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a b s t r a c t

In the parallel batch schedulingmodel, a group of jobs can be scheduled together as a batch
while the processing time of this batch is the greatest processing time among its members;
in the model of scheduling with rejection, any job can be rejected with a corresponding
penalty cost added to the objective value. In this paper, we present a PTAS for the combined
model of the above two scheduling models where jobs arrive dynamically. The objective
is to minimize the sum of the makespan of the accepted jobs and the total penalty of the
rejected ones. Our basic approaches are dynamic programming and roundings.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Both themodels of parallel batch scheduling and scheduling with rejection have their deep roots in the real world. In the
industry of semiconductormanufacturing, the last stage is the final testing (called the burn-in operation). In this stage, chips
are loaded onto boards, which are then placed in an oven and exposed to high temperature. Each chip has a pre-specified
minimum burn-in time, and the burn-in oven has a limited capacity b. Up to b chips (which is called a batch) can be baked
in an oven simultaneously, and the baking process is not allowed to be interrupted. To ensure that no defective chips will be
passed to the customer, the processing time of a batch is that of the longest one among these chips. As the baking process in
burn-in operations is much longer than other testing operations, an efficient algorithm for batching and scheduling is highly
meaningful.
The basicmotivation of themodel of schedulingwith rejection is simple. For the traditional research, it is always assumed

that we have to process all the jobs. In the real world, however, when the processing time of some job is too large, we can
reject processing it. To reject a job, of course, we should pay a corresponding penalty. The problem is how tomake a tradeoff
between some regular objective, saymakespan, of the accepted jobs, and the total penalty of the rejected ones. When all the
penalties are large enough, we have to accept all the jobs, thus the model of scheduling with rejection is a generalization of
the classic scheduling model. Whether rejection is allowed or not really weights. For instance, the trivial problem 1|rj|Cmax
becomes NP-hard, when rejection is allowed, even if there are only two release times [6].
Next, we shall give literature reviews for the two models, respectively. The parallel batch scheduling model has been

studied extensively since the late 1990s, we only list the primary results related with the makespan objective function.
Interested readers can refer to the excellent surveys [3,18]. In contrast, relatively few researchers have concentrated on the
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rejection model, so we give a relatively complete review. In the 3-tuple notation of Graham et. al. [11], we put a p-batch in
the middle field to specify the parallel batch scheduling model and we use TP in the rejection model as the abbreviation of
total penalty.
The first paper studying the parallel batch scheduling model was due to Ikura and Gimple [14], who considered a special

case of 1|p-batch, rj|Cmax, where the jobs have identical processing times. They showed that this special case can be solved
in O(n) time using a simple strategy. For the special case where there are two release times, Lee and Uzsoy [17] proposed an
algorithm running in O(nb2PsumPmax) time, where Pmax and Psum are the maximum and total processing time, respectively.
For the general problem 1|p-batch, rj|Cmax, Brucker et al. [3] showed that it is equivalent to 1|p-batch, rj|Lmax and therefore
is strongly NP-hard even if b = 2. Deng et al. [8] present the first PTAS for the general case, which is the best possible
theoretically speaking. Li et al. [15], Poon and Zhang [19] designedmore delicate PTASs, respectively. Therewere also similar
results on parallel machines [16,23].
For the model of scheduling with rejection, as to the makespan criterion, where our objective function is the sum of the

makespan of the accepted jobs and TP of the rejected ones, Bartal et al. [4] studied the off-line version as well as the on-line
version on identical parallel machines. Later, the uniform machines variant was considered: He et al. [12] present the best
possible on-line algorithms for the two-machine case and a special three-machine case; Hoogeven et al. [13] and Seiden
[20] also considered the preemptive version on parallel machines. Cao and Zhang [6] were the first to study the dynamic job
arrival problem: They proved its NP-hardness and designed a PTAS for the off-line version; for the on-line version, a best
possible algorithm with competitive ratio (

√
5+ 1)/2 was presented.

As to the total weighted completion time criterion, Engels et al. [9] addressed the off-line version and Epstein et al. [10]
paid attention to the on-line version for a unit-weight-unit-processing-time special case. Noticing that scheduling with
rejection is in fact a bi-criteria optimization problem, Cao et al. [5] studied this model through treating TP as a constraint.
Sengupta [21] also discussed the maximum lateness criterion and gave a PTAS through dynamic programming.
In this paper, we shall concern a combinedmodel where jobs can be either processed in batches or be rejected. Jobs arrive

dynamically and the objective is tominimize Cmax+TP. Trivially, this problem is strongly NP-hard. Ourmain result is a PTAS,
and the basic approaches are dynamic programming and roundings. Our main idea, which was first explored by Deng et al.
[7], is to treat large and small jobs separately. We note that a special case of this problem where jobs arrive simultaneously
is proved solvable in O(n2 log n) [22].

2. Model description and preliminaries

We are given a set of jobs {J1, J2, . . . , Jn}, where each job Jj is characterized by a processing time pj, a release time (arrival
time) rj, before which Jj can’t be processed, and a penalty cost ej, which we pay if Jj is rejected, 1 ≤ j ≤ n. We assume all the
numbers are non-negative integers. Up to b jobs can be processed together as a batch, and the processing time of a batch is
the largest one among its members. Let p(B) denote the processing time of a batch B, then p(B) = max{pj : Jj ∈ B}.
We also use r(B) to denote the release time of B, i.e. the largest release time in B, and we use s(B) and c(B) to denote the

start time and completion time of B respectively in some schedule. Obviously, s(B) ≥ r(B). We call a series of batches in
some schedule B1, B2, . . . , Bk a block, if c(Bi) = s(Bi+1), for all 1 ≤ i ≤ k− 1. For some blockB, s(B) and c(B) are the start
time and completion time of this block, respectively. Time intervals between blocks are called gaps or idle times.
The problem is (a) to accept a subset of the jobs, (b) to batch the accepted jobs and (c) to schedule these batches, such that

the objective function Cmax+TP isminimized, where Cmax is themakespan or themaximum completion time of the accepted
jobs and TP is the total penalty of the rejected ones. Here in (c), schedulemeans that we give a sequence of the batches and
specify the start times of all the batches. Since the problem 1||Cmax can be solved trivially by processing all the jobs in any
sequence as long as there is no idle time for the machine, and the problem 1|rj|Cmax can be simply solved by processing
any available job whenever the machine is free, we can see that the key points in problem 1|p-batch, rej, rj|Cmax + TP are
procedures (a) and (b), because as long as we know how to accept the jobs and how to batch them, we can treat each batch
as a single job safely. The noun schedulemeans a solution, not definitely an optimal one, for some scheduling problem,which
is denoted by π in this paper.
Next, we shall give some preliminary results. The problem 1|p-batch|Cmax can be easily solved in O(n log n) time by the

famous yet simple FBLPT rule (Full Batch Largest Processing Time first) [2]. In this paper, we need two versions of it.

Algorithm FBLPT(1)

STEP 1. Index all the jobs in non-decreasing order of their processing times, i.e. p1 ≤ p2 ≤ · · · ≤ pn.
STEP 2. Take J1, J2, . . . , Ji0 as a batch, and denote it by B1, where i0 = n − b(dn/be − 1). For the other jobs, from Ji0+1 to

Jn, take b of them in turn as a batch, and denote the batches as B2, B3, . . . , Bdn/be, respectively.
STEP 3. Sequence the batches in increasing order of their indices.
FBLPT(2) is similar, except that the jobs are indexed in non-increasing order of their processing times, and the last batch

maynot be full. The correctness of the two algorithms is straightforward. The following properties for 1|p-batch, rej|Cmax+TP
are useful for attacking more complicated problems.

Lemma 1 ([22]). There is an optimal schedule for 1|p-batch, rej|Cmax + TP such that the accepted jobs are scheduled according
to the FBLPT(1) rule. �
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Suppose that π is an optimal schedule for 1|p-batch, rej|Cmax+ TP which satisfies the FBLPT(1) rule. Its accepted batches
are B1, B2, . . . , Bk and the largest jobs in these batches are Ji1 , Ji2 . . . , Jik , respectively. Suppose also that the jobs have
been indexed in non-decreasing order of their processing times. It’s not hard to see that the rejected jobs whose indices
are between il−1 and il must be the ones with smaller penalty costs. More precisely, denote by g(i, j) as the sum of the
j− i+ 1− (b− 1) smallest penalties among jobs Ji, Ji+1, . . . , Jj, j− i+ 1 ≥ b− 1, we have:

Lemma 2 ([22]).
∑

Jj /∈Bl
il−1<j<il

ej = g(il−1 + 1, il − 1), for all 2 ≤ l ≤ k. �

The above property may not hold for B1 as it may contain less than b jobs, and it is straightforward that if this exception
does occur, it must hold that |B1| = i1, where |B1| denotes the cardinality of the set B1, that is, all the jobs whose indices are
equal to or less than i1 are accepted.

Lemma 3 ([22]). The total running time for computing all the g(i, j)’s (1 ≤ i, j ≤ n, j − i ≥ b − 2) can be bounded by
O(n2 log b). �

In the next sections, i, j in the above lemmawill be restricted to be indices of jobswith the same release times, but similar
results still hold.
For any optimization problem, if it has a family of algorithms {Aε}, such that for any given error parameter ε > 0,

algorithm Aε generates a solution whose objective value is at most 1 + ε times the optimal one, and the running time is
a polynomial of the input size while ε is taken as a constant, we say that {Aε} is a PTAS (Polynomial Time Approximation
Scheme) for this problem. Further, if the running time is also a polynomial of 1/ε, we call {Aε} an FPTAS (Fully PTAS). It is
well known that strongly NP-hard problems do not admit an FPTAS.
Without loss of generality, we assume in this paper that 1/ε is integral. For any instance I of some scheduling problem,

if we can transform it into a new instance I ′ which satisfies some property P , and for any optimal schedule π ′ of I ′, the
corresponding scheduleπ of I (whichmay not be unique) has an objective value atmost 1+ O(ε) times the optimal objective
value, we say that with 1 + O(ε) loss, we assume that this scheduling problem has property P . The most frequently used
transformations are identical rounding and geometry rounding. This language was explored by Afrita et al. [1]. It simplifies
greatly the presentation of our ideas. We also overload this language by saying that with 1 + O(ε) loss we assume that the
schedules meet some property, if there exists at least one schedule meeting this property whose objective value is at most
1+ O(ε) times the optimal one.

Lemma 4 ([15]). With 1 + ε loss, we assume that there are at most 1/ε distinct release times for any instance of
1|p-batch, rej, rj|Cmax + TP. �

The above result in [15] (Lemma1) is actually for the problem1|p-batch, rj|Cmax and it carries over trivially to the problem
we concern, so we omit the proof. Another remark is that we use 1/ε instead of 1/ε + 1 for simplicity. This modification is
valid since we can choose a slightly smaller ε at the very beginning.
Throughout this paper, we denote byOpt the optimal value of problem 1|p-batch, rej, rj|Cmax+TP, we usem(π) to denote

the objective value of some schedule π . We also use d to denote the optimal value of an imaginative scheduling problem
where all jobs have the same parameters as in the problem concerned in this paper, except that all of them arrive at time
zero. From [22], we know that d can be calculated in O(n2 log b) time. It is straightforward that d is a lower bound for Opt .
It is still not hard to see that rmax + d is an upper bound for opt as we can get a feasible schedule by accepting and batching
the jobs as we do in the schedule corresponding to d and scheduling these batches from time rmax on.

Lemma 5. If {Aε} is a PTAS for the restricted problem of 1|p-batch, rej, rj|Cmax + TP in which Opt ≥ rmax, then the general
problem of 1|p-batch, rej, rj|Cmax + TP admits a PTAS, whose running time is at most n times that of {Aε}.

Proof. For any instance of the general problem, suppose that there arem distinct release times r1 < r2 < · · · < rm, and the
corresponding sets of jobs areR1,R2, . . . ,Rm. AlgorithmBiε (1 ≤ i ≤ m) is constructed fromAε easily as follows. There
are two steps. In the first step, Biε rejects all the jobs inRi,Ri+1, . . . ,Rm; In the second step, Aε is called to schedule all
the remaining jobs.Bε simply runsB1ε,B2ε, . . . ,Bmε and picks a schedule with the smallest objective value.
We claim that {Bε} is a PTAS for the general problem. In fact, suppose that π∗ is an optimal schedule for the general

problem, π∗ rejects all the jobs inRi,Ri+1, . . . ,Rm and accepts at least one job inRi−1 (1 ≤ i ≤ m. i = 1 means that π∗
rejects all the jobs). Then,Biε outputs a 1+ ε approximate solution. So doesBε . It is trivial that the running time ofBε is at
most n time ofAε sincem ≤ n. �

Due to Lemma 5, we assume later that

Assumption 1. Opt ≥ rmax.

Therefore we have

max{rmax, d} ≤ Opt ≤ rmax + d. (1)

Notice that a 2-approximate algorithm can be simply designed just as we do in getting the upper bound rmax + d. Let
M = εmax{rmax, d}, then:

M/ε ≤ Opt ≤ 2M/ε. (2)
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Lemma 6. Jobs with processing time larger than rmax + d should be rejected in any optimal schedule. �

Due to the above trivial lemma, we assume later that

Assumption 2. pmax ≤ rmax + d.

We will call jobs with processing times equal to or less than εM small jobs. Otherwise, they will be called large jobs. In
the next section, we shall consider a special case where all the jobs are small. We present an FPTAS for this case, which tells
us that this special case is at most weakly NP-hard and the strongly NP-hardness of the general problem comes from the
large jobs. The analysis of this case also makes it easier for that of the general case.

3. A special case with purely small jobs

We assume in this section that the jobs are indexed in the non-decreasing order of their release times, that is,

r1 ≤ r2 ≤ · · · ≤ rn. (3)

For the jobs with the same release times, they are indexed in the non-decreasing order of their processing times. We still
assume that there arem distinct release times in total: r1 < r2 < · · · < rm. By Lemma 4,

m ≤ 1/ε. (4)

Job Jj has a release time ruj , that is rj = ruj . The jobs arriving at time r i are Jni−1+1, Jni−1+2, . . . , Jni , 1 ≤ i ≤ m, n0 = 0.

Theorem 1. With 1+ ε loss, we assume that:

Property 1 (No Combined Batch). Accepted jobs in any batch have the same release time;

Property 2 (First Come First Serve). Batches with earlier release times are sequenced before the later ones;

Property 3 (FBLPT Rule). Accepted jobs with the same release time are batched and sequenced according to the FBLPT(1) rule;

Property 4 (No Gap). All the batches form a block. That is, there is no idle time between any two adjacent batches.

Proof. Properties 2 and 3 are trivial, and they does not incur any loss in the accuracy. Property 4 can be easily satisfied
without any loss in accuracy as we can fasten the last batch and push all the others forward until there are no idle times
between adjacent batches. The restriction of Property 1 causes an error of at most ε. Since the proof is the same as that in
[15] (Theorem 4), we omit it here. �

Next, we shall find through dynamic programming a schedule satisfying the properties in Theorem 1 and such that the
objective value is minimized. Let f1(j, p) be the smallest total penalty among all the sub-schedules of jobs J1, J2, . . . , Jj that
(a) satisfy the four properties in Theorem 1, (b) have a completion time of p and (c) accept Jj. f0(j, p) is similarly defined
except that Jj is rejected. It is easy to see that

f0(j, p) = min{f0(j− 1, p), f1(j− 1, p)} + ej. (5)

Next, we shall discuss in three cases the recursive relationships of f1(j, p).
Case 1. p − pj < rj. In this case, it is impossible to accept Jj. As a matter of fact, if Jj is accepted, by Properties 1–3 in

Theorem 1 and the way that jobs are indexed, Jj has a completion time p and its start time is p − pj, which is less than its
release time. A contradiction.

Case 2. p− pj ≥ rj and j− nuj−1 ≤ b. p− pj ≥ rj means Jj is available at time p− pj. Recall that r
uj is the release time of

Jj and nuj−1 is the index of the last as well as the largest job that arrives immediately before r
uj . Therefore, j − nuj−1 equals

the number of the jobs among J1, J2, . . . , Jj that arrive at ruj . Since j − nuj−1 ≤ b and Jj is accepted, all the j − nuj−1 jobs
should be accepted. By Property 1, no more jobs are batched together with them, that is, the j − nuj−1 jobs alone form a
batch. Therefore, by Property 4, the completion time of the rest jobs should be p− pj. Hence,

f1(j, p) = min{f0(nuj−1, p− pj), f1(nuj−1, p− pj)}. (6)

Case 3. p − pj ≥ rj and j − nuj−1 > b. The only difference between this case and Case 2 is that it is not necessarily true
that all the jobs arriving at ruj are accepted, and even if they are all accepted, they may form more than one batches. Yet,
similar to the observation in Lemma 2, we have the following two arguments:
• If the accepted jobs arriving at ruj form exactly one batch, the contribution that these jobs make to f1(j, p) should be

g(nuj−1 + 1, j− 1), or equivalently g(j− (j− nuj−1 − 1), j− 1). For any b− 1 ≤ k < j− nuj−1, denote

∆0(p, j, k) = g(j− k, j− 1)+ f0(j− k− 1, p− pj) (7)

and

∆1(p, j, k) = g(j− k, j− 1)+ f1(j− k− 1, p− pj), (8)
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we have in this subcase that

f1(j, p) = min{∆0(p, j, j− nuj−1 − 1),∆1(p, j, j− nuj−1 − 1)}. (9)

• If the accepted jobs arriving at ruj form more than one batches, we can consider all the possibilities by enumerating
which is the largest job in the penultimate batch. More precisely, suppose that Jj−(k+1) is a candidate, then the contribution
that jobs Jj−k, Jj−k+1, . . ., Jj make to f1(j, p) should be g(j− k, j− 1). Therefore, we have in this situation f1(j, p) = ∆1(p, j, k).
And hence we have in this subcase that

f1(j, p) = min{∆1(p, j, k) : b− 1 ≤ k < j− nuj−1 − 1}. (10)

Thereby, the recursive relationship in Case 3 is:

f1(j, p) = min
{
∆0(p, j, j− nuj−1 − 1),∆1(p, j, j− nuj−1 − 1),min{∆1(p, j, k) : b− 1 ≤ k < j− nuj−1 − 1}

}
. (11)

In sum, the overall recursive equation is as follows:

Algorithm DP1

f0(j, p) = min {f0(j− 1, p), f1(j− 1, p)} + ej;

f1(j, p) =


∞ if p− pj < rj
min{f0(nuj−1, p− pj), f1(nuj−1, p− pj)} if p− pj ≥ rj & j− nuj−1 ≤ b

min
{
∆0(p, j, j− nuj−1 − 1),∆1(p, j, j− nuj−1 − 1),
min{∆1(p, j, k) : b− 1 ≤ k < j− nuj−1 − 1}

}
if p− pj ≥ rj & j− nuj−1 > b.

The computations are done over all 2 ≤ j ≤ n and 1 ≤ p ≤ (1+ 2ε)(rmax + d).

Remark 1. Doing the computations over 1 ≤ p ≤ rmax+d is not enough, as our objective is not to find an optimal schedule
but an approximate one, whose objective value may be larger than rmax+d, but will never be larger than (1+2ε)(rmax+d),
where the coefficient 1 + 2ε is from Lemma 4 and Theorem 1. It is also valuable to notice that 1 + 2ε is large enough and
(1+ ε)2 is unnecessary, because each of the restrictions in Lemma 4 and Theorem 1 causes an absolute error of εOpt in the
objective value and absolute errors are additive. Similar remarks will still occur in the rest of this section as well as in the
next section, and the same argument will still apply.

The boundary conditions are:

f0(1, p) = e1, for all 1 ≤ p ≤ (1+ 2ε)(rmax + d); (12)

f1(1, p) =
{
0 if p ≥ r1 + p1
∞ if p < r1 + p1

, for all 1 ≤ p ≤ (1+ 2ε)(rmax + d). (13)

After computing all the f0(n, p)’s and all the f1(n, p)’s, calculate

min{f0(n, p)+ p, f1(n, p)+ p : 1 ≤ p ≤ (1+ 2ε)(rmax + d)}, (14)

and output the corresponding schedule. By Lemma 4 and Theorem 1, this generates a schedule whose objective value is at
most 1+ 2ε times the optimal one.
It’s not hard to see that the running time of DP1 is pseudo-polynomial. In fact, it can be bounded byO(n2(rmax+d+log b)),

where O(n2 log b) is from the computing of g(i, j)’s (Lemma 3).
For any positive number x, let

x′ =
⌊
x
M/n

⌋
M/n. (15)

f ′1(j, q) and f
′

0(j, q) are similarly defined as f1(j, q) and f0(j, q), respectively, except that the completion time of each batch is
an integral multiple ofM/n. Similar to DP1, we have the following dynamic programming.

Algorithm DP1′

f ′0(j, q) = min
{
f ′0(j− 1, q), f

′

1(j− 1, q)
}
+ ej;

f ′1(j, q) =


∞ if q− pj < rj
min{f ′0(nuj−1, (q− pj)

′), f ′1(nuj−1, (q− pj)
′)} if q− pj ≥ rj & j− nuj−1 ≤ b

min
{
∆′0(q, j, j− nuj−1 − 1),∆

′

1(q, j, j− nuj−1 − 1),
min{∆′1(q, j, k) : b− 1 ≤ k < j− nuj−1 − 1}

}
if q− pj ≥ rj & and j− nuj−1 > b

where

∆′0(q, j, k) = g(j− k, j− 1)+ f
′

0(j− k− 1, (q− pj)
′), (16)

∆′1(q, j, k) = g(j− k, j− 1)+ f
′

1(j− k− 1, (q− pj)
′), (17)
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and the computations are done over all 2 ≤ j ≤ n, and and over all q ∈ Q0 = {M/n, 2M/n, . . . , t0M/n},

t0 =
⌈
(1+ 3ε)(rmax + d)

M/n

⌉
. (18)

The coefficient 1+3ε is from proof of the next theorem, for the same reason as argued in Remark 1. The boundary conditions
are:

f ′0(1, q) = ej, for all q ∈ Q0; (19)

f ′1(1, q) =
{
0 if q ≥ r1 + p1
∞ if q < r1 + p1.

(20)

After computing all the f ′0(n, q)’s and all the f
′

1(n, q)’s, calculate

min{f ′0(n, q)+ q, f
′

1(n, q)+ q : q ∈ Q0}, (21)

and output the corresponding schedule.

Theorem 2. Algorithm DP1′ is an FPTAS for the small job special case of 1|p-batch, rej, rj|Cmax + TP, with a running time of
O((1/ε)n3).

Proof. For the accuracy, it suffices to show that there is a schedule whose objective value is atmost 1+2ε times the optimal
one, such that all the properties in Theorem 1 are satisfied and the completion time of each accepted batch is integral times
ofM/n. Suppose that π is a schedule generated by DP1′, π ′ is the schedule constructed by rounding the completions of all
the batches in π one by one such that the completion time of each batch is integral times of M/n. Since each batch in π is
rounded by at mostM/n and there are at most n batches in total, we have

m(π ′)−m(π) ≤ (M/n)n = M ≤ εOpt. (22)

By Lemma 4 and Theorem 1,m(π) ≤ (1+ 2ε)Opt . Thus we havem(π ′) ≤ (1+ 3ε)Opt. Since

t0 ≤
(1+ 3ε)(rmax + d)

M/n
+ 1 (23)

=
(1+ 3ε)(rmax + d)
εmax{rmax, d}/n

+ 1 (24)

≤ 2(1+ 3ε)(1/ε)n+ 1, (25)

the running time can be bounded by O(n2 log b+ n2t0) = O((1/ε)n3). �

4. The general case

In this section, we shall tackle the general case. Our basic idea to a great extent is to treat large jobs and small jobs
separately.

4.1. Several properties

For any accepted batch of jobs, if all its members are small, we call it a small batch. Similarly, if all its members are
large, we call it a large batch. Otherwise, if the batch contains both small jobs and large jobs, we call it a mixed batch. With
a reasonable cost, we shall not consider mixed batches. The idea of the next result is from Lemma 6 of [15]. The proof is
omitted here, because it is the same as in [15].

Theorem 3 ([15]). With 1+ ε loss, we assume that:
Property 5 (No Mixed Batch). There is no batch that contains both small jobs and large jobs. �

The next theorem tells us that, with some reasonable cost in precision, we can schedule the accepted large batches first
and then insert the small ones into the gaps between large batches. This is the fundamental idea of our final algorithm.

Theorem 4. With 1+ ε loss, we assume that:
Property 6 (Priority of Large Batches). For any small batch B, let s(B, π) and c(B, π) be its start time and completion time in π ,
respectively, then there are no available large batches during the period [s(B, π), c(B, π)).

Proof. If some large batch arrives during [s(B, π), c(B, π)), we can let themachine idle from s(B, π) on until this large batch
arrives. We first process the large batch and then the batch B. This adds at most εM to the objective value since B is a small
batch. As this may only happen when [s(B, π), c(B, π)) contains some release time, the total cost of this operation can be
bounded by

mεM ≤ (1/ε)εM = M ≤ εOpt, (26)

which completes the proof. �
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We still need to restrict the way of batching and sequencing. The next result is similar to Theorem 1.

Theorem 5. With 1+ ε loss, we assume that:

Property 7 (Simple Rules for Small Jobs). Accepted small jobs are batched and sequenced according to Properties 1–3 in
Theorem 1. �

For any schedule π that meets Properties 5 and 6, letLi denote the set of accepted large jobs that start processing during
[r i, r i+1), 1 ≤ i ≤ m, rm+1 = ∞. Note that their completion times may not be in this interval. Similar to Lemma 2.1 of [8],
we have the following property.

Theorem 6 ([8]). There exists a schedule whose objective value is not greater than π such that:

Property 8 (FBLPT Rule for Large Jobs). All the accepted jobs inLi are batched and sequenced according to the FBLPT(2) rule. �

Remark 2. The above property is quite different from Property 3. Neither can we require that large jobs meet Property 1.
Therefore, the structure of large jobs is not so beautiful as that in the purely small jobs case.

Theorem 7. For any schedule that meets Properties 5 and 6, we can require that:

Property 9 (Little Gap). B1 andB2 are any two adjacent blocks, c(B1) < s(B2). Suppose that B is the last small batch processed
beforeB1 (if it does exist), then s(B2)− c(B1) < p(B). �

The inequality in the above theorem means that the gap between B1 and B2 is smaller than the processing time of B.
Since B is a small batch, we know that this gap is smaller than εM . The proof is trivial, because if this gap is greater than or
equal to p(B), we can process B right there. We remark that if the gap is too narrow to process B but wide enough to process
some other small batch that is before B, we shall still let it idle in our algorithm.

4.2. Scheduling large jobs

Suppose that there are l large jobs in total: L = {J1, J2, . . . , Jl}, and they are indexed in the non-increasing order of
processing times, that is

p1 ≥ p2 ≥ · · · ≥ pl. (27)

Remark 3. It is valuable to notice that the way of indexing in this subsection is different from that in the last section. This
is why we need two versions of FBLPT.

The basic idea of this subsection is from [8]. Before describing our algorithm, we still need some notations. For any
schedule π of large jobs that meets Property 8, we give three notations ci, ni and bi for every setLi, 1 ≤ i ≤ m. Remember
that Li is the set of accepted large jobs that start processing during [r i, r i+1). ci is the total processing time of the batches
in Li, or the length of the time interval that Li occupies; ni is the number of jobs of the last batch in Li. If the last batch
is full or the set Li is empty, we let ni = 0; bi is the delay time of Li, that is, the start time of Li minus r i. Therefore, the
start time of Li is r i + bi. Let B, C,N be three m-dimensional vectors whose i’s components are bi, ci and ni, respectively.
(B, C,N) is called the state of π , and is feasible if r i + bi + ci ≤ r i+1 + bi+1 holds for all 1 ≤ i ≤ m − 1. Our algorithm for
large jobs considers all the feasible states. It’s not hard to see that we can require bi ≤ pmax and ci ≤ min{psum, rmax+ d} for
all 1 ≤ i ≤ m.
For any schedule π for all the large jobs, we define f (π) as the total penalty of rejected large jobs. Similarly, for any

subschedule πj for jobs J1, J2, . . . , Jj, 1 ≤ j ≤ l, which accepts a subset of these jobs, batches the accepted jobs, and
determines the start time for each batch, f (πj) is the total penalty of jobs that are rejected in πj. Notice that the penalties
of Jj+1, . . . , Jl don’t contribute to f (πj). The state concept in the above paragraph also applies to subschedules in the natural
way.
For any 1 ≤ j ≤ l, let fj(B, C,N) = min{f (πj) : πj is a subschedule for J1, J2, . . . , Jj , whose state is (B, C,N)}. We also

define fj(k, B, C,N) similarly (1 ≤ k ≤ m, rk ≥ rj), except that job Jj should either be rejected or have a start time in
[rk, rk+1).
It is trivial that

fj(B, C,N) = min{fj(k, B, C,N) : rk ≥ rj}. (28)

We discuss in three cases the recursive relationship of fj(k, B, C,N).
Case 1. ck < pj. In this case, Jj can only be rejected, and therefore

fj(k, B, C,N) = fj−1(B, C,N)+ ej. (29)

Case 2. ck ≥ pj and nk 6= 1. In this case, Jj can be either accepted or rejected.
• If Jj is rejected, it is trivial that fj(k, B, C,N) = fj−1(B, C,N)+ ej.
• If Jj is accepted, then it should be scheduled in the interval [rk, rk+1). nk 6= 1 means that there are still other jobs

that are scheduled in the same batch with Jj. By the indexing of large jobs, we know that Jj has the smallest processing
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time among the accepted jobs in any subschedule for J1, J2, . . . , Jj. Therefore, the state immediately before Jj’s joining is
(B, C,Nk), where Nk equals N except its k-th component becomes nk − 1 mod b, i.e. nk − 1 if nk > 1, and b − 1 if nk = 0.
Remember that nk = 0 in this case means that the last batch scheduled in [rk, rk+1) is full. Hence in this situation we have
fj(k, B, C,N) = fj−1(B, C,Nk).
Therefore, in this case we have

fj(k, B, C,N) = min{fj−1(B, C,N)+ ej, fj−1(B, C,Nk)}. (30)

Case 3. ck ≥ pj and nk = 1. The only difference fromCase 2 is that Jj alone forms a batch in any subschedule for J1, J2, . . . , Jj
whose state is (B, C,N). Therefore, compared with (B, C,N), the second matrix of the previous state has a k-th component
smaller by pj. Let Ckj be the same as C except that its kth component becomes ck − pj, we have in this case

fj(k, B, C,N) = min{fj−1(B, C,N)+ ej, fj−1(B, Ckj,Nk)}, (31)

where Nk is the same as defined in Case 2.
To summarize, the overall recursive equations are

Algorithm DP2

fj(k, B, C,N) =

{fj−1(B, C,N)+ ej if ck < pj
min{fj−1(B, C,N)+ ej, fj−1(B, C,Nk)} if ck ≥ pj & nk 6= 1
min{fj−1(B, C,N)+ ej, fj−1(B, Ckj,Nk)} if ck ≥ pj & nk = 1

fj(B, C,N) = min{fj(k, B, C,N) : rk ≥ rj}.

The computations are done over all feasible states and over all 2 ≤ j ≤ l. The boundary conditions are presented in three
cases as follows.
• If there exists some 1 ≤ i ≤ m such that r i + bi ≥ r1, ci = p1, ni = 1, and the other components of C and N are all 0,

then f1(B, C,N) = 0.
• If for all 1 ≤ i ≤ m, ni = ci = 0, then f1(B, C,N) = e1.
• Otherwise, f1(B, C,N) = ∞.
For any feasible state (B, C,N), let

D =
⋃
1≤i≤m

(r i + bi, r i + bi + ci], (32)

that is, D is the union of time intervals during which some large batch is processed. D will also be referred to as a concise
state. Obviously, each feasible state determines a unique concise state. We also let h(D) = rm + bm + cm and

f (D) = min{fl(B, C,N) : (B, C,N) is feasible and determines D}. (33)

We call D feasible if f (D) 6= ∞. For the set of large jobsL, we denote byD(L) the set of all its feasible concise states.
For any schedule π , by Dπ we denote the concise state that is determined by π . Obviously,

f (Dπ ) ≤ f (π). (34)

For any concise state D, we denote by πD a schedule whose concise state is D, and whose total penalty of rejected jobs is
f (D), then

f (πD) = f (D), (35)

D = Dπ
D
. (36)

Due to Theorem 4, we require that no small jobs are processed in D. Notice that different states may lead to the same
concise state D, therefore we might expect the cardinality of the set D(L) to be small. However, it is still huge. And the
running time of DP2 can be as large asO(ml(bpmaxmin{psum, rmax+d})m), because there areO((bpmaxmin{psum, rmax+d})m)
feasible states and the running time for each state is O(ml). To reduce both the cardinality of D(L) and the running time,
we need identical rounding again.

Algorithm DP2′

STEP 0. Input the set of large jobsL;
STEP 1. Construct a rounded-down set L′ by letting p′j := b

pj
M/(n+1)cM/(n + 1), r

′

j := b
rj

M/(n+1)cM/(n + 1), and e
′

j := ej,
for al 1 ≤ j ≤ l;



2740 Z. Cao, X. Yang / Theoretical Computer Science 410 (2009) 2732–2745

STEP 2. Run Algorithm DP2 on the new instanceL′, whereM/(n+ 1) is taken as a unit;
STEP 3. ComputeD(L′), the set of feasible concise states ofL′;

For all D′ ∈ D(L′), compute f (D′) and πD
′

;
STEP 4. For any D′ ∈ D(L′), let π , a schedule ofL, be the counterpart of πD

′

. Compute the set of Dπ ’s, which is denoted
asD∗(L).
In the last step, it is easy to see that

f (Dπ ) ≤ f (π) = f (πD
′

) = f (D′). (37)

Remark 4. Since there is a natural bijection betweenL andL′, i.e. the one that corresponds a member ofL to its rounded-
down counterpart inL′, and a schedule is completely determined by the set of jobs it accepts, the batching and sequencing
of these accepted jobs, the word counterpart in Step 4 of the above algorithm has a definite meaning. We will use this word
again later.

Remark 5. It is valuable to notice that we do not calculate f (D), for D ∈ D∗(L) in Step 4, since it is still not easy. In contrast,
f (D′) can be calculated in polynomial time.
Since⌊

pj
M/(n+ 1)

⌋
≤

pmax
εmax{rmax, d}/(n+ 1)

≤ 2(n+ 1)/ε, (38)

where the second inequality is from Assumption 2, the running time of Step 2 in Algorithm DP2′ can be bounded by
O(ml(4bln2/ε2)m), which is a polynomial of n, since m ≤ 1/ε. Accordingly, the cardinality ofD(L′) as well asD∗(L) can
be bounded by O((4bln2/ε2)m). In Step 3, for each (B′, C′,N′), a feasible state of L′, the corresponding concise state D′ can
be calculated in O(l) time; computing all the f (D′)’s as well as all the πD

′

’s requires a time of O((4bln2/ε2)m), the number
of fl(B′, C′,N′)’s. So the running time of Step 3 is bounded by O(l(4bln2/ε2)m). Since in Step 4, for each D′ ∈ D(L′), the
corresponding π and Dπ can be easily computed in O(l), and Step 1 can be trivially done in O(l) time, the time complexity
of Algorithm DP2′ is O(ml(4bln2/ε2)m), which is determined by Step 2.

Next, we shall show thatD∗(L) approximatesD(L) very well.

Theorem 8. For any D =
⋃
1≤i≤m(r

i
+ bi, r i + bi + c0i ] ∈ D(L), there exists a D0 =

⋃
1≤i≤m(r

i
+ b0i , r

i
+ b0i + c

0
i ] ∈ D∗(L),

such that f (D0) ≤ f (D), h(D0)− h(D) ≤ M and
∑m−1
i=1 max{c

0
i − ci, 0} ≤ M.

Proof. For any D ∈ D(L), let π ′, a schedule ofL′, be the counterpart of πD. Then

f (Dπ
′

) ≤ f (π ′) = f (πD) = f (D), (39)

and Dπ
′

∈ D(L′). Let D0 ∈ D∗(L) be the concise state generated by Dπ
′

in Step 4 of DP2′. Therefore,

f (D0) ≤ f (Dπ
′

) ≤ f (D), (40)

where the former part is from (37) and the latter is from (39).
Let π0 be the corresponding schedule of D0 in Step 4 of Algorithm DP2′, i.e. D0 = Dπ

0
. Compared with its counterpart

in π ′, each accepted batch in π0 may have a larger processing time and a larger release time. However, the differences
can be bounded by M/(n + 1). For all 1 ≤ i ≤ m, let αi be the number of batches in π0 processed in the time interval
(r i + b0i , r

i
+ b0i + c

0
i ], then

0 ≤ c0i − c
′

i ≤ αiM/(n+ 1). (41)

Since ci ≥ c ′i , we have

max{c0i − ci, 0} ≤ αiM/(n+ 1), (42)

and therefore
m−1∑
i=1

max{c0i − ci, 0} ≤

(
m−1∑
i=1

αi

)
M/(n+ 1) ≤ M. (43)

In addition to processing times, the differences of release times may also affect the difference between h(D0) and h(Dπ
′

).
However, unlike the processing times, the effect of the augmenting of release times is not cumulative. Therefore,

h(D0)− h(Dπ
′

) ≤ (n+ 1)M/(n+ 1) = M. (44)

Together with h(Dπ
′

) ≤ h(D), we get the whole theorem. �
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4.3. Inserting small jobs

Given any feasible concise state D ∈ D∗(L), we shall show in this subsection how to insert the small jobs. From
Theorem 5 we know that small jobs have a nice structure. The only problem is to decide the set of accepted small jobs.
To tackle this, we design a dynamic programming that is similar to DP1.
Suppose that the set of small jobs is S, and there are s small jobs in total. Obviously, s + l = n. Without causing any

confusion, we call these s jobs J1, J2, . . . , Js, and we assume that they are indexed in the nondecreasing order of their release
times, that is

r1 ≤ r2 ≤ · · · ≤ rs. (45)

For the jobswith the same release times, they are indexed in the nondecreasing order of their processing times. The notations
r i, ni, 1 ≤ i ≤ m, and uj, 1 ≤ j ≤ s, as defined in Section 3, are also used.

Remark 6. Notice that this way of indexing is the same as we do in Section 3 when we deal with the purely small jobs
special case, but different from what we do in the last subsection on large jobs.

For any D ∈ D∗(L) and a positive number p, p /∈ D, let c(p,D) be the right most point in D that is smaller than p. That is,
c(p,D) is the right point of the interval in Dwhich is nearest on the left of p. Let s(p,D) be the left point of the corresponding
interval. If there is no interval in D on the left of p, we simply let c(p,D) = s(p,D) = 0.
Given D ∈ D∗(L), let f D1 (j, p) denote the smallest total penalty among all the subschedules of small jobs J1, J2, . . . , Jj

with completion time at most p, while Jj is accepted, 1 ≤ j ≤ s. Notice that subschedules here f D0 (j, p) means the similar
thing except that Jj is rejected. It is obvious that

f D0 (j, p) = min{f
D
0 (j− 1, p), f

D
1 (j− 1, p)}. (46)

Next, we shall discuss in four cases the recursive relationship of f D1 (j, p).
Case 1. p ∈ D or p− pj < rj. Obviously in this case f D1 (j, p) = ∞.
Case 2. p /∈ D and rj ≤ p − pj < c(p,D). p − pj < c(p,D) means that the gap between c(p,D) and p is too narrow to

process Jj. Since Jj is accepted, we need to consider process it in the immediate preceding gap. Therefore,

f D1 (j, p) = f
D
1 (j, s(p,D)). (47)

Case 3. p /∈ D, p − pj ≥ max{rj, c(p,D)} and j − nuj−1 ≤ b. p /∈ D and p − pj ≥ max{rj, c(p,D)} mean that the gap
between c(p,D) and p is wide enough to process Jj, by Theorems 5 and 7, we process it right here. j− nuj−1 ≤ bmeans that
there are less than b jobs arriving at ruj . Since Jj has the largest processing time among them, we have to accept all of them.
Therefore,

f D1 (j, p) = min{f
D
0 (nuj−1, p− pj), f

D
1 (nuj−1, p− pj)}. (48)

Case 4. p /∈ D, p − pj ≥ max{rj, c(p,D)} and j − nuj−1 > b. The only difference between this case and Case 3 is that we
can’t definitely accept all the jobs arriving at ruj . For any b− 1 ≤ k < j− nuj−1, denote

∆D0 (p, j, k) = g(j− k, j− 1)+ f
D
0 (j− k− 1, p− pj), (49)

and

∆D1 (p, j, k) = g(j− k, j− 1)+ f
D
1 (j− k− 1, p− pj), (50)

similar to Case 3 in the analysis of DP1, we have the following relationship:

f D1 (j, p) = min
{
∆D0 (p, j, j− nuj−1 − 1),∆

D
1 (p, j, j− nuj−1 − 1),min{∆

D
1 (p, j, k) : b− 1 ≤ k < j− nuj−1 − 1}

}
. (51)

In sum, the overall recursive equations are presented as follows, where the concise state D is given as a parameter.

Algorithm DP3(D)

f D0 (j, p) = min
{
f D0 (j− 1, p), f

D
1 (j− 1, p)

}
;

f D1 (j, p) =



∞ if p ∈ D or p− pj < rj
f D1 (j, s(p,D)) if p /∈ D & rj ≤ p− pj < c(p,D)
min{f D0 (nuj−1, p− pj), f

D
1 (nuj−1, p− pj)} if p /∈ D & p− pj ≥ max{rj, c(p,D)}

& j− nuj−1 ≤ b

min
{
∆D0 (p, j, j− nuj−1 − 1),∆

D
1 (p, j, j− nuj−1 − 1),

min{∆D1 (p, j, k) : b− 1 ≤ k < j− nuj−1 − 1}

}
if p /∈ D & p− pj ≥ max{rj, c(p,D)}

& j− nuj−1 > b
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The computations are done over all 2 ≤ j ≤ s, h(D) ≤ p ≤ (1 + 4ε)(rmax + d), where the coefficient 1 + 4ε is from
Lemma 4 and Theorems 3–5, for the same reason as we argued in Remark 1. The boundary conditions are:

f D0 (1, p) = e1, for all h(D) ≤ p ≤ (1+ 4ε)(rmax + d) & p /∈ D; (52)

f D1 (1, p) =

∞ if p ∈ D or p− p1 < r1
f D1 (1, s(p,D)) if p /∈ D & r1 ≤ p− p1 < c(p,D)
0 if p /∈ D & p− p1 ≥ max{r1, c(p,D)}.

(53)

In the end of the algorithm, compute

g(D) = min{f D0 (s, p)+ p, f
D
1 (s, p)+ p : h(D) ≤ p ≤ (1+ 4ε)(rmax + d)}. (54)

Remark 7. For any schedule π , its objective value is divided into three parts: the total penalty of rejected large jobs, the
total penalty of rejected small jobs, and makespan, where the first part corresponds to f (D), the second part plus the third
part correspond to g(D).

It is easy to calculate that the running time for each D ∈ D∗(L) is O(s2(rmax+ d)) (the time for computing all the g(i, j)’s
is not accounted, as g(i, j)’s will be computed initially in the final algorithm). To reduce the complexity to a polynomial, we
need to modify this algorithm similarly as we do in DP1′. For any real number x, by x′ we still denote

⌊
x
M/n

⌋
(M/n).

The next dynamic programming still takes D ∈ D∗(L) as a parameter.

Algorithm DP3′(D)

f ′D0 (j, q) = min
{
f ′D0 (j− 1, q), f

′D
1 (j− 1, q)

}
;

f ′D1 (j, q) =



∞ if q ∈ D or q− pj < rj
f ′1(j, (s(q,D))

′) if q /∈ D & rj ≤ q− pj < c(q,D)
min{f ′D0 (nuj−1, (q− pj)

′), f ′D1 (nuj−1, (q− pj)
′)} if q /∈ D & q− pj ≥ max{rj, c(q,D)}

& j− nuj−1 ≤ b

min
{
∆′D0 (q, j, j− nuj−1 − 1),∆

′D
1 (q, j, j− nuj−1 − 1),

min{∆′D1 (q, j, k) : b− 1 ≤ k < j− nuj−1 − 1}

}
if q /∈ D & p− pj ≥ max{rj, c(q,D)}

& j− nuj−1 > b

where

∆′D0 (q, j, k) = g(j− k, j− 1)+ f
′D
0 (j− k− 1, (q− pj)

′), (55)

∆′D1 (q, j, k) = g(j− k, j− 1)+ f
′D
1 (j− k− 1, (q− pj)

′), (56)

and the computations are done over all 2 ≤ j ≤ s, and over all q ∈ Q1 = {M/n, 2M/n, . . . , t1M/n},

t1 =
⌈
(1+ 10ε)(rmax + d)

M/n

⌉
, (57)

where the coefficient 1+ 10ε is from the proof of Theorem 10 in the next subsection. The boundary conditions are:

f ′D0 (1, q) = e1, for all q ∈ Q1 and q /∈ D; (58)

f ′D1 (1, q) =

∞ if q ∈ D or q− p1 < r1
f ′D1 (1, (s(q,D))

′) if q /∈ D & r1 ≤ q− p1 < c(q,D)
0 if q /∈ D & q− p1 ≥ max{r1, c(q,D)}.

(59)

In the end of DP3′(D), compute

g ′(D) = min{f ′D0 (s, q)+ q, f
′D
1 (s, q)+ q : q ∈ Q1 and q ≥ h(D)}. (60)

Since

t1 ≤
(1+ 10ε)(rmax + d)

M/n
+ 1 (61)

=
(1+ 10ε)(rmax + d)
εmax{rmax, d}/n

+ 1 (62)

≤ 2(1+ 10ε)(1/ε)n+ 1, (63)

the running time of DP3′(D) for each D ∈ D∗(L) can be bounded by O((1/ε)s2n), which is a polynomial.

Theorem 9. For any D ∈ D∗(L), g ′(D) ≤ g(D)+ 3M.
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Proof. For any D ∈ D∗(L), suppose that π is the schedule we get in DP3(D) which attains the value g(D), i.e. the total
penalty of rejected small jobs in π plus its makespan is g(D). By pushing the small batches in π forward one by one from
the beginning such that all their completion times are integral times ofM/n, we construct a schedule π ′.
Notice in this construction that we have to evade all the blocks of large jobs defined by D: Whenever themoving forward

of a small batch is stopped by a block, we jump the block and process the batch in the beginning of the nearest gap; if the
completion time is not integral times ofM/n, we move the batch forward again, and so on until we find a suitable position
for the batch.
Suppose there are i0 small batches in total: B1, B2, . . . , Bi0 , and Bimakes vi jumps, 1 ≤ i ≤ i0, then it makes at most vi+1

moves. Notice that we distinguished jumps from moves. Since each block can be jumped at most once, and the first block
will never be jumped, we have

∑
1≤i≤i0

vi ≤ m − 1. Since each jump causes a postponement in the makespan of at most
εM , and each move causesM/n, we have

Cmax(π ′)− Cmax(π) ≤
∑
1≤i≤i0

(viεM + (vi + 1)M/n) (64)

=

( ∑
1≤i≤i0

vi

)
εM + (i0 +

∑
1≤i≤i0

vi)M/n (65)

≤ (m− 1)εM + (n+m− 1)M/n (66)
≤ 3M. (67)

Therefore,

g ′(D)− g(D) ≤ Cmax(π ′)− Cmax(π) ≤ 3M, (68)

which completes the proof. �

4.4. The final PTAS

For ease of the presentation, we need still another notation. For any D ∈ D∗(L), let D′ be the concise state of L′ that
generates D in Step 4 of DP2′, we define

f ′(D) = f (D′). (69)

Algorithm SLIS

STEP 1. Calculate d andM , specify the set of large jobsL and the set of small jobs S, re-index the large jobs and small jobs
separately as we do in Section 4.2 and Section 4.3;
STEP 2. Calculate all the g(i, j)’s for S;
STEP 3. Call Algorithm DP2′ to computeD∗(L);
STEP 4. For each D ∈ D∗(L), call Algorithm DP3′(D) to calculate g ′(D);
STEP 5. Find a D∗ ∈ D∗(L) such that f ′(D∗) + g ′(D∗) is minimized; Output the corresponding schedule π∗ such that

m(π∗) = f ′(D∗)+ g ′(D∗).

Theorem 10. Algorithm SLIS is a PTAS for 1|p-batch, rej, rj|Cmax + TP.

Proof. By the properties in Section 4.1, if we replace DP2′ in Step 3 with DP2, and DP3′ in Step 4 with DP3, we shall get a
1 + 4ε-approximate solution. Suppose that π∗ is the solution we get in SLIS, and π1 is the schedule we get if we replace
DP2′ with DP2 and DP3′ with DP3. For the accuracy, it suffices to show that m(π∗) − m(π1) ≤ 6εOpt , which immediately
givesm(π∗) ≤ (1+ 10ε)Opt .
By Theorem8, there is aD0 generated byDP2′ such that f (D0) ≤ f (Dπ

1
), h(D0)−h(Dπ

1
) ≤ M and

∑m−1
i=1 max{c

0
i −c

1
i , 0} ≤

M , where we suppose

Dπ
1
=

⋃
1≤i≤m

(r i + b1i , r
i
+ b1i + c

1
i ], (70)

and

D0 =
⋃
1≤i≤m

(r i + b0i , r
i
+ b0i + c

0
i ]. (71)

For the ease of notations, we assume later without loss of generality, which will be seen later, that there arem− 1 gaps
in both Dπ

1
and D0. That is, b1i = b

0
i = 0 for all 1 ≤ i ≤ m, and r

i
+ c1i < r

i+1, r i + c0i < r
i+1, for all 1 ≤ i ≤ m− 1. We also

let G1i = (r
i
+ c1i , r

i+1
],G0i = (r

i
+ c0i , r

i+1
], 1 ≤ i ≤ m− 1, G1m = (r

m
+ c1m,∞), and G

0
m = (r

m
+ c0m,∞).

For 1 ≤ i ≤ m, let Ii be the set of small batches that are processed byπ1 in the gap G1i . We construct a scheduleπ
0, based

on D0, by accepting the same set of small jobs as in π1, batching these small jobs also as in π1, and scheduling these small
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batches as follows: For the small batches in Ii, π0 processes them in Gi0 in any order. If G
i
0 is too narrow to hold all of them,

process the surplus ones after h(D0). Intuitively, π0 is a good approximation to π1. We will show rigidly in the following
thatm(π0)−m(π1) ≤ 3M .
For all 1 ≤ i ≤ m, let x1i be the total processing time of small batches of π

1 that are processed in G1i . Analogously, x
0
i is

the total processing time of small batches of π0 that are processed in G0i .
By the construction of π0, we know that for all 1 ≤ i ≤ m− 1, the total processing time of the surplus small batches in

Ii, which are scheduled after h(D0), is

x1i − x
0
i ≤ max{c

0
i − c

1
i , 0} + εM. (72)

From
m∑
i=1

x0i =
m∑
i=1

x1i , (73)

we have

x0m − x
1
m =

m−1∑
i=1

(x1i − x
0
i ) (74)

≤

m−1∑
i=1

(max{c0i − c
1
i , 0} + εM) (75)

≤

m−1∑
i=1

max{c0i − c
1
i , 0} + (m− 1)εM (76)

≤ M +M (77)
= 2M. (78)

Since π0 and π1 accept the same set of small jobs,

m(π0)−m(π1) = (f (D0)− f (Dπ
1
)+ (Cmax(π0)− Cmax(π1)) (79)

≤ Cmax(π0)− Cmax(π1) (80)

= (h(D0)+ x0m)− (h(D
π1)+ x1m) (81)

= (h(D0)− h(Dπ
1
))+ (x0m − x

1
m) (82)

≤ M + 2M (83)
= 3M. (84)

Let π0
′

be the counterpart of π0 in the sense of Algorithm DP2′, then Dπ
0′
= D0

′

(remember that D0
′

is defined as the
concise state that generates D0 in Step 4 of Algorithm DP2′), and therefore

f (D0
′

) ≤ f (π0
′

) (due to (34)). (85)

Finally we have

m(π∗)−m(π1) (86)
= f ′(D∗)+ g ′(D∗)−m(π1) (87)
≤ f ′(D0)+ g ′(D0)−m(π1) (definition of π∗) (88)

= f (D0
′

)+ g ′(D0)−m(π1) (due to (69)) (89)

≤ f (π0
′

)+ g ′(D0)−m(π1) (due to (85)) (90)
= f (π0)+ g ′(D0)−m(π1) (91)
≤ f (π0)+ (g(D0)+ 3M)−m(π1) (due to Theorem 9) (92)
≤ (m(π0)−m(π1))+ 3M (m(π0) = f (π0)+ g(D0)) (93)
≤ 6M (due to (84)) (94)
≤ 6εOpt. (95)

In addition, the main running time, which is occupied mainly in Step 4, can be bounded by

O(ml(4bln2/ε2)m)× O((1/ε)s2n) = O((4b)1/εn3/ε+4(1/ε)2/ε+2), (96)

which is a polynomial in n. This completes the whole proof. �
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5. Concluding remarks

In this paper, a combined model of parallel batch scheduling and scheduling with rejection, 1|p-batch, rej, rj|Cmax + TP,
is attacked by presenting a PTAS. The main procedure of our algorithm is to schedule the large jobs first and then insert the
small jobs in gaps between large batches. The main running time comes from the large jobs, as we can schedule the small
ones according to a beautiful structure, while the price of an error in precision which can be as small as possible is paid. It is
not hard to notice that our algorithm on large jobs is very inefficient, just a little better thanmerely enumerating. Therefore,
more efficient algorithms for large jobs are meaningful. Another meaningful direction for further research is to develop
nice properties for penalties, since all our assumptions and properties are aimed at processing times. A straightforward
observation is that if ej ≥ pj, then Jj must be accepted.
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