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Abstract

This paper relates classes of *nite automata under various feedback products to some well-
known pseudovarieties of *nite semigroups via a study of their irreducible divisors (in the sense
of Krohn–Rhodes). In particular, this serves to relate some classical results of Krohn, Rhodes,
Sti8er, Eilenberg, Letichevsky, G,ecseg, ,Esik, and Horv,ath. We show that for a *nite automaton
satisfaction of (1) the Letichevsky criterion for non-empty words, (2) the semi-Letichevsky
criterion for non-empty words, or (3) neither criterion, corresponds, respectively, to the following
properties of the characteristic semigroup of the automaton: (1) non-constructability as a divisor
of a cascade product of copies of the two-element monoid with zero U , (2) such constructability
while having U but no other non-trivial irreducible semigroup as a divisor, or (3) having no
non-trivial irreducible semigroup divisors at all. The latter two cases are exactly the cases in
which the characteristic semigroup is R-trivial.
This algebraic characterization supports the transfer of results about *nite automata to results

about *nite semigroups (and vice versa), and yields insight into the lattice of pseudovarieties of
*nite semigroups—or, equivalently via the Eilenberg correspondence, the lattice of +-varieties
of regular languages—and the operators on these lattices that are naturally associated to various
automata products with bounded feedback. In particular, all operators with non-trivial feedback
are shown to be equivalent, and we characterize all pseudovarieties of *nite semigroups closed
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under each type of feedback product either explicitly or by reducing the question to closure
under the cascade product.
c© 2002 Published by Elsevier Science B.V.

Keywords: Cascade products and feedback products; Algebraic machine theory; Varieties of formal
languages; Feedback operators on pseudovarieties

1. Preliminaries and previous results

1.1. Automata

A *nite automaton A=(A; X; �) is a *nite set of states A, *nite input alphabet X ,
and transition function � :A×X →A. Members of X are called the input letters of
A. X ∗ denotes the set of *nite words over X . If w∈X ∗, then the length |w| of w is
n if w= x1 : : : xn (xi∈X; 16i6n). The unique word of length zero in X ∗ is denoted
�. X+ =X ∗\{�} denotes the words over X of positive length. We extend � to words
over X inductively by letting

�(a; �) = a and �(a; wx) = �(�(a; w); x)

for all a∈A, x∈X , and w∈X ∗. We write a ·w for �(a; w) if no confusion can result.
Clearly (a ·w) ·w′= a ·ww′ for all a∈A, w; w′∈X ∗. Note that we do not exclude the
possibility that A or X or both may be empty.
Let B=(B; Y; �′) also be a (*nite) automaton. Then a homomorphism of automata

’ :A→B is a pair of mappings ’1 :A→B and ’2 :X →Y such that ’1(a ·x)=
’1(a) ·’2(x) holds for all a∈A, x∈X . If both ’1 and ’2 are surjective, then B is said
to be a homomorphic image of A. If on the other hand both ’1 and ’2 are injective,
then A is said to be (isomorphic to) a subautomaton of B. If ’1 and ’2 are both
bijective, then we say ’ is an isomorphism from A to B. We shall generally not
distinguish among isomorphic structures.

1.2. Products of automata with feedback

Let A1; : : : ;An be *nite automata and let X be a *nite alphabet. Then a general prod-
uct (with arbitrary feedback among factors) is an automaton with states A1× · · · ×An
and transition function of the form

(a1; : : : ; an) · x = (a′1; : : : ; a
′
n) with a′i = ai · fi(a1; : : : ; an; x);

where ai; a′i∈Ai, x∈X , 16i6n, for some fi :A1× · · · ×An×X →Xi. For i from 1
to n, the function fi is called the ith feedback function of the general product, and
gives an input letter to Ai depending on the input letter x and the state components
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(a1; : : : ; an). 1 Such a product is completely determined by its component automata, the
input alphabet X , and feedback functions. 2

In this paper, we shall study some products which restrict the length of feedback.
If each fi may depend only on x and the coordinates aj with j¡i, then we have a
cascade product. For k¿0, if each fi may depend only on x and aj with j − k¡i
then we have an �k -product, that is, a product with length of feedback bounded by k.
The cascade product is thus an �0-product, and any general product is an �k product
for some k (e.g. for k¿n, the number of factors). 3 We have a quasi-direct product
or q-product if each fi may depend only on x. Every �k -product is obviously also an
�k+n-product for all n¿0. Given a class of *nite automata K and a product �, let
�(K) denote all *nite automata which can be constructed as �-products of members
of K. (In speaking of classes of automata, we shall assume they are closed under
isomorphism.) We say a general product of automata has non-trivial feedback if it is
an �k -product for some k¿0 but is not an �0-product. Thus we have a hierarchy

K⊆ q(K) ⊆ �0(K) ⊆ �1(K) ⊆ �2(K) ⊆ · · · ⊆ �k(K) ⊆ �k+1(K)

⊆ · · · ⊆ �∞(K);

where �∞(K)=
⋃∞
k=0 �k(K) is of course the general product. It is easy to see [6]:

Lemma 1. For all 06k; n6∞, and classes of #nite automata K;K′:
1. K⊆�k(K),
2. K⊆K′ ⇒ �k(K)⊆�k(K′),
3. �0(K)= �0(�0(K)),
4. �∞(K)= �∞(�∞(K)),
5. �0(�k(K))= �k(K),
6. �k(K)⊆�k+n(K).

In particular, �0 and �∞ are closure operators on classes of *nite automata (since
1,2,3 resp. 1,2,4 of the lemma hold). It is certainly not true that �k(�n(K))= �k+n(K)
for general k; n. It is also not true for general k that �k(�n(K))= �k(K).
An automaton A homomorphically represents an automaton B if B is a homo-

morphic image of a subautomation of A. A class K of *nite automata is said to be
homomorphically complete if every *nite automaton can be homomorphically repre-
sented by an automaton from K.
If K is a class of *nite automata, H (K) denotes all homomorphic images of mem-

bers of K, and S(K) denotes all subautomata of members of K. We sometimes write
Pk(K) for �k(K) and P(K) for q(K). We write HSPk(K) for H (S(�k(K))) for
06k6∞. Thus, HSPk(K) is the class of automata which can be homomorphically

1 The general product is sometimes also called the Glu;skov product.
2 For n=0, the empty product is an automaton with exactly one state—‘the unique zero-tuple’—on which

each input letter x∈X acts in the only possible way.
3 The cascade (or feedback-free) product has been studied since at least the early 1960s in computer

science and electrical engineering. The �k -products were introduced by F. G,ecseg in 1975.
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represented by �k -products of members of K, and we write HSP(K) if the quasi-direct
product is used. Hence we also have a hierarchy

K⊆HSP(K) ⊆ HSP0(K) ⊆ HSP1(K) ⊆ HSP2(K)

⊆ · · · ⊆ HSPk(K) ⊆ HSPk+1(K) ⊆ · · · ⊆ HSP∞(K):

It is an elementary exercise to check the well-known fact that HSP(K)=
HSP(HSP(K)) and, moreover, HSPi(K)=HSP(HSPi(K)) for all 06i6∞ (e.g. [6]).
We recall

Theorem 2 (Letichevsky Decomposition Theorem [12]). For every class K of #nite
automata, �∞(K) is homomorphically complete if and only if there exists an au-
tomaton A=(A; X; �) in K such that

(Let) ∃a0 ∈ A; x; y ∈ X; p; q ∈ X+; a0 · x �= a0 · y; and a0 · xp = a0 · yq = a0:

Remark. This formulation of the Letichevsky criterion is equivalent to the usual one
which also allows p or q to be possibly empty: If the criterion holds with p= �, then
a0 = a0 ·xp= a0 ·x, so we may replace p by the letter x. A similar observation holds
for q (and for the semi-Letichevsky criterion, introduced in the sequel).

It is said that a *nite automaton A satis#es Letichevsky’s criterion if it has the
above property (Let). We say a class of *nite an automata K satis#es Letichevsky’s
criterion if K has a member that satis*es (Let). We then write A |= Let and K |= Let,
respectively. We write ¬LET for the class of *nite automata that do not satisfy (Let),
and All for the class of all *nite automata.

Corollary 3. For any class K of #nite automata:
1. HSP∞(K)=All ⇔ K |= Let.
2. ¬LET is closed under the general product, i.e. �∞(¬LET)⊆¬LET:
3. HSP∞(¬LET)=¬LET.

When is �k(K) homomorphically complete? A strengthening of Letichevsky’s
Theorem gives a partial answer:
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Theorem 4 ( ,Esik). K is homomorphically complete for the �2-product if and only if
K satis#es the Letichevsky criterion.
That is, HSP2(K)=All ⇔ K |= Let:

Proof. See [4] or [6, Theorem 4.10].

This implies HSP∞(K)=HSP2(K) holds if K |= Let. But remarkably equality
holds for any K:

Theorem 5 ( ,Esik and Horv,ath [5]). Let K be any class of #nite automata. Then a
#nite automaton A∈HSP∞(K) if and only if A∈HSP2(K):

Proof. See [5] or [6, Theorem 5.4].

Thus the HSPk hierarchy collapses at k =2 for every K.
But in many cases it collapses for k¡2. If A=(A; X; �) does not satisfy

Letichevsky’s criterion but we have a0 ·x �= a0 ·y; and a0 ·xp= a0 for some a0∈A;
x; y∈X and p∈X+ then A satis*es the semi-Letichevsky criterion (SL):

(SL) ¬Let and ∃a0 ∈ A; x; y ∈ X; p ∈ X+; a0 · x �= a0 · y; and a0 · xp = a0:

Examining the details of the proof of the ,Esik–Horv,ath Theorem (as presented in
[5] or [6, pp. 49–54]), one sees that it actually shows:

Corollary 6. Let K be any class of #nite automata. Then

HSP∞(K) =



HSP2(K) if K satisfies the Letichevsky criterion;
HSP1(K) if K satisfies the semi-Letichevsky criterion;
HSP0(K) otherwise:

1.3. Semigroups, transformation semigroups, and pseudovarieties

A semigroup is a set S with an associative multiplication operation. That is, for
all x; y; z∈S, (xy)z= x(yz). A semigroup S is a monoid if it has an identity element
1∈S such that 1s= s= s1 for all s∈S. For any alphabet X , X+ is a semigroup with
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concatentation as the associative multiplication, and is called the free semigroup on X .
Similarly, X ∗ is the free monoid on X , with identity element �. A monoid is a group
if in addition for each s∈S there exists an inverse s−1∈S such that s−1s=1= ss−1.
An idempotent in S is an element e such that e2 = e. If S is a *nite semigroup, it is
easy to show that each element s of S has a unique idempotent power. Notation: we
take !(s) to be the least integer greater than 1, such that s!(s)s!(s)−1 = s!(s)−1. Note
that s!(s) is the unique idempotent power of s. We write ! for !(s), where there can
be no confusion about s, and thus we shall write also (s)! or s! for this idempotent.
If S is a semigroup, then the reverse semigroup S, has the same underlying set as

S but multiplication ∗ with x ∗ y=yx, where x; y∈S, and yx is their product in S.
If X and Y are subsets of S then X Y = {xy∈S | x∈X; y∈Y}. (Of course X Y is

empty if either of X or Y is; and also X Y =X if Y = {1} (and vice versa) if 1
is an identity element of S.) A subset T⊆S is a subsemigroup of S if T 2⊆T . A
homomorphism ’ : S1→ S2 from a semigroup S1 to a semigroup S2 is a function such
that ’(s)’(s′)=’(ss′) for all s; s′∈S. If ’ is surjective, then S2 is a homomorphic
image of S1. A semigroup S divides (and is a divisor of) a semigroup T if S is a
homomorphic image of a subsemigroup of T . We denote division by S ≺T . A non-
trivial group G is simple if the only homomorphic images of G are G and the trivial
group {1} (up to isomorphism).
If S is a semigroup, let SI denote the monoid SI = S ∪{I} with identity I , where I

is a new symbol (i.e. I =∈ S), and associative multiplication

ss′ =



s if s′ = I;
s′ if s = I;
ss′ if s; s′ ∈ S

for all s; s′∈SI . Also, let

S• =
{
S if S is a monoid;
SI otherwise:

A transformation semigroup (A; S) is an automaton (A; S; �) such that the set of
inputs S is a semigroup and (a ·s) ·s′= a ·ss′ for all a∈A and s; s′∈S. Here ss′ is
the product under the semigroup multiplication of S. Furthermore, the action of S is
required to be faithful, i.e. if a ·s= a ·s′ holds for all a∈A, then s= s′.
Then the right regular representation of S is the transformation semigroup (S•; S)

with transition function given by the multiplication in S•. If S is a semigroup, some-
times we write “S” in a context where a transformation semigroup or an automaton is
required; in this case, S denotes the right regular representation (S•; S). For example,
�i({S}) denotes all �i-products of factors (S•; S), where the latter is viewed as an
automaton.
Given any automaton A=(A; X; �), let A+ = (A; S(A); �+) denote its associated

non-empty input word automaton (also known as the associated transformation semi-
group) whose states are the same as those of A, and whose set of input letters S(A) is
the set of the transformations induced in A by words in X+. That is, each non-empty
word w∈X+ represents an input letter of A+ with a ·w= �(a; w) for all a∈A, and two
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words w; w′∈X+ represent the same input letter of A+ if and only if �(a; w)= �(a; w′)
for all states a∈A. We then write [w] = [w′], and we have S(A)= {[w] :w∈X+} with
�+(a; [w])= �(a; w). Of course, S(A) is *nite (since A is), and the map w �→ [w]
is a homomorphism of semigroups from the free semigroup X+ onto S(A). S(A) is
called the characteristic semigroup (or transition semigroup) of A. If A=(A; X; �) is
any automaton then of course A+ = (A; S(A); �+) is a transformation semigroup. Ob-
viously, by faithfulness, the characteristic semigroup of any transformation semigroup
(A; S) is just the semigroup S. In particular, the characteristic semigroup of the right
regular representation (S•; S) is S, and moreover, the characteristic semigroup S(A+)
of A+ is just the characteristic semigroup S(A) of A.
An automaton A is a group automaton if each member of the input alphabet X

acts as a permutation on the set A. If G is group, then its right regular representation
(G•; G)= (G;G) is the group automaton corresponding to the group G. It is easy to
verify that a cascade product of group automata is itself a group automaton.
The =ip-=op automaton F has states {a; b} and inputs {a; b; 1}=F where the a

and b act as constants and 1 acts as the identity. Its characteristic semigroup F = S(F)
is called the =ip-=op monoid, and has multiplication table:

F 1 a b
1 1 a b
a a a b
b b a b

A semigroup S is irreducible if whenever A is an automaton with S(A)= S and
A∈HSP0({A1; : : : ;An}) for some A1; : : : ;An∈All, then S ≺ S(Ai) for some i (16i
6n). If S is a *nite semigroup, IRRED(S) denotes the set of non-trivial irreducible
divisors of S, i.e. those having at least two elements. If A is a *nite automaton,
IRRED(A) denotes IRRED(S(A)). If K is a class of *nite automata, IRRED(K) is
the union of all IRRED(A) for A∈K. PRIMES(S) denotes the set of *nite simple
groups that divide S.

Theorem 7 (Krohn–Rhodes Theorem [10,11]). Let A be a #nite automaton. Then A
can be homomorphically represented by a cascade of =ip-=ops F and group automata
corresponding to PRIMES(S(A)). That is, A∈HSP0({F}∪PRIMES(S(A))): More-
over, if A is a non-trivial group automaton, then the =ip-=op F may be omitted.
If A is homomorphically represented by a cascade of automata A1; : : : ;An, then

every irreducible semigroup that divides S(A) divides S(Ai) for some i (16i6n).
That is, A∈HSP0(K)⇒ IRRED(A)⊆IRRED(K): Moreover, a #nite semigroup
S is irreducible if and only if S is simple group or a divisor of the =ip-=op
monoid.

Corollary 8. If every subgroup of S(A) is trivial, then A∈HSP0({F}).

Proof. Since every subgroup of S(A) is trivial, PRIMES(S(A))= ∅, so the conclusion
follows from the *rst part of the Krohn–Rhodes Theorem.
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The last part of the Krohn and Rhodes Theorem implies that the irreducible *nite
semigroups are exactly the *nite simple groups and the subsemigroups of the Tip-Top
monoid F . These are the Tip-Top monoid F itself, the two-element monoid U , the
two-element right-zero semigroup 2r , the one-element semigroup {1}, and the empty
semigroup ∅.

U 1 0
1 1 0
0 0 0

2r a b
a a b
b a b

Corollary 9. If K is a class of #nite automata such that HSP0(K)=All, then
IRRED(K)= all #nite simple groups∪{F;U; 2r}.

Moreover, suppose a semigroup S divides S(A) for some *nite automaton A: If
S ≺F then S is (isomorphic to) a subsemigroup of S(A); while, if S is a group, then
S is the homomorphic image of a group G which is a subsemigroup of S(A). (See
e.g. [11] for proofs of the statements in this section).
A pseudovariety S of *nite semigroups is a class of *nite semigroups closed under

division and *nite direct products. That is, (1) if S ≺T and T ∈S then S∈S, and (2)
if Si∈S for all i∈I , a *nite index set, then

∏
i∈I Si∈S.

Taking I = ∅, the latter condition guarantees that the one-element semigroup is in S,
so in particular S cannot be empty.
If K is a class of *nite automata, then de*ne S(K), the semigroup pseudovariety

corresponding to K, to be the smallest pseudovariety of *nite semigroups containing
the transition semigroup S(A) for each automaton A∈K.

1.4. Eilenberg correspondences

Eilenberg’s Theorem [3] states that pseudovarieties of *nite semigroups are in a
natural one to one correspondence with certain classes of recognizable languages, the
varieties of languages. A variety L of languages assigns to each *nite alphabet X
a set L(X ) of regular languages contained in X+ such that (1) L(X ) is closed
under the Boolean operations of *nite union, *nite intersection, and complement within
X+, and (2) L(X ) is closed under quotients: L∈L(X ) and x∈X implies Lx−1 and
x−1L are in L(X ), where Lx−1 = {w∈X+ |wx∈L} and x−1L= {w∈X+ | xw∈L}, and
such that (3) L is closed under (non-erasing) inverse homomorphisms: L∈L(X )
and ’ :Y+→X+ is a homomorphism implies ’−1(L)∈L(Y ). 4

If L⊆X+ is a language over X , then the syntactic semigroup of L is the transition
semigroup of its minimal automaton. L⊆X+ is recognized by a *nite semigroup S if
S = S(A) for some *nite automaton A=(A; X; �) recognizing L. The reader is referred
to [3] or [13] for full de*nitions and details, as well as relations to automata theory.

4 More exactly these are the +-varieties of languages. There is a related but somewhat diUerent Eilenberg
correspondence between ∗-varieties of regular languages (allowing the empty word) and pseudovarieties of
monoids. (See [3] or [13] for precise details and diUerences between the two correspondences.)
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Theorem 10 (Eilenberg [3, Theorem VII.3.2s]). There is a one-to-one correspondence
between pseudovarieties of semigroups and varieties of languages: The pseudovariety
of #nite semigroups V �→ the variety of languages LV where LV(X ) is the set of the
languages L⊆X+ recognized by members of V. The variety of languages L �→ the
pseudovariety VL generated by syntactic semigroups of all the languages L∈L(X )
with X some #nite alphabet.

The Eilenberg correspondence serves to systematize the study of regular languages
algebraically. For instance, the pseudovariety Sgp of all *nite semigroups corresponds
to the variety of regular languages [7, Kleene’s Theorem]. The pseudovariety A of ape-
riodic semigroups corresponds to the variety of star-free languages [14, Sch.utzenberger’s
Theorem]. (A *nite semigroup S is aperiodic if s!= s!+1 for all s∈S, i.e. every sub-
group of S has only one element. Equivalently, by the *rst corollary of the Krohn–
Rhodes Theorem, S is aperiodic if and only if S divides the transition semigroup of a
cascade of Tip-Tops.)
Many instances of the Eilenberg correspondence between varieties of languages and

pseudovarieties of *nite semigroups have been studied (see [3,13] and subsequent pub-
lications by various researchers, including deep results of Knast, Simon, Brzozowski,
and Straubing [2,8,9,15,17–19]). For purposes of this paper, we need only some rela-
tively simple instances of this correspondence.
If V is a pseudovariety of *nite semigroups then the reverse pseudovariety is

V,= {S, | S∈V}; whose members are the reverse semigroups of members of S. The
reverse of a language L⊆X+ is the language L,= {xn : : : x1∈X+ | x1 : : : xn∈L; n¿0}:
Under the Eilenberg correspondence, reversing the languages in a variety corresponds
to the reversing the semigroups in the corresponding pseudovariety (as is easy to
see since the reverse language has the reverse syntactic semigroup) [3, Proposition
VII.5.1]. Obviously, the Eilenberg correspondence preserves inclusion: W⊆V if and
only if LW(X )⊆LV(X ) for all *nite alphabets X .
A semigroup S is nilpotent of degree n if and only if for all x1; : : : ; xn∈S, x1 · · · xn=0

holds, i.e. x1 · · · xny=yx1 · · · xn= x1 · · · xn holds for all y∈X . Niln is the pseudovariety
of *nite semigroups that are nilpotent of degree n. In the corresponding language vari-
ety, Niln(X ) is the Boolean closure of the singleton languages {w}, w∈X+, |w|¡n.
Nil is the pseudovariety which is the union of all the Niln. Nil is also de*ned by
s!=0. A language L⊆X+ is #nite or co#nite if either L or X+\L is *nite, which is
true if and only if its syntactic semigroup is nilpotent ([3, Proposition VIII.2.2] or [13,
Chapter 2, Theorem 3.3]).
A semigroup S is said to be de#nite if se= e holds for all e2 = e; s∈S. A semigroup

S is said to be a reverse de#nite, if es= e for all idempotents e∈S and all s∈S.
The pseudovariety of all de*nite semigroups is denoted D. The pseudovariety of all
reverse de*nite semigroups is denoted D,. A language L⊆X+ is reverse de#nite if
L is of the form Y X ∗ ∪Z where Y and Z are *nite languages of X+. The de*nite
languages are the reverse of these. The de*nite languages are exactly those whose
syntactic semigroups lie in D, while the reverse de*nite languages are exactly those
whose syntactic semigroups lie in D, ([3, Proposition VIII.4.1] or [13, Chapter 2,
Theorem 3.4]). Inside D is a nested hierarchy of pseudovarieties Dn whose members
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satisfy x1 · · · xn=yx1 · · · xn. D is the union of the Dn. The pseudovarieties of left-
zero semigroups LZ=D,

1 and right-zero semigroups RZ=D1 are the lowest levels
of the two hierarchies. The characterization of the language variety recognized by Dn

is the same as that for D except that the *nite languages Y and Z may only contain
words in X+ of length not exceeding n and n − 1, respectively [13, p. 43]. Similar
remarks characterize the language variety corresponding to each D,

n . An automaton
A=(A; X; �) is called reverse de#nite if there is an n¿0, such for all a∈A, x∈X ,
p∈X+, a ·px= a ·p holds whenever |p|¿n. It follows from the de*nition of the D,

n

that a language L⊆X+ is reverse de*nite (i.e. recognized by a member of D,) if and
only if L can be recognized by some reverse de*nite automaton.
In a semigroup S, x and y are R-related (denoted: xRy) if there exist s; t∈S•

such that xs=y and yt= x. A semigroup S is R-trivial if xRy always implies x=y.
The *nite R-trivial semigroups comprise a pseudovariety R. A language L⊆X+ is
extensive if it can be written as the *nite disjoint union of languages of the form Y+,
Y ⊆X and X ∗

0 x1X
∗
1 x2 : : : xnX

∗
n , where n¿0, x1; : : : ; xn∈X , Xi⊆X \{xi+1} for 06i6n−1

and Xn⊆X . These languages are exactly those whose syntactic semigroups lie in R
as can be seen by using minor but straightforward modi*cations of the corresponding
proof for ∗-varieties by Pin [13, Chapter 4, Theorem 3.3] (of the original result for
R-trivial monoids due to Eilenberg [3, Corollary X.3.3]). Another characterization of
extensive languages is that they are exactly the languages which can be recognized
by an extensive #nite automaton A=(A; X; �), i.e. a *nite automaton for which there
is a partial ordering, or equivalently a total ordering, 6 on A with a ·x6a for all
a∈A; x∈X (cf. [13, Chapter 3.3;1]).
We record some of these correspondences between varieties of regular languages

and pseudovarieties of *nite semigroups:

REGULAR⇔ Sgp
STAR-FREE⇔A
EXTENSIVE⇔R
DEFINITE⇔D

REVERSE DEFINITE⇔D,

FINITE OR COFINITE⇔Nil

In the sequel the two pseudovarieties D, and R will play a crucial role. We denote
by G the pseudovariety consisting of all *nite groups and the empty semigroup.

2. Algebratization

What is the relationship between homomorphic representation by the feedback
products and pseudovarieties of #nite semigroups or, equivalently, varieties of regular
languages? To study this question, we examine the Letichevsky and semi-Letichevsky
criteria algebraically. If we examine the transformation semigroups of automata satis-
fying the Letichevsky criterion, we are immediately confronted with the following fact.
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Fact 11. Let A be a #nite automaton.
1. A |= Let⇒A+ |= Let.
2. A+ |= Let �⇒A |= Let.

Proof. (1) Since every letter of A yields a corresponding input symbol of A+, this
is obvious. (2) Consider the 3-state counter automaton C=({0; 1; 2}; {x}; �), �(i; x)=
i + 1 (mod 3) with a single input letter x. The non-empty input word automaton C+

associated to C has input letters corresponding to the transformations represented by
the words x, xx and xxx (and no other transformations). C+ satis*es Letichevsky’s
criterion, but C does not.

This completes the proof.

Since the Eilenberg correspondence between varieties of languages and pseudovari-
eties of semigroups relies on the characteristic semigroups of the automata recognizing
a language, the failure of the implication in Fact 11(2) suggests that, in order to de-
velop an algebraic theory related to the Letichevsky criterion, it is desirable to study
it for the corresponding transformation semigroup—i.e., the non-empty input word au-
tomaton A+ associated to a given automaton A. Thus, if the transformation semigroup
A+ associated with A satis*es the Letichevsky condition, let us write A |= Let+. By
de*nition,

A+ |= Let ⇔ A |= Let+: (1)

Now we say A satis*es the Letichevsky criterion for non-empty words (Let+) if A+

satis*es the Letichevsky criterion. This is obviously equivalent to A satisfying the
formula (Let+):

(Let+) ∃a0 ∈ A; x; y; p; q ∈ X+; a0 · x �= a0 · y; and a0 · xp = a0 · yq = a0:

Thus we have the same condition as for (Let), except now for (Let+), x and y need
not be letters in the alphabet X of A but are allowed to be any non-empty words in
X+. In this notation, by Fact 11(1),

A |= Let ⇒ A |= Let+ (2)

but the reverse implication may fail to hold in general (Fact 11(2)).
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Similarly, we say A satis*es the semi-Letichevsky criterion on non-empty words,
and write A |= SL+, if A+ satis*es the semi-Letichevsky condition. By de*nition,

A+ |= SL ⇔ A |= SL+: (3)

Thus, A satis*es the semi-Letichevsky criterion on non-empty words (SL+) if A does
not satisfy (Let+) but the con*guration of the semi-Letichevsky criterion occurs in A
for some non-empty words x; y; p∈X+. Precisely, A |= SL+ if A �|=Let+ and there
exist x; y; p∈X+, a0∈A, such that a0 ·x �= a0 ·y and a0 ·xp= a0. This is equivalent to
satisfaction by A of the formula (SL+):

(SL+) ¬Let+ and ∃a0 ∈ A; x; y; p ∈ X+; a0 · x �= a0 · y; and a0 · xp = a0:

If a class K of automata contains an automaton satisfying (Let+), then we also say
that K satis#es Letichevsky’s criterion on non-empty words (K |= Let+). Otherwise,
we say that K does not satisfy (Let+), and write K �|=Let+. Also, a class K of *nite
automata satis#es the semi-Letichevsky criterion on non-empty words (K |= SL+)
if it does not satisfy the Letichevsky criterion on non-empty words and at least one
member of K satis*es the semi-Letichevsky criterion on non-empty words.
Let us determine the remaining relations between the classical Letichevsky and semi-

Letichevsky criteria and the corresponding criteria on non-empty words.
First we show that

A |= SL+ ⇒ A |= SL (4)

but the converse does not hold in general.

Proof of (4). We have A+ |= SL, so A+ �|=Let, whence A �|=Let by (2) and there
exist non-empty words x; y; p∈X+ and a0∈A, with a0 ·x �= a0 ·y but a0 ·xp= a0. Write
y=y1 · · ·yk with each yj a letter in X . Clearly a0 ·y �= a0 (lest A+ |= Let), so by
removing some initial letters of y if necessary, we may suppose that a0 ·y1 : : : yi �= a0
for all i (16i6k). Let i be the greatest integer such that 06i6k and there exists
q∈X+ such that a0 ·y1 · · ·yiq= a0 (for i=0, one may take q= xp).
Let a′0 = a0 ·y1 · · ·yi. Then a′0 ·q= a0. Write q= q1 · · · q‘, with letters qj∈X . Since

A+ �|=Let, there can be no q with a0 ·yq= a0, so i¡k, and we may set y′=yi+1. Let
x′= q1 and p′= q2 · · · q‘xpy1 · · ·yi. Then a′0 ·x′ �= a′0 ·y′ (lest a0 ·y1 · · ·yiyi+1q2 · · · q‘=
a′0 ·yi+1q2 · · · q‘=(a′0 ·y′) · q2 · · · q‘=(a′0 ·x′) ·q2 · · · q‘=a′0 ·q1q2 · · · q‘= a′0 · q = a0
contradicting the choice of i if ‘¿1 and contradicting a0 ·y1 · · ·yi+1 �= a0 if ‘=1) and
a′0 ·x′p′= a′0 ·q1(q2 · · · q‘xpy1 · · ·yi)= a′0 · qxpy1 · · ·yi= a0 · xpy1 · · ·yi= a0 ·y1 · · ·yi
= a′0. This proves A |= SL.
To see that the converse may fail to hold, i.e. A |= SL �⇒A |= SL+, modify the

counter automaton C of Fact 11(2) by adding a new input letter y which takes every
state to a new “sink” state ∗ (i.e. a ·y= ∗ for all a∈{0; 1; 2}, and ∗·x= ∗ ·y= ∗).
Denoting the modi*ed automaton by C∗, we have C∗ |= SL, but C∗ |= Let+ (since
C |= Let+), and so C∗ �|= SL+.

In the class of *nite automata All, let LET denote automata satisfying the (clas-
sical) Letichevsky criterion (Let), LET+ denote automata satisfying the Letichevsky
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Fig. 1. The universe All of all *nite automata: The dashed horizontal line separates the class LET+

of automata satisfying the Letichevsky criterion on non-empty words (above) from the class ¬LET+ of
those not satisfying it (below). The dashed vertical line separates the class SL of automata satisfying
the classical semi-Letichevsky criterion (right) from those that do not (left). SL is the disjoint union of
SL∩¬LET+ =SL+, the automata satisfying the semi-Letichevksy criterion on non-empty words (below),
and SL\SL+ =SL ∩ LET+, the automata satisfying both the classical semi-Letichevksy criterion and
(Let+). The class LET of automata satisfying the classical Letichevsky criterion is a proper subclass of
LET+. Relations shown are established in the main text.

criterion on non-empty words (Let+), ¬LET+ denote automata not satisfying the
Letichevsky criterion on non-empty words, SL denote automata satisfying the (clas-
sical) semi-Letichevksy criterion (SL), and SL+ denote automata satisfying the semi-
Letichevsky criterion on non-empty words (SL+). We have seen SL+ (SL and
LET(LET+. Observe that

SL ∩ ¬LET+ = SL+: (5)

Indeed, from the de*nition of SL+, clearly ¬Let+ and SL imply SL+. Conversely, SL+

requires that Let+ be false, and we have already seen that SL+ entails SL.

SL ∩LET+ = SL\SL+: (6)

Suppose SL holds. If Let+ then SL+ cannot hold by de*nition. If SL+ is false, then
either Let+ holds or there are no a0; x; y; p as in the SL condition. Since SL holds it
can only be that Let+ holds.
Obviously LET+ ∪¬LET+ =All and LET∩SL= ∅. The established rela-

tions between the various classes are shown in Fig. 1.
Now let us characterize these Letichevsky criteria on non-empty words algebraically.

Proposition 12. Let A be any #nite automaton. A satis#es the Letichevsky criterion
on non-empty words (Let+) if and only if the semigroup S(A) of transformations of
A is not R-trivial.

Proof. Suppose that the criterion (Let+) is satis*ed. Let state a0 and non-empty
x; y; p; q∈X+ be as in the criterion. In particular, a0 ·x �= a0 ·y. Let e=((yq)!(xp)!)!.
Clearly a0 ·e= a0. We have exRe since exp(xp)!−1 = e(xp)!= e. Also eyRe since
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eyq(yp)!−1(xp)!((yq)!(xp)!)!−1 = e2 = e. Therefore, exRey, but a0 ·ex= a0 ·x and
a0 · ey= a0 ·y. It follows from a0 ·x �= a0 ·y that ex �= ey, whence S(A) is not
R-trivial.
Conversely, let S(A) be not R-trivial. This means there are words s; t∈X+ such

that sRt but s �= t in S(A). Then there exist p; q∈X ∗ such sp= t and tq= s in S(A).
(Clearly, neither of p nor q is � since s �= t in S(A).) Since s �= t, there is a state a1
with a1 ·s �= a1 · t. Let a0 = a1 ·s. Then

a0 · pq = a1 · spq = a1 · tq = a1 · s = a0;

while

a0 · p = a1 · sp = a1 · t �= a1 · s = a0:

Then x=pq, p′=pq, y=p, and q are non-empty words such that a0 ·x �= a0 ·y, and
a0 ·xp′= a0, and a0 ·yq= a0. Thus A satis*es (Let+).

Remark. The above proposition could also be proved via the fact that extensive au-
tomata correspond to R-trivial semigroups.

Corollary 13. A∈¬LET+ ⇔ S(A) is R-trivial ⇔ S(A)∈S(HSP0({U})).

Proof. The *rst equivalence holds by the preceding proposition. The second equiva-
lence holds, since by a theorem of Sti8er [16, Theorem 3.4(b)], a semigroup lies in
R if and only if it divides the transition semigroup of a cascade of copies of U .

Corollary 14. A∈¬LET+ implies IRRED(A)⊆{U}. But the converse does not
hold.

Proof. By the preceding corollary, S(A) divides the transition semigroup of a cascade
of copies of (U •; U )= (U;U ). Since U is the only non-trivial irreducible divisor of
U , the implication holds. To see that the converse may fail to hold consider the *ve
element Brandt semigroup B2 with elements (1; 1); (1; 2); (2; 1); (2; 2), and 0 with mul-
tiplication 0∗ (x; y)= (x; y)∗0=0∗0=0 for all x; y∈{1; 2}, and for x; y; x′; y′∈{1; 2},

(x; y) ∗ (x′; y′) =
{
(x; y′) if y = x′;
0 otherwise:

It is easy to check that 2r does not divide B2, nor does any non-trivial group, but U does
since it is isomorphic to the subsemigroup {(1; 1); 0}. However, B2 is not R-trivial:
(1; 1)R(1; 2) since (1; 1) ∗ (1; 2)= (1; 2) and (1; 2) ∗ (2; 1)= (1; 1). So A=(B•

2 ; B2)
satis*es the Letichevsky criterion by Proposition 12.

Corollary 15. K �|=Let+ implies IRRED(K)⊆{U}: But the converse does not hold.
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Corollary 16. If IRRED(K) contains 2r , the =ip-=op monoid F , or any non-trivial
simple group, then K |= Let+.

Proof. The condition IRRED(K) �⊆ {U} is equivalent to the presence of any non-trivial
irreducible divisor other than U in IRRED(K), i.e., one of 2r , the Tip-Top monoid F ,
or any simple group. It then follows from the contrapositive of the previous corollary
that K |= Let+.

Proposition 17. Let A be a #nite automaton. A satis#es the semi-Letichevsky
criterion on non-empty words if and only if S(A) is R-trivial but not reverse
de#nite, i.e.

A |= SL+ ⇔ S(A) ∈ R\D,:

Proof. Given A satisfying SL+, we have that A does not satisfy Let+ (hence also not
Let). From the previous proposition, we have that S(A) is R-trivial. We must show it
is not reverse de*nite. If SL+ holds, then we take x; y; p∈X+ such that a0 ·x �= a0 ·y and
a0 ·xp= a0. It follows that (xp)!x �=(xp)!y in S(A). Therefore, for e2 = e=(xp)!,
the equation es= e does not hold in S(A). Thus S(A) is not reverse de*nite.
Conversely, suppose S(A) is R-trivial but not reverse de*nite. Again by the pre-

vious proposition, since it is R-trivial it does not satisfy Let+ (hence also does not
satisfy Let). Since S(A) is not reverse de*nite, there exist non-empty words e; y∈X+

representing [e]; [y]∈S(A), with [e]2 = [e] and [e][y] �= [e]. The latter means there is
an a1∈A, with

a1 · ey �= a1 · e:
Therefore, taking a0 = a1 ·e, we have

a0 · y = a1 · ey �= a1 · e = a0:

Moreover, since [e]2 = [e], we have

(a0 · e) · e = a0 · ee = a0 · e = (a1 · e) · e = a1 · ee = a1 · e = a0:

Thus, taking x and p both equal to e, we have (a0 ·x) ·p= a0, and a0 = a0 ·x �= a0 ·y.
This shows that S(A) satis*es SL+.

Corollary 18. Let A be a #nite automaton. A satis#es neither the semi-Letichevsky
nor the Letichevsky criterion on non-empty words if and only if S(A) is reverse
de#nite. That is,

A �|= Let+ and A �|= SL+ ⇔ S(A) ∈ D,:

Corollary 19. A satis#es neither the semi-Letichevsky nor the Letichevsky criterion
on non-empty words if and only if IRRED(A)= ∅.

Proof. Sti8er [16, Fact 4.8(b)] proved that if a *nite semigroup S has no non-
trivial irreducible divisors then it is a nilpotent extension of a left-zero semigroup, or,
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equivalently, idempotents in S are left-zeros (e2 = e implies es= e for all s∈S), i.e. S
is reverse de*nite. So the result follows from the corollary above.

We remark that Sti8er [16, Theorem 3.4(a)] also shows that S(HSP0({2r}))=D.
Therefore S(HSP0({2r})),=D,. Thus A satis*es neither of the Letichevsky criteria
on non-empty words if and only if S(A) divides the reverse semigroup of a cascade
of copies of (2r•; 2r).
It is easy to check that:

Fact 20. Let A be a #nite automaton. Then
1. A satis#es (Let+) if and only if the con#guration

occurs in A. Precisely, for some states p; q∈A, p �= q, and inputs s; t∈X+, q ·s=p,
p · t= q.

2. A satis#es (SL+) if and only if A does not satis#es (Let+) and the following
con#guration occurs in A:

occurs in A. Precisely, A �|=Let+, and for some p; q∈A, s; t∈X+, p �= q, q · t= q,
q ·s=p, and p ·s=p · t=p.

3. Summary of results

The results obtained so far easily entail the following series of theorems.

Theorem 21. Let K be any class of #nite automata. Then the following are
equivalent.
1. K satis#es the Letichevsky criterion on non-empty words, i.e. K |= Let+.
2. S(K) �⊆R. That is, S(A) is not R-trivial for some automaton A∈K.
3. There is an automaton A∈K, such that S(A) does not divide the semigroup of

any cascade of copies of (U;U ), where U is the two element monoid.
4. The con#guration

occurs in some automata A∈K, for some states p; q, p �= q, and inputs s; t∈X+,
q ·s=p, p · t= q.
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5. There is a language L is recognized by an automaton from K such that L is not
extensive.

Theorem 22. For any class K of #nite automata, the following are equivalent, and
imply that K satis#es the Letichevsky criterion on non-empty words:
1. There exists A∈K, such that the two-element reset semigroup 2r divides S(A)

or a simple group G divides S(A).
2. There exists A∈K, such that the two-element reset semigroup 2r embeds in S(A)

or a non-trivial group G embeds in S(A).
3. A non-trivial irreducible semigroup other than the two element monoid U divides
S(A) for some A∈K.

4. IRRED(S(K)) �⊆ {U}.

Proof. (1) implies (2): For any *nite semigroup S, 2r ≺ S implies 2r is a subsemigroup
of S, and G≺ S for a group G implies there is a group G′ that is a subsemigroup
of S mapping homomorphically onto G. (See e.g. [11].) The rest is now clear from
Corollary 16 and the characterization of *nite irreducible semigroups in the Krohn–
Rhodes Theorem.

Theorem 23. For any class K of #nite automata, the following are equivalent.
1. K satis#es the semi-Letichevsky criterion for non-empty words, i.e. K |= SL+

(thus, there exists an automaton A∈K with A |= SL+, but no A∈K satis#es
Let+).

2. The above con#guration does not occur in any automaton A∈K, for any distinct
states p; q and non-empty input words s; t∈X+. But the con#guration

occurs in at least one A in K (q; p∈A, p �= q, s; t∈X+), q · t= q; q ·s=p;p · s=
p · t=p.

3. For all A∈K, S(A) divides the semigroup of a cascade of copies of (U;U ), and
moreover IRRED(S(K))= {U}.

4. For all A∈K, S(A) lies in S(HSP0({U})) and U divides S(A) for some A∈K,
but no other non-trivial irreducible semigroup divides any S(A) for A∈K.

5. S(A) is R-trivial for all A∈K, but there is an A with S(A) =∈D,. That is,
S(K)⊆R but S(K) �⊆D,.

6. Every language recognized by automata from K is extensive, but there is at least
one language recognized by some member of K which is not reverse de#nite.

Remark. Considering the counterexample B2, described in the proof of Corollary 14
above, which has IRRED(B2)= {U} and satis*es Let, one sees that the conditions
in Theorem 22 only imply but are not equivalent to the Letichevsky criterion on
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non-empty words. By the same counterexample, condition 3 of Theorem 23 cannot
be weakened to IRRED(S(K))= {U}.

Theorem 24. Let K be any class of #nite automata. Then the following are
equivalent.
1. K satis#es neither Let+ nor SL+.
2. Neither of the con#gurations above occurs in any automaton in K.
3. No non-trivial irreducible semigroup divides S(A) for any A∈K. That is,
IRRED(S(K))= ∅:

4. S(A) is a reverse de#nite for all A∈K. That is, S(K)⊆D,. In other words,
S(A) is a nilpotent extension of a left-zero semigroup; that is, S(A) satis#es
x!y= x!.

5. S(A) divides the reverse of the transition semigroup of a cascade of copies of
(2r•; 2r), for all A∈K.

6. Every language is recognized by an automaton from K is reverse de#nite.

4. Feedback operators for pseudovarieties of 2nite semigroups

Now we return to the question at the beginning of Section 2 on the relationship
between pseudovarieties and feedback products. The pseudovariety characterizations
obtained above will allow us to relate the action of �i operators on classes of automata
with their action on pseudovarieties for i=0; 1; 2; : : : ;∞.
De*ne for each i=0; : : : ;∞, an operator �̂i :PV →PV on the lattice PV of pseu-

dovarieties of *nite semigroups:

�̂i(V) := S(HSPi({(S•; S) | S ∈ V})):

Clearly, S(HSPi(K)) = S(Pi(K))) always holds for every class K of *nite automata.
We write V |= Let+, if (S•; S) |= Let+ for some S∈V, and write V |= SL+

if V �|=Let+ but for some S∈V, (S•; S) |= SL+. Then by the corollary of ,Esik–Horv,ath
Theorem, the following is immediate:

Lemma 25. Let V be a pseudovariety of #nite semigroups. Then
1. V |= Let+⇒ �̂2(V)=Sgp.
2. V |= SL+⇒ �̂1(V)= �̂∞(V).
3. V �|= SL+ and V �|=Let+⇒ �̂0(V)= �̂∞(V).

Lemma 26. Let V be a pseudovariety of #nite semigroups. Then V |= SL+ implies
�̂0(V)= �̂∞(V)=R.

Proof. The hypothesis implies U ∈V. Since S(HSP0({U}))=R by Sti8er’s results
[16], it follows that R⊆ �̂0(V). Since V �|=Let, we have �̂∞(V)⊆R by Corollary 3(2)
and Proposition 12. Therefore, R⊆ �̂0(V)⊆ �̂1(V)⊆ �̂∞(V)⊆R:
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Lemma 27. If A=(A; X; �) |= Let+, then all #nite automata are isomorphic to sub-
automata of members of �1(P(A+)).

Proof. Given any *nite automaton B=(B; Y; �′), we show B embeds in a single-factor
�1-product of a direct product of copies of A+. In A, we have states p �= q, and non-
empty words s; t∈X with p ·s= q and q · t=p, whence q · ts= q and p ·st=p. We map
a state b∈B to the state “b” of the |B|-fold direct product of copies of A+, where
“b”= (p; : : : ; p; q; p; : : : ; p), such that q occurs in the bth position and p occurs in all
other positions. Now de*ne the feedback function f :A|B| ×Y → (X+)|B| to have value
in its bth-component:

(f(a; y))b=




ts if a = “b” and b · y = b;
t if a = “b” and b · y �= b;
s if a = “c”; b �= c; and c · y = b;
st if a = “c”; b �= c; and c · y �= b;
s otherwise;

where a∈A|B|, y∈Y , b; c∈B. (Note the value of f in the *fth case is arbitrary.)
It is straightforward to check that “b” ·y=“b ·y” holds for all b∈B and y∈Y, so

B is isomorphic to a subautomaton of the �1-product.

Lemma 28. If V is a pseudovariety of #nite semigroups, and V |= Let+, then �̂1(V)=
Sgp.

Proof. Take S∈V with (S•; S) |= Let+. Since S is not R-trivial, choose distinct p; q∈S
such that there exist s; t∈S with ps= q and qt=p. By the construction of the previous
lemma, any (T •; T ) embeds in an �1-product of the |T •|-fold direct product of copies
of (S•; S). The image of T • has all components in {p; q}, thus the image of (T •; T ) is
actually isomorphic to a single-factor �1-product of (Q•; Q), where Q is the |T •|-fold
direct product of copies of S. Since Q∈V, we have T ∈ �̂1(V).

Theorem 29. Let V be a pseudovariety of #nite semigroups. Then
1. V |= Let+⇒ �̂1(V)= �̂∞(V)=Sgp.
2. V |= SL+⇒ �̂0(V)= �̂∞(V)=R.
3. V �|= SL+ and V �|=Let+⇒ �̂∞(V)= �̂0(V)⊆D,.

Moreover, the converses hold.

Proof. (1) follows from Lemma 28. (2) is just Lemma 26. (3) By Corollary 18,
V⊆D,. D, is closed under �0-product, so �̂0(V)⊆D,. But by Lemma 25(3), �̂0(V)=
�̂∞(V). The converses follow from what we have seen before.

Corollary 30. For each pseudovariety V of #nite semigroups, �̂1(V)= �̂∞(V):

Corollary 31. For 06i6∞, the operator �̂i :PV →PV is a closure operator.
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Proof. We already noted, when they were introduced, that �∞ and �0 are closure
operators for classes of *nite automata, so it follows that the corresponding operators
are closure operators on PV . We have, for any i¿0, �̂1(V)= �̂∞(V), so �̂i(V)=
�̂∞(V).

Theorem 32.

V �|= Let+ ⇔ �̂0(V) = �̂1(V) = �̂∞(V) ⊆ R;

where equality with R holds if and only if V |= SL+ if and only if IRRED(V) = {U}.
V |= Let+ ⇔ �̂0(V) ⊆ �̂1(V) = �̂∞(V) = Sgp;

where �̂0(V)= �̂1(V) if and only if IRRED(V) contains the =ip-=op monoid and all
#nite simple groups.

Proof. By the Krohn–Rhodes Theorem, equality of �̂0(V) and Sgp holds if and only if
IRRED(V) includes all *nite simple groups and the Tip-Top monoid. Everything else
is clear for what we have already established.

Let us record the eUect of the feedback operators on the lattice of pseudovarieties,
which now follows directly:

Theorem 33 (Action of feedback operators on pseudovarieties). Let V be a pseudova-
riety of #nite semigroups. Then we have three cases determining the action of the �̂k
operators on V (06k6∞):
1. If V⊆D,, then �̂0(V)= �̂∞(V)⊆D,.
2. If V⊆R but V �⊆D,, then �̂0(V)= �̂∞(V)=R.
3. Otherwise, V �⊆R, and then �̂1(V)= �̂∞(V)=Sgp, and �̂0(V)= �̂1(V) if and only

if V has all irreducibles.

For case V⊆D,: For which V does V= �̂0(V)? Some examples of such closed
pseudovarieties include:
D, satisfying e2 = e implies es= e; (Dn), satisfying x1 · · · xn= x1 · · · xny; Niln sat-

isfying x1 · · · xn=0; Nil=
⋃
n Niln; LZ=D,

1, satisfying xy= x. Their closure under
�̂0-product is easy to check directly. All these pseudovarieties are contained in D, and
closed for �̂0 = �̂∞.
The smallest example of a pseudovariety V⊆R but V �⊆D, is SL, the variety of

semilattices, de*ned by equations x2 = x and xy=yx, since this is the smallest pseu-
dovariety containing U . We have SL( �̂∞(SL)= �̂0(SL)=R=S(HSP0({U})).
There are many examples of V �⊆R closed under �̂0: groups G, solvable groups,

p-groups, and many other pseudovarieties of groups, 5 whose closure under the
�̂0-operator is evident from considering irreducible divisors and using the fact that

5 Note that since we are considering semigroup varieties, the empty semigroup must be admitted as a
member of any pseudovariety of groups, including G, etc.



P. D1om1osi et al. / Theoretical Computer Science 302 (2003) 295–317 315

Fig. 2. For every pseudovariety V of *nite semigroups: �̂1(V)= �̂∞(V). Within R, �̂0 = �̂1 and there are
many closed classes, i.e. V= �̂0(V), within D,. However R is the only closed class within R not contained
in D,. Outside of R, �̂1(V)= �̂∞(V)=Sgp (all *nite semigroups); �̂0(V)= �̂1(V) if and only if V contains
all irreducible *nite semigroups; and there are many examples of closed classes V= �̂0(V).

a cascade of group automata is a group automaton. Other �̂0-closed pseudovarieties in-
clude D (satisfying e2 = e implies se= e) since D=S(HSP0({2r})); as well as R◦G,
G◦D, and R◦G◦D, which are de*ned by the exclusion of 2r , U , and F , respectively,
by results of Sti8er [16, Fact 4.16]); 6 and the exclusion varieties of *nite semigroups
not divided by any other particular irreducible or set of irreducibles (see examples in
[16,3]). The pseudovariety of the *nite aperiodic semigroups A, satisfying x!+1 = x!,
is the class that excludes all *nite simple group divisors and so is �̂0-closed. Let W be
the pseudovariety of aperiodic semigroups not divided by 2r , then IRRED(W)= {U}
and W |= Let+ by the counterexample in the proof of Corollary 14, so R(W. Since
W is de*ned by the exclusion of irreducibles (*nite simple groups and 2r), we have
�̂0(W)=W, but �̂1(W)=Sgp by Theorem 33(3). In fact, W=A∩ (R ◦ G) by [16,
Fact 4.16(a)].
This situation is schematized in Fig. 2 showing major divisions in the lattice of

pseudovarieties of *nite semigroups that characterize the eUect of the various feedback
operators.

6 Here Vn ◦Vn−1 ◦ · · · ◦V1 denotes the pseudovariety generated by characteristic semigroups of �0-products
whose ith factor automaton Ai = (S•i ; Si) for some Si∈Vi:.
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Corollary 34. Let V be a pseudovariety of #nite semigroups such that �̂i(V)=V for
a certain i (06i6∞). If either i¿1 or V �|=Let+, then we have

V = Sgp⇔V |= Let+

V = R⇔V |= SL+

V ⊆ D, and⇔ otherwise:

�̂0(V) = V

While for i=0 and V |= Let+, we have �̂0(V)=V and

V = {S ∈ Sgp |PRIMES(S) ⊆ V}⇔ F ∈ V

V ⊆ R ◦G ◦D⇔ otherwise;

where F is the =ip-=op monoid.

Proof. The *rst part follows from Theorem 29. For the second part with i=0 and
V |= Let+, the Krohn–Rhodes Theorem yields the case when F∈V. On the other
hand, F =∈V if and only if V⊆R ◦G ◦D, by the result of Sti8er [16, Fact 4.16(c)].

Despite what one might have expected, in every case, the study of the feedback
operators �̂i on the lattice of pseudovarieties of *nite semigroups is completely solved
or reduced to the study of �̂0, the cascade closure.
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