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Abstract

This paper relates classes of finite automata under various feedback products to some well-
known pseudovarieties of finite semigroups via a study of their irreducible divisors (in the sense
of Krohn—Rhodes). In particular, this serves to relate some classical results of Krohn, Rhodes,
Stiffler, Eilenberg, Letichevsky, Gécseg, Esik, and Horvath. We show that for a finite automaton
satisfaction of (1) the Letichevsky criterion for non-empty words, (2) the semi-Letichevsky
criterion for non-empty words, or (3) neither criterion, corresponds, respectively, to the following
properties of the characteristic semigroup of the automaton: (1) non-constructability as a divisor
of a cascade product of copies of the two-element monoid with zero U, (2) such constructability
while having U but no other non-trivial irreducible semigroup as a divisor, or (3) having no
non-trivial irreducible semigroup divisors at all. The latter two cases are exactly the cases in
which the characteristic semigroup is #-trivial.

This algebraic characterization supports the transfer of results about finite automata to results
about finite semigroups (and vice versa), and yields insight into the lattice of pseudovarieties of
finite semigroups—or, equivalently via the Eilenberg correspondence, the lattice of +-varieties
of regular languages—and the operators on these lattices that are naturally associated to various
automata products with bounded feedback. In particular, all operators with non-trivial feedback
are shown to be equivalent, and we characterize all pseudovarieties of finite semigroups closed
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under each type of feedback product either explicitly or by reducing the question to closure
under the cascade product.
(© 2002 Published by Elsevier Science B.V.

Keywords: Cascade products and feedback products; Algebraic machine theory; Varieties of formal
languages; Feedback operators on pseudovarieties

1. Preliminaries and previous results
1.1. Automata

A finite automaton .o/ =(4,X,0) is a finite set of states A4, finite input alphabet X,
and transition function 6:4 x X — A. Members of X are called the input letters of
/. X* denotes the set of finite words over X. If weX*, then the length |w| of w is
nif w=x;...x, (x;€X, 1<i<n). The unique word of length zero in X* is denoted
4. Xt =X*\{2} denotes the words over X of positive length. We extend ¢ to words
over X inductively by letting

ola,A)y=a and d(a,wx) = 6(d(a,w),x)

for all a€Ad, xeX, and weX™*. We write a-w for d(a,w) if no confusion can result.
Clearly (a-w)-w'=a-ww' for all ac4, w,w’ €X*. Note that we do not exclude the
possibility that 4 or X or both may be empty.

Let #=(B,Y,d") also be a (finite) automaton. Then a homomorphism of automata
@:o/ — %A is a pair of mappings ¢;:4— B and ¢,:X —Y such that ¢ (a-x)=
@1(a)- @2(x) holds for all ac 4, xe€X. If both ¢, and ¢, are surjective, then 4 is said
to be a homomorphic image of </. If on the other hand both ¢, and ¢, are injective,
then ./ is said to be (isomorphic to) a subautomaton of #. If ¢, and ¢, are both
bijective, then we say ¢ is an isomorphism from .o/ to %. We shall generally not
distinguish among isomorphic structures.

1.2. Products of automata with feedback
Let .o/, ..., .o/, be finite automata and let X be a finite alphabet. Then a general prod-
uct (with arbitrary feedback among factors) is an automaton with states A; X --- X 4,
and transition function of the form
(ar,...,ay)-x =(d\,...,a,) with d =a;- fi(a,...,anx),
where a;,a,€4;, x€X, 1<i<n, for some fi:4; x --- x A4, xX —X;. For i from 1

to n, the function f; is called the ith feedback function of the general product, and
gives an input letter to .o/, depending on the input letter x and the state components
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(a,...,a,)." Such a product is completely determined by its component automata, the
input alphabet X, and feedback functions. ?

In this paper, we shall study some products which restrict the length of feedback.
If each f; may depend only on x and the coordinates a; with j<i, then we have a
cascade product. For k>0, if each f; may depend only on x and a; with j — k <i
then we have an og-product, that is, a product with length of feedback bounded by k.
The cascade product is thus an og-product, and any general product is an o; product
for some k (e.g. for k>n, the number of factors).® We have a quasi-direct product
or g-product if each f; may depend only on x. Every o-product is obviously also an
o yp-product for all n>0. Given a class of finite automata #" and a product 7, let
n(A") denote all finite automata which can be constructed as m-products of members
of . (In speaking of classes of automata, we shall assume they are closed under
isomorphism.) We say a general product of automata has non-trivial feedback if it is
an o-product for some k>0 but is not an og-product. Thus we have a hierarchy

HCq(A) S oao(A) S au(A) S oa(A)C - Cou(A) S o (A7)
C - Cotoo( ),

where oo (#7) = (U oy k(") is of course the general product. It is easy to see [6]:

Lemma 1. For all 0<k,n<oo, and classes of finite automata K, A"
- HCop(A),

CHCH = g (A Cop (AT,

- ao(A) =ao(oo(H)),

. O(oo(%):(xoo(aoo(%))s

a0 (A7) = (A,

cop( Yo n( ). O

AN N B~ W —

In particular, o9 and o, are closure operators on classes of finite automata (since
1,2,3 resp. 1,2,4 of the lemma hold). It is certainly not true that o (04, (A7) = otgn(H")
for general k,n. It is also not true for general k that o (o4, (")) = ox(H°).

An automaton .o/ homomorphically represents an automaton % if % is a homo-
morphic image of a subautomation of .o/. A class %" of finite automata is said to be
homomorphically complete if every finite automaton can be homomorphically repre-
sented by an automaton from 7.

If " is a class of finite automata, H(.#") denotes all homomorphic images of mem-
bers of A, and S(#") denotes all subautomata of members of #". We sometimes write
P (") for oy(A") and P(A") for q(A4"). We write HSPy (") for H(S(ox(4"))) for
0<k<oo. Thus, HSPy(#") is the class of automata which can be homomorphically

! The general product is sometimes also called the Gluskov product.

2 For n=0, the empty product is an automaton with exactly one state—°the unique zero-tuple’—on which
each input letter x €X acts in the only possible way.

3 The cascade (or feedback-free) product has been studied since at least the early 1960s in computer
science and electrical engineering. The oy -products were introduced by F. Gécseg in 1975.
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represented by o-products of members of ", and we write HSP(/") if the quasi-direct
product is used. Hence we also have a hierarchy

A CHSP(A') C HSPo(A™) C HSP\(A") C HSP>(A')
C.-- CHSP((A') C HSPy((A') C -+« C HSPoo(X').

It is an elementary exercise to check the well-known fact that HSP(X')=
HSP(HSP(")) and, moreover, HSP:(¢") = HSP(HSP;(K)) for all 0<i<oo (e.g. [6]).
We recall

Theorem 2 (Letichevsky Decomposition Theorem [12]). For every class A of finite
automata, o.,(A") is homomorphically complete if and only if there exists an au-
tomaton of =(A4,X,0) in A such that

Let) 3JageA,x,yeX,pge X ,ap-x#ay-y, and ap-xp = ay - yq = ay.
Y b.q Yy p yq

@ y The Letichevsky Criterion

Remark. This formulation of the Letichevsky criterion is equivalent to the usual one
which also allows p or ¢ to be possibly empty: If the criterion holds with p =4, then
ay=ag-xp=ay-x, so we may replace p by the letter x. A similar observation holds
for ¢ (and for the semi-Letichevsky criterion, introduced in the sequel).

It is said that a finite automaton .o/ satisfies Letichevsky’s criterion if it has the
above property (Let). We say a class of finite an automata %~ satisfies Letichevsky’s
criterion if A" has a member that satisfies (Let). We then write .o/ |= Let and A~ |= Let,
respectively. We write =& for the class of finite automata that do not satisfy (Let),
and .o//] for the class of all finite automata.

Corollary 3. For any class A~ of finite automata:

1. HSPoo(A Y=</l & A |= Let.

2. n¥ET is closed under the general product, i.e. 0oo(~LETVC-LET .
3. HSPo(m XL ET ) =L ET .

When is ox(#") homomorphically complete? A strengthening of Letichevsky’s
Theorem gives a partial answer:
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Theorem 4 (Esik). 4 is homomorphically complete for the wy-product if and only if
A satisfies the Letichevsky criterion.
That is, HSP,(A )= </l & A = Let.

Proof. See [4] or [6, Theorem 4.10]. [J

This implies HSP.(#")=HSP,(A") holds if A4 |= Let. But remarkably equality
holds for any "

Theorem 5 (Esik and Horvath [5]). Let A" be any class of finite automata. Then a
Sfinite automaton of € HSPyo(A") if and only if of € HSPy(X").

Proof. See [5] or [6, Theorem 5.4]. [

Thus the HSP; hierarchy collapses at k =2 for every 7.

But in many cases it collapses for k<2. If o/ =(4,X,0) does not satisfy
Letichevsky’s criterion but we have ag-x#ay-y, and ag-xp=ay for some ay€A,
x,yEX and p€X ™ then .o/ satisfies the semi-Letichevsky criterion (SL):

(SL) —Let and Jag €A, x,y € X, pcXt,ap-x#ay-y, and ay-xp = ay.

e The Semi-Letichevsky Criterion

Examining the details of the proof of the Esik-Horvath Theorem (as presented in
[5] or [6, pp. 49-54]), one sees that it actually shows:

Corollary 6. Let A be any class of finite automata. Then

HSPy( ") if A satis fies the Letichevsky criterion,
HSP.(#") =< HSP\(X") if A satisfies the semi-Letichevsky criterion,
HSPy(A") otherwise.

1.3. Semigroups, transformation semigroups, and pseudovarieties
A semigroup is a set S with an associative multiplication operation. That is, for

all x, y,z€S, (xy)z=x(yz). A semigroup S is a monoid if it has an identity element
1€S such that ls=s=sl for all s€S. For any alphabet X, Xt is a semigroup with
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concatentation as the associative multiplication, and is called the free semigroup on X.
Similarly, X* is the free monoid on X, with identity element 2. A monoid is a group
if in addition for each s€S there exists an inverse s~' €S such that s~ ls=1=ss""1.
An idempotent in S is an element e such that e?=e. If S is a finite semigroup, it is
easy to show that each element s of S has a unique idempotent power. Notation: we
take w(s) to be the least integer greater than 1, such that s®()s®®)~1 =s@)~1 Note
that s°(*) is the unique idempotent power of s. We write  for w(s), where there can
be no confusion about s, and thus we shall write also (s)® or s“ for this idempotent.

If S is a semigroup, then the reverse semigroup S* has the same underlying set as
S but multiplication * with x * y = yx, where x, y€S” and yx is their product in S.

If X and Y are subsets of S then XY ={xyeS|xeX,yeY}. (Of course XY is
empty if either of X or Y is; and also XY =X if Y ={1} (and vice versa) if 1
is an identity element of S.) A subset TCS is a subsemigroup of S if T>CT. A
homomorphism ¢ : Sy — S, from a semigroup S| to a semigroup S, is a function such
that @(s)p(s’) = @(ss’) for all s,s’€S. If ¢ is surjective, then S, is a homomorphic
image of S;. A semigroup S divides (and is a divisor of) a semigroup 7 if S is a
homomorphic image of a subsemigroup of 7. We denote division by S <7. A non-
trivial group G is simple if the only homomorphic images of G are G and the trivial
group {1} (up to isomorphism).

If S is a semigroup, let S’ denote the monoid S’ =S U {I} with identity /, where 1
is a new symbol (i.e. 7/ ¢ S), and associative multiplication

s if s =1
ss' =< s ifs=1
ss' if 5,8 €S

for all s5,5" €S’. Also, let

g — S if § is a monoid,
“ 18" otherwise.

A transformation semigroup (A4,S) is an automaton (4,S,d) such that the set of
inputs S is a semigroup and (a-s)-s' =a-ss’ for all a€4 and s,s'€S. Here ss' is
the product under the semigroup multiplication of S. Furthermore, the action of S is
required to be faithful, i.e. if a-s=a-s' holds for all a€ 4, then s=s'.

Then the right regular representation of S is the transformation semigroup (S°,S)
with transition function given by the multiplication in S°®. If S is a semigroup, some-
times we write “S” in a context where a transformation semigroup or an automaton is
required; in this case, S denotes the right regular representation (S°,S). For example,
0;({S}) denotes all o;-products of factors (S°®,S), where the latter is viewed as an
automaton.

Given any automaton .of =(4,X,9), let o/ =(4,S(o7),0") denote its associated
non-empty input word automaton (also known as the associated transformation semi-
group) whose states are the same as those of .7, and whose set of input letters S(.o7) is
the set of the transformations induced in ./ by words in X*. That is, each non-empty
word we X represents an input letter of .«/" with a-w=d(a, w) for all a€4, and two
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words w,w' € X" represent the same input letter of .«/* if and only if d(a, w) = 6(a, w')
for all states a€ 4. We then write [w] =[w'], and we have S(«/)={[w]:we X} with
0 (a,[w])=d(a,w). Of course, S(.«7) is finite (since A4 is), and the map w — [w]
is a homomorphism of semigroups from the free semigroup X onto S(4). S(=7) is
called the characteristic semigroup (or transition semigroup) of of. If of =(4,X,9) is
any automaton then of course .o/ =(4,8(/),0") is a transformation semigroup. Ob-
viously, by faithfulness, the characteristic semigroup of any transformation semigroup
(4,S8) is just the semigroup S. In particular, the characteristic semigroup of the right
regular representation (S°,S) is S, and moreover, the characteristic semigroup S(.2/")
of .o/t is just the characteristic semigroup S(.e/) of .o/.

An automaton .o/ is a group automaton if each member of the input alphabet X
acts as a permutation on the set A. If G is group, then its right regular representation
(G*,G)=(G,G) is the group automaton corresponding to the group G. It is easy to
verify that a cascade product of group automata is itself a group automaton.

The flip-flop automaton F has states {a,b} and inputs {a,b,1} =F where the a
and b act as constants and 1 acts as the identity. Its characteristic semigroup F = S(Z)
is called the flip-flop monoid, and has multiplication table:

A semigroup S is irreducible if whenever ./ is an automaton with S(.«/)=S and
o eHSPy({t,...,o4,}) for some o,...,.o, /1], then S < S() for some i (1<i
<n). If S is a finite semigroup, IRRED(S) denotes the set of non-trivial irreducible
divisors of S, i.e. those having at least two elements. If .o/ is a finite automaton,
IRRED(.</)) denotes IRRED(S(.«7)). If A" is a class of finite automata, IRRED(A") is
the union of all IRRED(.«/) for o/ € #". PRIMES(S) denotes the set of finite simple
groups that divide S.

Theorem 7 (Krohn—Rhodes Theorem [10,11]). Let o7 be a finite automaton. Then .o/
can be homomorphically represented by a cascade of flip-flops & and group automata
corresponding to PRIMES(S(7)). That is, o/ € HSPy({Z } UPRIMES(S(«/))). More-
over, if </ is a non-trivial group automaton, then the flip-flop & may be omitted.

If </ is homomorphically represented by a cascade of automata <t,,...,<t,, then
every irreducible semigroup that divides S(.</) divides S(<f;) for some i (1<i<n).
That is, of € HSPy( A )= IRRED(.</)CIRRED(X"). Moreover, a finite semigroup
S is irreducible if and only if S is simple group or a divisor of the flip-flop
monoid.

Corollary 8. If every subgroup of S(oZ) is trivial, then <of € HSPy({F }).

Proof. Since every subgroup of S(.o7) is trivial, PRIMES(S(.<Z)) =0, so the conclusion
follows from the first part of the Krohn—Rhodes Theorem. [
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The last part of the Krohn and Rhodes Theorem implies that the irreducible finite
semigroups are exactly the finite simple groups and the subsemigroups of the flip-flop
monoid F. These are the flip-flop monoid F itself, the two-clement monoid U, the
two-element right-zero semigroup 2", the one-element semigroup {1}, and the empty
semigroup (.

Ulto 2lab
1|10 alab
000 blab

Corollary 9. If A4 is a class of finite automata such that HSPo(A )= /11, then
IRRED(A")=all finite simple groups U{F,U,2"}.

Moreover, suppose a semigroup S divides S(.o7) for some finite automaton .o7: If
S < F then § is (isomorphic to) a subsemigroup of S(.27); while, if S is a group, then
S is the homomorphic image of a group G which is a subsemigroup of S(.o7). (See
e.g. [11] for proofs of the statements in this section).

A pseudovariety S of finite semigroups is a class of finite semigroups closed under
division and finite direct products. That is, (1) if S<7 and T€S then S€S, and (2)
if S;e€S for all i€/, a finite index set, then Hie, S; €S.

Taking I =, the latter condition guarantees that the one-element semigroup is in S,
so in particular S cannot be empty.

If 2 is a class of finite automata, then define (1), the semigroup pseudovariety
corresponding to A, to be the smallest pseudovariety of finite semigroups containing
the transition semigroup S(.2/) for each automaton .oZ € #".

1.4. Eilenberg correspondences

Filenberg’s Theorem [3] states that pseudovarieties of finite semigroups are in a
natural one to one correspondence with certain classes of recognizable languages, the
varieties of languages. A variety & of languages assigns to each finite alphabet X
a set L(X) of regular languages contained in Xt such that (1) Z(X) is closed
under the Boolean operations of finite union, finite intersection, and complement within
X7, and (2) Z(X) is closed under quotients: L€ %(X) and x€X implies Lx~' and
x~!L are in Z(X), where Lx~ ' ={weX*|wxeL} and x'L={weX™* |xwelL}, and
such that (3) % is closed under (non-erasing) inverse homomorphisms: L& 2 (X)
and ¢:Y" — XT is a homomorphism implies ¢~ (L)€ £(Y).*

If LCX™" is a language over X, then the syntactic semigroup of L is the transition
semigroup of its minimal automaton. LCX ™ is recognized by a finite semigroup § if
S =S(/) for some finite automaton .7 = (4, X, 0) recognizing L. The reader is referred
to [3] or [13] for full definitions and details, as well as relations to automata theory.

4 More exactly these are the +-varieties of languages. There is a related but somewhat different Eilenberg
correspondence between x-varieties of regular languages (allowing the empty word) and pseudovarieties of
monoids. (See [3] or [13] for precise details and differences between the two correspondences.)
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Theorem 10 (Eilenberg [3, Theorem VII.3.2s]). There is a one-to-one correspondence
between pseudovarieties of semigroups and varieties of languages: The pseudovariety
of finite semigroups V — the variety of languages ¥y where ¥Lv(X) is the set of the
languages LCX ™" recognized by members of V. The variety of languages & — the
pseudovariety Vg generated by syntactic semigroups of all the languages L€ L (X)
with X some finite alphabet.

The Eilenberg correspondence serves to systematize the study of regular languages
algebraically. For instance, the pseudovariety Sgp of all finite semigroups corresponds
to the variety of regular languages [7, Kleene’s Theorem]. The pseudovariety A of ape-
riodic semigroups corresponds to the variety of star-free languages [14, Schiitzenberger’s
Theorem]. (A finite semigroup S is aperiodic if s =s“*! for all s€S, i.e. every sub-
group of S has only one element. Equivalently, by the first corollary of the Krohn—
Rhodes Theorem, S is aperiodic if and only if S divides the transition semigroup of a
cascade of flip-flops.)

Many instances of the Eilenberg correspondence between varieties of languages and
pseudovarieties of finite semigroups have been studied (see [3,13] and subsequent pub-
lications by various researchers, including deep results of Knast, Simon, Brzozowski,
and Straubing [2,8,9,15,17—19]). For purposes of this paper, we need only some rela-
tively simple instances of this correspondence.

If V is a pseudovariety of finite semigroups then the reverse pseudovariety is
VP ={S§?|S €V}, whose members are the reverse semigroups of members of S. The
reverse of a language LC X" is the language Lf ={x,...x; €X' |x...x, €L, n>0}.
Under the Eilenberg correspondence, reversing the languages in a variety corresponds
to the reversing the semigroups in the corresponding pseudovariety (as is easy to
see since the reverse language has the reverse syntactic semigroup) [3, Proposition
VIL5.1]. Obviously, the Eilenberg correspondence preserves inclusion: WCV if and
only if w(X)C Ly(X) for all finite alphabets X.

A semigroup S is nilpotent of degree n if and only if for all xy,...,x, €S, x1---x, =0
holds, i.e. x; - - x,y=yx; -+ X, =X] - - - x, holds for all y€X. Nil, is the pseudovariety
of finite semigroups that are nilpotent of degree n. In the corresponding language vari-
ety, Ail,(X) is the Boolean closure of the singleton languages {w}, weX™, |w|<n.
Nil is the pseudovariety which is the union of all the Nil,. Nil is also defined by
s”=0. A language LCX ™ is finite or cofinite if either L or X T\L is finite, which is
true if and only if its syntactic semigroup is nilpotent ([3, Proposition VIII.2.2] or [13,
Chapter 2, Theorem 3.3]).

A semigroup S is said to be definite if se =e holds for all e* =e,s€S. A semigroup
S is said to be a reverse definite, if es=e for all idempotents ecS and all s€S.
The pseudovariety of all definite semigroups is denoted D. The pseudovariety of all
reverse definite semigroups is denoted D?. A language LCX ™ is reverse definite if
L is of the form YX*UZ where Y and Z are finite languages of X . The definite
languages are the reverse of these. The definite languages are exactly those whose
syntactic semigroups lie in D, while the reverse definite languages are exactly those
whose syntactic semigroups lie in D? ([3, Proposition VIIL.4.1] or [13, Chapter 2,
Theorem 3.4]). Inside D is a nested hierarchy of pseudovarieties D, whose members
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satisfy x;---x,=yx;---x,. D is the union of the D,. The pseudovarieties of left-
zero semigroups LZ =D/ and right-zero semigroups RZ=D; are the lowest levels
of the two hierarchies. The characterization of the language variety recognized by D,
is the same as that for D except that the finite languages ¥ and Z may only contain
words in X of length not exceeding n and n — 1, respectively [13, p. 43]. Similar
remarks characterize the language variety corresponding to each D). An automaton
of =(4,X,0) is called reverse definite if there is an n>0, such for all a€4, x€X,
pEXT, a- px=a- p holds whenever |p|>n. It follows from the definition of the D}
that a language LC X ™ is reverse definite (i.e. recognized by a member of D) if and
only if L can be recognized by some reverse definite automaton.

In a semigroup S, x and y are #-related (denoted: x#y) if there exist s,/€S*®
such that xs =y and yt=x. A semigroup S is #-trivial if xZy always implies x = y.
The finite Z-trivial semigroups comprise a pseudovariety R. A language LCX ™ is
extensive if it can be written as the finite disjoint union of languages of the form Y™,
Y CX and XJx XXz ... x,X,, where n>0, x,...,x,€X, X; CX\{x;1} for 0<i<n—1
and X, CX. These languages are exactly those whose syntactic semigroups lie in R
as can be seen by using minor but straightforward modifications of the corresponding
proof for x-varieties by Pin [13, Chapter 4, Theorem 3.3] (of the original result for
R-trivial monoids due to Eilenberg [3, Corollary X.3.3]). Another characterization of
extensive languages is that they are exactly the languages which can be recognized
by an extensive finite automaton <o/ =(A4,X,9), i.e. a finite automaton for which there
is a partial ordering, or equivalently a total ordering, < on 4 with a-x<a for all
acA,xeX (cf. [13, Chapter 3.3;1]).

We record some of these correspondences between varieties of regular languages
and pseudovarieties of finite semigroups:

REGULAR < Sgp
STAR-FREE < A
EXTENSIVE < R

DEFINITE < D
REVERSE DEFINITE < D”
FINITE OR COFINITE < Nil

In the sequel the two pseudovarieties D” and R will play a crucial role. We denote
by G the pseudovariety consisting of all finite groups and the empty semigroup.

2. Algebratization

What is the relationship between homomorphic representation by the feedback
products and pseudovarieties of finite semigroups or, equivalently, varieties of regular
languages? To study this question, we examine the Letichevsky and semi-Letichevsky
criteria algebraically. If we examine the transformation semigroups of automata satis-
fying the Letichevsky criterion, we are immediately confronted with the following fact.
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Fact 11. Let ./ be a finite automaton.
1. o = Let= o/ = Let.
2. o = Let # of |= Let.

Proof. (1) Since every letter of ./ yields a corresponding input symbol of .«/*, this
is obvious. (2) Consider the 3-state counter automaton 4 = ({0, 1,2}, {x},9), d(i,x) =
i + 1(mod3) with a single input letter x. The non-empty input word automaton %+
associated to ¢ has input letters corresponding to the transformations represented by
the words x, xx and xxx (and no other transformations). @™ satisfies Letichevsky’s
criterion, but ¥ does not.

The Three State Counter Automaton % and
the Associated Non-Empty Input Word
Automaton 6"

This completes the proof. [

Since the Eilenberg correspondence between varieties of languages and pseudovari-
eties of semigroups relies on the characteristic semigroups of the automata recognizing
a language, the failure of the implication in Fact 11(2) suggests that, in order to de-
velop an algebraic theory related to the Letichevsky criterion, it is desirable to study
it for the corresponding transformation semigroup—i.e., the non-empty input word au-
tomaton .o/ " associated to a given automaton .o7. Thus, if the transformation semigroup
/1 associated with .7 satisfies the Letichevsky condition, let us write .o/ |= Lett. By
definition,

AT ELet & o = Let". (1)

Now we say ./ satisfies the Letichevsky criterion for non-empty words (Lett) if o/ *
satisfies the Letichevsky criterion. This is obviously equivalent to .o/ satisfying the
formula (Let™):

(Let™) Zag € A,x,y,p,q€ X ,a0-x#ag-y, and ag-xp=ag-yq=ap.

Thus we have the same condition as for (Let), except now for (Let'), x and y need
not be letters in the alphabet X of .«# but are allowed to be any non-empty words in
X*. In this notation, by Fact 11(1),

of |= Let = of |= Let™ 2)

but the reverse implication may fail to hold in general (Fact 11(2)).
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Similarly, we say .o/ satisfies the semi-Letichevsky criterion on non-empty words,
and write .o/ = SL*, if o/" satisfies the semi-Letichevsky condition. By definition,

AT ESL & of =SLT. 3)

Thus, .o/ satisfies the semi-Letichevsky criterion on non-empty words (SL™) if .o/ does
not satisfy (Let") but the configuration of the semi-Letichevsky criterion occurs in .o/
for some non-empty words x,y, p€X ™. Precisely, o/ = SL* if .o/ £~ Let™ and there
exist x,y, peX ™, ap€4, such that ag-x#ag-y and agp-xp=ap. This is equivalent to
satisfaction by .7 of the formula (SL™):

(SLY) —Lett and Jag € A,x,y,p €EX a0 -x # ap- y, and ag-xp = ao.

If a class " of automata contains an automaton satisfying (Let"), then we also say
that #~ satisfies Letichevsky’s criterion on non-empty words (X = Let™). Otherwise,
we say that " does not satisfy (Let™), and write 4" [~ Lett. Also, a class " of finite
automata satisfies the semi-Letichevsky criterion on non-empty words (A = SLT)
if it does not satisfy the Letichevsky criterion on non-empty words and at least one
member of ¢ satisfies the semi-Letichevsky criterion on non-empty words.

Let us determine the remaining relations between the classical Letichevsky and semi-
Letichevsky criteria and the corresponding criteria on non-empty words.

First we show that

of =SLY = of = SL (4)

but the converse does not hold in general.

Proof of (4). We have /" = SL, so .o/ [~ Let, whence .o/ [~ Let by (2) and there
exist non-empty words x, y, pe Xt and ag €4, with ag-x #ag-y but ag-xp=ay. Write
y=y1---y with each y; a letter in X. Clearly ao-y#ay (lest /" |= Let), so by
removing some initial letters of y if necessary, we may suppose that ag-y;...y; Zag
for all i (1<i<k). Let i be the greatest integer such that 0<<i<k and there exists
geX™ such that ag-y; - -+ y;g=ao (for i =0, one may take g=xp).

Let ay=ag-yi --- y;i. Then aj-q=ag. Write g=gq, - - - q,, with letters g, €X. Since
o/t V£ Let, there can be no g with ag- yg=ay, so i <k, and we may set ' = y;,i. Let
x'=gqiand p'=q2---q/xpyi--- yi. Then ay-x" # ay-y' (lestag-y1 -+ yivir1qa -+ qr =
ag yirqz - qr=C(agy") - q2---qr=C(ag-x')q2---q/=ay-q1q2---qr=ay - ¢ = ap
contradicting the choice of i if />1 and contradicting ag- y1 - - - Y41 #ag if /=1) and
ay-x'p'=ap-qi(qa - qrXpYL-- - Vi) =y qXPYL - Yi=do XPYL- -t Yi=do Y1 Vi
=aj. This proves .7 |= SL.

To see that the converse may fail to hold, i.e. .o/ = SL# o/ = SL", modify the
counter automaton % of Fact 11(2) by adding a new input letter y which takes every
state to a new “sink” state * (i.e. a-y=x for all a€{0,1,2}, and *-x= % - y==x).
Denoting the modified automaton by ., we have €. = SL, but 4, |= Let" (since
% |= Let™), and so €. ESLT. [

In the class of finite automata .o///, let &7 denote automata satisfying the (clas-
sical) Letichevsky criterion (Let), £&7 * denote automata satisfying the Letichevsky
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Fig. 1. The universe .21/ of all finite automata: The dashed horizontal line separates the class #&7
of automata satisfying the Letichevsky criterion on non-empty words (above) from the class =67 T of
those not satisfying it (below). The dashed vertical line separates the class ¢ of automata satisfying
the classical semi-Letichevsky criterion (right) from those that do not (left). ¥ is the disjoint union of
SIN-LET T =FL", the automata satisfying the semi-Letichevksy criterion on non-empty words (below),
and SL\SLY =S¥ N LET T, the automata satisfying both the classical semi-Letichevksy criterion and
(Let™). The class #&7 of automata satisfying the classical Letichevsky criterion is a proper subclass of
LET . Relations shown are established in the main text.

criterion on non-empty words (Let™), - #&7 " denote automata not satisfying the
Letichevsky criterion on non-empty words, /¥ denote automata satisfying the (clas-
sical) semi-Letichevksy criterion (SL), and %" denote automata satisfying the semi-
Letichevsky criterion on non-empty words (SL™). We have seen ¥t C %% and
LET CLET . Observe that

SLONLET = 7P+ (5)

Indeed, from the definition of SL*, clearly —Let™ and SL imply SL*. Conversely, SL*
requires that Let™ be false, and we have already seen that SL™ entails SL.

SLONLET =S L\F LY (6)

Suppose SL holds. If Let™ then SL* cannot hold by definition. If SL* is false, then
either Let™ holds or there are no ag,x, y, p as in the SL condition. Since SL holds it
can only be that Lett holds.

Obviously LT T U~LET T =/11 and LET NSL =0. The established rela-
tions between the various classes are shown in Fig. 1.

Now let us characterize these Letichevsky criteria on non-empty words algebraically.

Proposition 12. Let o/ be any finite automaton. of satisfies the Letichevsky criterion
on non-empty words (Let™) if and only if the semigroup S(.«/) of transformations of
o is not R-trivial.

Proof. Suppose that the criterion (Let™) is satisfied. Let state ap and non-empty
X, ¥, p,g€X ™" be as in the criterion. In particular, ag-x # ag- y. Let e =((yq)”(xp)*)°.
Clearly ap-e=ag. We have exZe since exp(xp)”~! =e(xp)” =e. Also eyZe since
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eyg(yp) ' (xp)’((yq)”(xp)*)?~! = e? = e. Therefore, ex Zey, but ay-ex =ay-x and
ap-ey=agp-y. It follows from ag-x#ag-y that ex#ey, whence S(</) is not
R-trivial.

Conversely, let S(.<7) be not Z-trivial. This means there are words s,1€X " such
that st but s £t in S(.o7). Then there exist p,q€X™* such sp=¢ and tg =5 in S(.&/).
(Clearly, neither of p nor ¢ is A since s#¢ in S(/).) Since s #¢, there is a state q
with a;-s#a;-t. Let ag=a;-s. Then

ap-pq=a;-spq=a;-tqg =aj-s = ap,
while
ay-p=ay-sp=ay-t#a -s=a.

Then x= pq, p’'= pq, y= p, and q are non-empty words such that ag-x #ag-y, and
ag-xp’' =ay, and ay- yqg =ag. Thus .of satisfies (Let™). [J

Remark. The above proposition could also be proved via the fact that extensive au-
tomata correspond to Z-trivial semigroups.

Corollary 13. ./ €~LETT < S(/) is R-trivial < S(/ )€ S(HSPo({U})).

Proof. The first equivalence holds by the preceding proposition. The second equiva-
lence holds, since by a theorem of Stiffler [16, Theorem 3.4(b)], a semigroup lies in
R if and only if it divides the transition semigroup of a cascade of copies of U. [

Corollary 14. ./ €-~LET " implies IRRED(/)C{U}. But the converse does not
hold.

Proof. By the preceding corollary, S(.7) divides the transition semigroup of a cascade
of copies of (U®,U)=(U,U). Since U is the only non-trivial irreducible divisor of
U, the implication holds. To see that the converse may fail to hold consider the five
element Brandt semigroup B, with elements (1,1),(1,2),(2,1),(2,2), and 0 with mul-
tiplication 0 (x, y) = (x, y)*0=0x0=0 for all x, ye {1,2}, and for x, y,x’, y' €{1,2},

/ . /
rony o J Y if y=x,
(5 y) * () = { 0 otherwise.
It is easy to check that 2" does not divide B,, nor does any non-trivial group, but U does
since it is isomorphic to the subsemigroup {(1,1),0}. However, B, is not Z-trivial:
(1,1)2%(1,2) since (1,1) * (1,2)=(1,2) and (1,2) % (2,1)=(1,1). So &/ =(B3,B)
satisfies the Letichevsky criterion by Proposition 12. [J

Corollary 15. " (£ Let™ implies IRRED(#)C{U}. But the converse does not hold.
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Corollary 16. If IRRED(A") contains 2", the flip-flop monoid F, or any non-trivial
simple group, then A" |= Let*.

Proof. The condition IRRED(#") Z {U} is equivalent to the presence of any non-trivial
irreducible divisor other than U in IRRED(X"), i.e., one of 2", the flip-flop monoid F,
or any simple group. It then follows from the contrapositive of the previous corollary
that " = Lett. O

Proposition 17. Let o/ be a finite automaton. </ satisfies the semi-Letichevsky
criterion on non-empty words if and only if S(</) is R-trivial but not reverse
definite, i.e.

o =SLY & S(/) € R\D’.

Proof. Given .o/ satisfying SL™, we have that .o/ does not satisfy Let* (hence also not
Let). From the previous proposition, we have that S(.e7) is #-trivial. We must show it
is not reverse definite. If SL™ holds, then we take x, y, p€X ™ such that ag-x # ag- y and
ay-xp=ay. It follows that (xp)“x# (xp)®y in S(.o7). Therefore, for e?> =e=(xp)®,
the equation es =e does not hold in S(.o7). Thus S(.7) is not reverse definite.

Conversely, suppose S(.o7) is Z-trivial but not reverse definite. Again by the pre-
vious proposition, since it is Z-trivial it does not satisfy Let™ (hence also does not
satisfy Let). Since S(.o7) is not reverse definite, there exist non-empty words e, ye X+
representing [e],[v] €S(.#), with [e]*> =[e] and [e][y] # [e]. The latter means there is
an a; €A, with

a-ey#aj-e.

Therefore, taking ag =a; -e, we have
ay-y=aj-ey#a-e=a.

Moreover, since [e]*> = [e], we have
(ap-e)-e=ag-ee=ay-e=(a;-e)-e=aj-ee=a;-e=a.

Thus, taking x and p both equal to e, we have (ag-x)- p=aq, and ag=ag-x #ag- y.

This shows that S(.«7) satisfies SLT. [J

Corollary 18. Let of be a finite automaton. </ satisfies neither the semi-Letichevsky
nor the Letichevsky criterion on non-empty words if and only if S(</) is reverse
definite. That is,

o W Let™ and o ESLT & S(o/) €D’

Corollary 19. .o/ satisfies neither the semi-Letichevsky nor the Letichevsky criterion
on non-empty words if and only if IRRED(.«/)= 0.

Proof. Stiffler [16, Fact 4.8(b)] proved that if a finite semigroup S has no non-
trivial irreducible divisors then it is a nilpotent extension of a left-zero semigroup, or,
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equivalently, idempotents in S are left-zeros (e? =e implies es =e for all s€S), i.e. S
is reverse definite. So the result follows from the corollary above. [J

We remark that Stiffler [16, Theorem 3.4(a)] also shows that S (HSPy({2"}))=D.
Therefore S(HSPy({2"}))” =Dr. Thus .o/ satisfies neither of the Letichevsky criteria
on non-empty words if and only if #(4) divides the reverse semigroup of a cascade
of copies of (2"*,2").

It is easy to check that:

Fact 20. Let ./ be a finite automaton. Then
1. o/ satisfies (Let™) if and only if the configuration

oceurs in of . Precisely, for some states p,q€A, p+#q, and inputs s,t€X™, q-s = p,

pt=gq.
2. of satisfies (SLY) if and only if </ does not satisfies (Let™) and the following
configuration occurs in <f:

t s,t

occurs in /. Precisely, of £ Lett, and for some p,q€A, s,teX*, p#£q, q-t=gq,
q-s=p,and p-s=p-t=p.

3. Summary of results
The results obtained so far easily entail the following series of theorems.

Theorem 21. Let A be any class of finite automata. Then the following are

equivalent.

1. A" satisfies the Letichevsky criterion on non-empty words, i.e. A" = Let™.

2. S(A)YLR. That is, S() is not R-trivial for some automaton o € A .

3. There is an automaton <f € 4", such that S(=f) does not divide the semigroup of
any cascade of copies of (U,U), where U is the two element monoid.

4. The configuration

occurs in some automata </ € X, for some states p,q, pF#q, and inputs s,t€ X",
q-s=p, prt=gq.
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5. There is a language L is recognized by an automaton from A" such that L is not
extensive.

Theorem 22. For any class A~ of finite automata, the following are equivalent, and

imply that A~ satisfies the Letichevsky criterion on non-empty words:

1. There exists o/ € X, such that the two-element reset semigroup 2" divides S(.</)
or a simple group G divides S(.</).

2. There exists of € A", such that the two-element reset semigroup 2" embeds in S(.o/)
or a non-trivial group G embeds in S(.</).

3. A non-trivial irreducible semigroup other than the two element monoid U divides
S() for some oA €A .

4. IRRED(S (X)) L {U}.

Proof. (1) implies (2): For any finite semigroup S, 2" < S implies 2" is a subsemigroup
of S, and G<S for a group G implies there is a group G’ that is a subsemigroup
of S mapping homomorphically onto G. (See e.g. [11].) The rest is now clear from
Corollary 16 and the characterization of finite irreducible semigroups in the Krohn—
Rhodes Theorem. [

Theorem 23. For any class A" of finite automata, the following are equivalent.

1. A satisfies the semi-Letichevsky criterion for non-empty words, ie. A = SLT
(thus, there exists an automaton </ € A" with o/ = SL*, but no of € A" satisfies
Let™).

2. The above configuration does not occur in any automaton <of € A", for any distinct
states p,q and non-empty input words s,t€X . But the configuration

t 5,1

occurs in at least one of in A (q,p€A, p#q, s,tcX"), qt=q,q-s=p,p-s=
pt=p.

3. For all of € 4, S(of) divides the semigroup of a cascade of copies of (U,U), and
moreover IRRED(S (A" ))={U}.

4. For all o/ e, S(f) lies in S (HSPy({U})) and U divides S(.o) for some of € A,
but no other non-trivial irreducible semigroup divides any S(<Z) for of €A .

5. 8(Z) is R-trivial for all of € A", but there is an </ with S(</)¢DP. That is,
F(AYCR but S(AH )L D",

6. Every language recognized by automata from A" is extensive, but there is at least
one language recognized by some member of K" which is not reverse definite.

Remark. Considering the counterexample B;, described in the proof of Corollary 14
above, which has IRRED(B,)={U} and satisfies Let, one sees that the conditions
in Theorem 22 only imply but are not equivalent to the Letichevsky criterion on
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non-empty words. By the same counterexample, condition 3 of Theorem 23 cannot
be weakened to IRRED(S(A"))={U}.

Theorem 24. Let A be any class of finite automata. Then the following are

equivalent.

1. A satisfies neither Lett nor SL*.

2. Neither of the configurations above occurs in any automaton in A .

3. No non-trivial irreducible semigroup divides S(</) for any o/ €. That is,
IRRED(S (A7) = 0.

4. S(</) is a reverse definite for all of € 4. That is, S (A )CDP. In other words,
S(</) is a nilpotent extension of a left-zero semigroup; that is, S(of) satisfies
x(})y:x(().

5. S(f) divides the reverse of the transition semigroup of a cascade of copies of
(27,2, for all oA €A

6. Every language is recognized by an automaton from A is reverse definite.

4. Feedback operators for pseudovarieties of finite semigroups

Now we return to the question at the beginning of Section 2 on the relationship
between pseudovarieties and feedback products. The pseudovariety characterizations
obtained above will allow us to relate the action of o; operators on classes of automata
with their action on pseudovarieties for i=0,1,2,...,00.

Define for each i=0,...,00, an operator &; : PV — PV on the lattice PV of pseu-
dovarieties of finite semigroups:

a(V) = S(HSP({(S*.5)|S € V})).

Clearly, S(HSP.(A")) = S (P,(A"))) always holds for every class .#" of finite automata.

We write V = Lett, if (S°,S) = Let™ for some S€V, and write V = SL*
if V F~ Let™ but for some S€V, (S°,8) = SL*. Then by the corollary of Esik—-Horvath
Theorem, the following is immediate:

Lemma 25. Let V be a pseudovariety of finite semigroups. Then
1. V= Lett = ,(V)=Sgp.

2. VESLT=81(V)=8,(V).

3. VIESLT and V W= Lett = 6o(V) =85, (V).

Lemma 26. Let V be a pseudovariety of finite semigroups. Then V |= SL* implies
4o(V) =8 (V)=R.

Proof. The hypothesis implies U €V. Since S (HSPy({U}))=R by Stiffler’s results
[16], it follows that RCéo(V). Since V }£ Let, we have d..(V)CR by Corollary 3(2)
and Proposition 12. Therefore, RCdy(V)C4;(V)Cadx(V)CR. O
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Lemma 27. If </ =(4,X,0) | Let™, then all finite automata are isomorphic to sub-
automata of members of oy (P(</™1)).

Proof. Given any finite automaton % = (B, Y, ), we show % embeds in a single-factor
o -product of a direct product of copies of .o/". In .o/, we have states p # ¢, and non-
empty words s,#€X with p-s=g and ¢-t= p, whence g-ts=¢ and p-st = p. We map
a state bEB to the state “b” of the |B|-fold direct product of copies of o/, where
“b”>=(p,..., p,q, p,---» P), such that g occurs in the bth position and p occurs in all
other positions. Now define the feedback function f: A8l x ¥ — (X )8! to have value
in its bth-component:

ts if a=“b" and b-y =10,

t if a=“b"and b-y#b,
(fla,y)p=1s ifa=“"b#c, and c-y=2b,

st if a=“c",b#c, and c-y #b,

s otherwise,

where acA®l, yeY, b,c€B. (Note the value of f in the fifth case is arbitrary.)
It is straightforward to check that “6”-y=“b-y” holds for all b€B and y€Y, so
2 is isomorphic to a subautomaton of the o;-product. [

Lemma 28. If'V is a pseudovariety of finite semigroups, and V = Let", then 8,(V) =
Sgp.

Proof. Take S€V with (S°,5) |= Let™. Since S is not #-trivial, choose distinct p,q€S
such that there exist s,¢€S with ps=¢ and g¢ = p. By the construction of the previous
lemma, any (7°,7) embeds in an o;-product of the |7T*|-fold direct product of copies
of (S°,S). The image of 7* has all components in { p,q}, thus the image of (7°,T) is
actually isomorphic to a single-factor o;-product of (Q°,Q), where Q is the |T°|-fold
direct product of copies of S. Since Q€V, we have T€4,(V). O

Theorem 29. Let V be a pseudovariety of finite semigroups. Then

1. Vi Lett = 61(V)=3d.(V)=Sgp.

2. VESLT=§0(V)=4-(V)=R.

3. VIESLT and V £ Lett = 4,,(V)=do(V)CD?.

Moreover, the converses hold.

Proof. (1) follows from Lemma 28. (2) is just Lemma 26. (3) By Corollary 18,
VCD?. D” is closed under og-product, so d,(V)CD?. But by Lemma 25(3), do(V)=
00(V). The converses follow from what we have seen before. [

Corollary 30. For each pseudovariety V of finite semigroups, d1(V)=ds(V).

Corollary 31. For 0<i<oo, the operator &;:PV — PV is a closure operator.
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Proof. We already noted, when they were introduced, that o, and o are closure
operators for classes of finite automata, so it follows that the corresponding operators
are closure operators on PV. We have, for any i>0, @;(V)=38(V), so a;(V)=
(V). O

Theorem 32.
V£ Lett & Go(V) = 6y(V) = doo(V) C R,

where equality with R holds if and only if V |= SL" if and only if IRRED(V) = {U}.
Ve Lett & dy(V) C ai(V) = da(V) = Sgp.

where 4g(V)=0a1(V) if and only if IRRED(V) contains the flip-flop monoid and all
finite simple groups.

Proof. By the Krohn—Rhodes Theorem, equality of d((V) and Sgp holds if and only if
IRRED(V) includes all finite simple groups and the flip-flop monoid. Everything else
is clear for what we have already established. [

Let us record the effect of the feedback operators on the lattice of pseudovarieties,
which now follows directly:

Theorem 33 (Action of feedback operators on pseudovarieties). Let V be a pseudova-

riety of finite semigroups. Then we have three cases determining the action of the o

operators on V (0<k<o0):

1. If VCD?, then 4o(V)=0d-(V)CD”.

2. If VCR but VZDP?, then 4y(V)=4d-(V)=R.

3. Otherwise, VLR, and then 4,(V)=34.,(V)=Sgp, and do(V)=23a,(V) if and only
if 'V has all irreducibles.

For case VCD?: For which V does V=24,(V)? Some examples of such closed
pseudovarieties include:

D7 satisfying e =e implies es =e; (D,)” satisfying x - - -x, =x; - --x,»; Nil, sat-
isfying x; - --x, =0; Nil= |J, Nil,; LZ=DY, satisfying xy =x. Their closure under
do-product is easy to check directly. All these pseudovarieties are contained in D” and
closed for &y =Gls.

The smallest example of a pseudovariety VCR but VZ D* is SL, the variety of
semilattices, defined by equations x> =x and xy = yx, since this is the smallest pseu-
dovariety containing U. We have SL C d..,(SL)=38,(SL) =R =% (HSPy({U})).

There are many examples of VZR closed under dy: groups G, solvable groups,
p-groups, and many other pseudovarieties of groups,® whose closure under the
dop-operator is evident from considering irreducible divisors and using the fact that

5 Note that since we are considering semigroup varieties, the empty semigroup must be admitted as a
member of any pseudovariety of groups, including G, etc.
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p-groups

Fig. 2. For every pseudovariety V of finite semigroups: d;(V)=doo(V). Within R, dyp=4; and there are
many closed classes, i.e. V=2,(V), within D”. However R is the only closed class within R not contained
in D?. Outside of R, d;(V)=0d0(V)=Sgp (all finite semigroups); do(V)=3a;(V) if and only if V contains
all irreducible finite semigroups; and there are many examples of closed classes V =dy(V).

a cascade of group automata is a group automaton. Other dy-closed pseudovarieties in-
clude D (satisfying e? = e implies se = e) since D =% (HSPy({2"})); as well as RoG,
GoD, and RoGoD, which are defined by the exclusion of 2", U, and F, respectively,
by results of Stiffler [16, Fact 4.16]);° and the exclusion varieties of finite semigroups
not divided by any other particular irreducible or set of irreducibles (see examples in
[16,3]). The pseudovariety of the finite aperiodic semigroups A, satisfying x**! =x©,
is the class that excludes all finite simple group divisors and so is dg-closed. Let W be
the pseudovariety of aperiodic semigroups not divided by 2", then JRRED(W)={U}
and W = Let™ by the counterexample in the proof of Corollary 14, so R C'W. Since
W is defined by the exclusion of irreducibles (finite simple groups and 2"), we have
ao(W)=W, but 4;(W)=Sgp by Theorem 33(3). In fact, W=AN(R o G) by [16,
Fact 4.16(a)].

This situation is schematized in Fig. 2 showing major divisions in the lattice of
pseudovarieties of finite semigroups that characterize the effect of the various feedback
operators.

6Here V,0V,_jo0---0V, denotes the pseudovariety generated by characteristic semigroups of oo-products
whose i factor automaton .o/ = (S?,S;) for some S; € V;.
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Corollary 34. Let V be a pseudovariety of finite semigroups such that 4;(V)=V for
a certain i (0<i<oo). If either i=1 or V£ Lett, then we have

V=Sgp& V[ Lett
V=R&VESL"
V C D? and & otherwise.

(V) =V
While for i=0 and V |= Let*, we have do(V)=V and

V={SeSgp|PRIMES(S)CV} & FeV
V C R o G oD < otherwise,

where F is the flip-flop monoid.

Proof. The first part follows from Theorem 29. For the second part with i =0 and
V E Lett, the Krohn—Rhodes Theorem yields the case when F€V. On the other
hand, F ¢V if and only if VCR o G o D, by the result of Stiffler [16, Fact 4.16(c)].

U

Despite what one might have expected, in every case, the study of the feedback
operators ¢; on the lattice of pseudovarieties of finite semigroups is completely solved
or reduced to the study of 4y, the cascade closure.
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