fluorescent or spin label probes in the vicinity of binding sites.

In addition, we anticipate that the H/D exchange method can

readily be used in association with FRET and spin label stud-

ies, as a means of validation for these methods.
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