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Abstract 

Bailey, C. and R. Downey, Tabular degrees in o-recursion theory, Annals of Pure and 

Applied Logic 55 (1992) 205-236. 

We introduce several generalizations of the truth-table and weak-truth-table reducibilities to 

o-recursion theory. A number of examples are given of theorems that lift from o-recursion 
theory, and of theorems that do not. In particular it is shown that the regular sets theorem fails 
and that not all natural generalizations of wtt are the same. 

0. Introduction 

The study of strong reducibilities in w-recursion theory began with the study of 
w-recursion theory. However, a-recursion theory leapt straight into the study of 
Turing reducibility, bypassing all study of strong reducibilities in the generalized 
context. This paper is a first step to establish strong reducibilities in a-recursion 
theory, in that we develop definitions of a-truth-table, and several versions of 
cY-weak-truth-table reducibilities. 

These definitions do extend the relevant definitions on CO, and some of them 
behave in similar ways. But not always; for example, weak-truth-table generalizes 
in several distinct ways, but the useful property of w-wtt-that permitting gives 
rise to it-does not apply to all of the generalizations. 

Several problems new to these reducibilities quickly become apparent-the 
failure of a regular sets theorem; the fact that the power set function is rarely a 
total recursive function; and that the blocking machinery does not interact readily 
with the reducibilities (a search over a block is a-re, but not generally 
a-recursive). 

We illustrate the above problems with examples that also give indications of 
how some theorems lift from o to (Y. However, some very basic theorems do not, 
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for instance Nerode’s theorem that 

A swtt B iff there is an e such that VXeX is total and eB = A 

makes heavy use of compactness, and indications are that it is necessary to use it. 

This means it must fail for many a. 

This paper is primarily to establish definitions and show how they work. In 

later papers, we will show how the strong reducibilities may be used, as in 

o-recursion theory, to give information about Turing degrees. 

For the reader’s convenience, we recall some basic definitions and notation of 

cu-recursion theory. 

Definition 0.1. CY is admissible iff every total 2,-function f, with domain an 

element of L,, has rng(f) E L,. 

Definition 0.2. 

pz = the &-projecturn 

= the least 6 < a: for which there is a total, injective, 2,,-function from a into 6 

= the greatest 6 G CY, such that every A s y < 6 which is JZ,, is an element of L,. 

Definition 0.3. The _Zn-cardinality of a subclass of (L,, D) is 

IXI n,D ‘%Zf the least 6 c a for which there is a total Ef-bijection from X into 6. 

Definition 0.4. 

K: = the Zf-cofinality 

= the greatest 6 < CY, such that VX E L, (XI”yD < 6, and f :X+= a 

is a total Zf-function, then rng(f) E L,. 

If D = 0 then it may be omitted or replaced by (Y. 

These definitions may differ slightly from those usually used, but they are easily 

shown to be equivalent. 

1. Definitions 

Throughout the remainder of this paper we will assume (Y is any admissible 

ordinal. 

In this section we will introduce a number of definitions, firstly for truth-table 

reducibility, and then for a variety of weak-truth-table reducibilities. Some results 

will be shown relating these definitions, and some basic facts about these 

definitions will be proven. 
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Definition 1.1. Let A, B be subsets of L,. Then A c=.~, B (A is a-truth-table 

reducible to B) iff 3e VK E L, 

(1) KcA iff 3M,,M2 M,~BAM,~B=OA((M,,M,),O)ED~~)(~), 

(2) KflA=O iff EM,,& M,~BAM,~B=OA((M,,M,),~)ED~~)(~), 

(3) U bW~e~~~~~1 1 K’ E L A K’ SL, K) = L x L 

(4) VM,,M, M,~M,=OA((M,,M,),O)ED~~)(K) 

+ ‘, (MI, M,), 1) $ D(~)(K). 

This definition is meant to describe the situation in w where elements of A are 

determined by Boolean polynomials with input information from B. In that case, 

we would naturally take D{e)CKj to be some set of possible inputs and results of a 

recursively determined polynomial. Since, on w, n *b(n) is recursive, this gives 

D CejCKj recursively. 

However, in the more general context where (Y may not be closed under 

powerset (or if it is, then PHQ(/~) . IS a O’-function), we cannot do this, and so 

need to limit our attention to recursively describable information. Another 

property of o that fails in general is Konig’s lemma, and hence the usual proof of 

Nerode’s theorem that 

A co_tt B iff se VX ({e}” is total A {e}” = xA) 

fails. In fact, we cannot even prove the left-to-right implication without additional 

assumptions. 

Definition 1.2. cx is .Z,,-y-admissible iff IX c y and there is no A < CY for which 

there exists a function f : A+ (Y cofinally in (Y, which is 2,‘. 

Hence “LU is admissible” means the same as “(Y is 2,-cu-admissible”. 

Proposition 1.3. Zf n 2 1 and LY is E,,+,-y-admissible, and A <a_tt B then there is 
an e such that 

(i) VX c w if X is 2’: then {e}” is total, 
(ii) {e}” is total, and {e}” = xA* where A* = {(K, 1) 1 K GA} U {(K, 0) 1 K fl 

A=0}. 

Proof. Let A d,+ B via e. Define e’ such that 

1 
0 

{e’}x(z, i) = ’ 

1‘ 

iffZlM,,M, ((M,,M,),i)~D~,)(,)~M,cxr\M~nx=0, 

iff 3M,, M2 M,cXr\M,nX=0 

A v(A,, A,> E G[D ~edV4 n A* # 0 ” Mz n 4 f 0)) 
otherwise. 
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It is clear that {e’}‘=A*, and {e’}B is total. Also, if X G (Y is E,Y, then we 
consider the function which searches through nl[D le)(Kj] for a witness that either 
M,$Xor M,flX#O is A,Y+l. 

Since cy is .Z”+,-y- admissible, this function has bounded range. 
Now (YS p,’ is a y-cardinal, and hence the range of the function intersected 

with X is in L,, and likewise the range of the function intersected with (Y\X is in 
L OZ. 

This gives us witnesses to the case {e’}x(z, i) = 1. 0 

Corollary 1.4. Let LY be an L-cardinal, and A col_ft B. Then there is an e such that 
(1) VX {e}” is total, 
(2) {e}” =A*. Cl 

The converse of this theorem appears to require some degree of a- 
compactness, although how much is unclear. 

There are several reducibilities which are weaker than cu-tt. We first introduce 
the ‘most’ natural one of these, which is very readily seen to be a weakening of 
the tt-condition. 

Definition 1.5. Let A, B be subsets of L,. Then A sa_wtt B (A is cY-weakly-truth- 
table reducible to B) iff 3e VK E L, 

(1) KcA iff 3A4,,M2 M,~Br\M,nB=O 

* {Ml, MJ c D(Q)(K) A L, k @,,(K, MI, Mz), 

(2) KnA=O iff 3M,,M, M,GBr\M,nB=O 

* {MI, M,) G D(em A L, b @JK, MI 3 Mz) 

where e = (eo, el, ez) and Ge,, denotes the e&h ZT-formula. 

D {eol(W is meant to represent not only the fact that computations have 
recursive use, but also that we can collect together all the information that a 
computation might possibly use quickly (i.e., recursively). 

We can further weaken this definition by only requiring that the use function be 
bounded, but the bounding function may be arbitrarily complex. 

Definition 1.6. Let A, B be subsets of L,. Then A G,_,,,~~ B (A is a-mildly-truth- 
table reducible to B) iff 3e = (eo, e,, e2) VK E L, 

(1) KcA iff 3M,,M, M,sBAM,nB=k? 

A MI 7 Mz 5 L{eo}(K) A L, I= @e,W, MI, MA 

(2) KnA=0 iff 3M,, M2 M,sBhM,nB=O 

A MI, Mz c L{eo}(K) A L, k @c&K, MI, Mz). 
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We remark that for certain B it is to have {q,} be a trivial and 
to have 

Ac,_,,B iff AS, B. 

For instance if pT< cx and B E pp just take {e,,}(K) = pp. 

However, if B is regular, then the function {eO}(K) ‘must’ be unbounded in LY 
(if A is non-recursive), and in fact we will only use this reduction in this context. 
This also means that this reducibility does not extend to inadmissible ordinals, 
whereas sa_wtt is suitable for such extension. 

An intermediate reducibility s__+ is of some interest-the improvement is to 
locally bound computations rather than globally as in the case of =&_-wtt. 

Definition 1.7. Let A, B be subsets of L,. Then A ccr_ti B iff 3e VK E L, 

(1) KGA iff 3z,M,,M, M,~BAM,~B=~ 

A MI > Mz c_ Lc~,,~(K) A L, i= @e,(z, K, M,, MI) 

(2) KflA=O iff 3z,M,,M, M,cBr\M,nB=O 

,-, MI, M2 E J&,,)(K) A L I= @c&b K, MI, M2) 

(3) 3aVM,, M2e L (e)(~) (M, n Mz = 0 A 38 L, k 32 @q(z, K, MI, M2)) 

3 MI, M2 E L, A L, I= 32 @e,,(z, K, M, , M2) 

where Qe, is the e,th A,-formula. 

That this, and the other reducibilities, are transitive, is an easy exercise for the 
reader. There are several connections between reducibilities which are immedi- 

ately apparent. 

Proposition 1.8. Let A, B be subsets of L,. Then 

Proof. (1) Let A 6n_tt B via e. Define e’ = (e& el, e;) so that 

D(e,j}(~) = {MI 1 3 E 2 3M ((MI, M), i> E &,,,,I 

U I& ) 3 E 2 3M ((M, M,), i> e D,,,,,,} 

and 
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To show A sn+B, take e’ = (e& el, e;) where e;, e; are as above. eh is such 

that {e’}(K) = L-rk(D 1e)CKj) and then u = L-rk(D,,,,,,) + 1 is an appropriate 

bound. 

(2) Given A ~LY_Wtt B via e = (e,,, el, e2) to get A Cor_mtt B take {e;}(K) = L- 

rk(D,,& and e’ = (4, cl, 4. 
(3) Omit (5. 0 

Under certain additional conditions, there are other connections between these 

reducibilities. 

Proposition 1.9. Let L, k Power Set Axiom, and A c~_,,,~~ B. Then A <a.+ B. 

Proof. First suppose a > o. It suffices to find a suitable bound o for all 

computations. Let A sa_mtt B via e, and K E L,, and let p be least such that 

K,eELB. 

Let K > /3 be the next a-cardinal greater than p and let y be the least Z,-stable 

ordinal strictly greater than K. Now, noting the e, K E L, and L, -cl L,, we have 

{e,}(K) EL,, hence b({eo}(K)) EL,, and is an element of LKCI. 

Thus if L, b 32 (@&, K, M, M2) v @&z, K, Ml, &)) and Ml, M2 E L~eo~~K~ 
thenM,,M,EL,,, KEL,,, eEL,,andso 

L, b 3z (R,(z, K Ml, Mz) v @e,(z, K, M,, M,)). 

This means y is a suitable bound. 

If (Y = o, then since o is closed under powerset, and p;” = o, 

SEf{(W, K) 1 32 (@e,(z, K, W, K) v @&, K, M,, M,)) ,+, (4 n & = 0)) 

is an a-finite subset of ,$${e}(K)‘). 

By admissibility, the function f : S + (Y given by 

f(( Mi, M,)) = the least witness z to (M,, M,) E S 

has bounded range, say n is a bound. Then n is the bound required by our 

definition. 0 

Proposition 1.10. Let pp = CY, and A G~_,,,~~ B. Then A sm.+ B. 

Proof. Suppose A s,_,~~ B via e. Define e’ = (e& e;, e;) such that {e;}(K) = L- 

rk(D{,,,,,,) and for i = 1, 2 

@e,:(z, K, W, M,) - ((MI, W) ED IeolcKj) v (z is a witness to ae,(K, Ml, MJ). 

To obtain the required bound a, note that ID~,OnKjllPm < pp, and so the set 

Sgf {(W, M,) 1 32 (@e;(z, K, MI> &I v @e;(z, K, MI, iW) A WI n Mz = 0)) 

is a _Z,-subset of a small set, and so is a-finite. Let f : S + (Y be defined by 

f((M,, 44,)) = least witness z to (M,, M2) E S. 
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Then, by admissibility, f has range bounded by L, say. cr is the required 

bound. q 

The converse of this theorem fails, as we will later show (see Section 4). 

The relationship between ca_wtt and cm-G when p: < a is unclear, since if 

D ~eo~~K~ is a large set, the ‘time’ taken to find the appropriate witness could well 

be unbounded in (Y. 

However, this proof does suggest a different restraint which we might impose 

upon reducibilities, and that is bounding the size of the set DcelcKjr i.e., if K is 

either an a-cardinal or CY, and r either tt or a-wtt, then we could define <K_T as 

being the same as 6, with the additional requirement that IDlejcKjl”‘a< K. 

The following facts are now immediate. 

(1) K~ -=L ~~ and A CK,_r B j A CKZ.T B 

(2) (A%,B + A%,B) + (A==,.,,B 3 Ac,.,,B) 

(3) A+,_,ttB =, As-,.;B by the same proof as the last proposition. 

We will not continue to investigate these reducibilities here. 

A further alternative is relativizing the reducibilities. This is perhaps most 

interesting for s+. 

Definition 1.11. Let A, B, D 5 L,. We say that A s~+_~ B iff 

(1) A cLy_\^v B, 
(2) the function KH u is total, and D-recursive. 

This notion is closely related to the reducibilities so far introduced as the 

following propositions show. 

Proposition 1.12. Let D, se D2 and A 4(Y_G_D, B. Then A s~_+_~, B. 

Proof. Immediate. q 

As a consequence of this proposition we will write A sa_\t_d B where d is an 

a-T-degree. 

Proposition 1.13. Let A c,_+ B. Then A =s~_+~, B. 

Proof. Let A c a_G B via e, and let f : L,+ (Y be the total function bounding 

computations. It suffices to show that some such f’ +,,= 0’. 

Notice that (J is a bound on computations such that 

KEL, iff VW, MZ E LIP) 32 (@&, K MI, M,) * @e,k K, MI> Mz)) 

+ 32 E Lo (@&, K, M,, &I * @& K, MI, M2)). 
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This is a &-relation R, given more explicitly by 

(K,, a) E R iff 3x, y, m ({eo}(K1) =x A y = Lx A m = L, 

A VM,, Mz G Y Vz (-e,(z, K M,, W A -e&, K W, &)I 

v 32 l m (@&, K, W, &I v @&, K, W, W)). 

By uniformization there is a total &function f’ : L,+ a such that for all K 

(K, f’(K)) E R. S ince f’ is total, it is in fact AZ, and so f’ +,,O’. 0 

Proposition 1.14. A Cau-tt B iff A s~_+_~ B. 

Proof. Let A s*_,~ B via e. Define 

DceVj(Kj = {L I 3M, i E 2 ((L W, i> E DcelcKj or ((M, L), i> E &)(K)), 

f(K) = L-rW+d and 

@&, K MI, &) iff ((Ml, S), 0) E DMK)~ 

@&, K Ml, &) iff ((Ml, Mz), 1) E DI~)uc). 

Then f(K) is the desired bound, and f is Al, hence fcwa 0. This gives A Sa-~_O B. 

Now let A s a_8_0 B via e, and f : L, + cr be the recursive bounding function. 
Then define e’ by 

((MI, MA 0) e DW)(K) e MI, M2 E D@“}(K) 

and LfcKj k 32 @&, K, W, M2), 

((Ml, M2), 1) E D@‘)(K) = Ml, 442 E D{e”}(K) 

and LfcKj b 3.~ @e&, K, Ml, M2)- 

This provides an cu-tt reduction. 0 

For the readers’ information, we note that if we relax the requirement that the 
bounding function be total, then 

A Sn-wtt B j A =%r B (C-r is the ZF-version) 

and 

A=S w_mt, B 3 A s-r B. 

With all of these reducibilities, it is natural to ask a reducibility version of 
Post’s Problem, i.e. are there 2’,-sets M, N such that 

(%;_o) # (=%+M) # (%-;-or) 
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and 

(5-J f (%v-r) # (5-J. 

This problem will be left to the interested reader. 

The next theorem is a technical result showing that we need only consider 

subsets of (Y rather than the apparently more general case of subsets of L,. 

Theorem 1.15. Let A E L,. Then there is a set B G cx such that A and B are 
many-one equivalent. Furthermore, if A = W, is wre, then the function f such that 
B = WrC,, is total recursive. 

Proof. There is a parameter free, total Xi-function h : L, * a. Let B = h[A]. 0 

It remains to observe a connection between 4,_, and ca_tt, 

Proposition 1.16. A So_,,, B + A <a_tt B. 

Proof. Let A S,.,,, B via h, a total recursive function, with index e. Then define e’ 

by 

&WC)= WWI, 0>> I>> ((6 h[Kl)> 0)). 

This gives the required reduction. 0 

As a consequence of the theorem, we may assume that all sets under 

consideration are subsets of the ordinals. The next question to address is that of 

complete sets. 

Theorem 1.17. K ‘!Ff { (x, y ) ( x E WY} is an a-tt complete re set, i.e., if A is Ly-re, 

then A =Sa_t, K. 

Proof. Let A = W, be o-re. Then, we have 

MGA iff Mx{e}sK 
and 

MnA=O iff Mx{e}flK=fi 

So define e’ so that 

Dw)(M) = {((M x {e>, 0)) I>, ((0, M x {e>), 0)). 

This gives us an o-tt reduction procedure. q 

Some notation: Let k denote the canonical subset of (Y which is a-m- 

equivalent to K. 

If gives us the top of the re degrees for any of our reducibilities. The next 

result is that the A,-sets give us the bottom of the re degrees. 
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Theorem 1.18. Let A be A:, and B be any subset of (Y. Then A sm_tt B. 

Proof. Let A be any AT subset of L,. Define e’ so that 

1 

{((0,0>, I>> if KEA, 

D (e’)(K) = {((0,0),0)} ifKflA=0, 
0 otherwise. 

Since A is A,“, and (Y is admissible, A* is also A:, and so {e’} is a well-defined 

total recursive function such that A sa_tt B via e’. 0 

The last of the basic facts about the use of degrees is that the usual join 

operation works. 

Theorem 1.19. Let B, C be subsets of L,. Then B cor_tt B @ C = (B x (0)) U 

cc x {l)). 

Proof. This is clear as B <my-m B @ C. 0 

Associated with any reduction procedure A sol_ B we have a pointwise 

functional, which we will denote by &):, or just &‘, when r is given by the context. 

By way of example, we show how 6:” is defined: 

1 

1 iff 3M,,M, M,cBr\M,fIB=O 

* MI> M2 E D,,,,,,,,, A @e,,(b>, W, M2), 

&r”(B;x)= 0 iff 3M,,M, M,GBAM,~B=O 

,+, MI, M2 E D,,,,,,,,, A @c&x>, Ml, M2), 

T otherwise. 

Associated with this is its approximation at stage u, where we use {e,},({x}) 

and L, k 4jepe, or L, k Qee,. 

Also associated with &), is its use function, defined in the usual way, and 

usually denoted by @,, e.g., for ar-wtt the use function Ge for &‘, is: 

#e(x) = U D,e,,,,x,,. 
In the special case that A ca_tt B via e we will also use the notation B k,x E A to 

mean @(B; x) = 1, and B k,x $ A to mean &y(B; x) = 0. 

2. Regularity 

A fundamental property of subsets of CY that is technically important in most 

arguments involving a-degrees (for se) is regularity. We recall the definition. 

Definition 2.1. A c L, is regular iff for all K E L, K n A E L,. 
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For <a the Sack’s regular sets theorem guarantees that every a-re degree 
contains an o-re regular set. However, this theorem fails for the stronger 
reducibilities we are considering, as the following theorem shows. 

Theorem 2.2. Let A s n_mtt B and let B be regular. Then A is also regular. 

Proof. Let A EL,, and say K E L,, and let A s~_,,,,~ B via e. We wish to show 
that A n K E L,. Let t = U {{e}(x) 1 x E K}. 

Since {e} is a total E,-function, and K E L,, we know that t exists as an 
element of L,. Also, as B is regular, we get B rl L, E L,. 

Also, for each x E K let 

A (LB k @,,,({x}, MI, MJ v Ge,,({x}, MI, MJ with witness z)). 

Notice that o is total on K, since every element in K is either in or out of A. 

Also, o is a ZC,-function, hence rng u is bounded in (Y, by y say. 
Now we obtain 

xEKnA iff L,k(3M,,M, M,c(BfIL,)r\M,n(BflL,)=O 

A MI, M2 G L,,,,,,,,, A @q(x, MI, M2)). 

Hence K nA E LB+1 c L,, as required. 0 

We notice that this proof does not require that A or B be &-re, only that B be 
regular, and furthermore it only requires a pointwise version of a-mtt re- 
ducibility, rather than the full reducibility. 

It is an immediate consequence of this theorem that every cu-mtt degree is 
completely regular or completely irregular, and hence the same is true for the 
stronger reducibilities we have defined. 

Corollary 2.3. Let py< LX. Then there are ‘natural’ intermediate cu-qtt-degrees. 

Proof. Let K = {(x, y) 1 x E WY}, and let T=, K be regular and a-re. We claim 
T is the desired set. 

(i) T<,,,K by Theorem 2.2. 

(ii) l(T?,.,, K) since T is regular, but if A, = W, is a Z,-mastercode, then 
AI G p? is not regular and AI x {a} s K. Therefore K cannot be regular. 

(iii) ~(0 saa-ft T) since if 0~=~_~~ T then we get O>a_tt T=,K whence 02,K an 
absurdity. 

Hence 0 <C_mtt T <a_mtt K. 0 
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In light of this corollary, it is natural to ask if there is a greatest cu-mtt regular 

a-re degree. This question is answered negatively by the following theorem. 

Theorem 2.4. Let pp< (Y, and let D ca_mtt k, and suppose also that D is Ly-re and 

regular. Then there is a C such that D <a_tt C, D <a_m,t C and C is a-re and 
regular. 

Proof. We construct C to satisfy the requirements 

R,: l(C G,_,~~ D via e) 

by finding arbitrarily large elements of & to put into C to satisfy these 

requirements. By restraining C we ensure that it is regular. Then D @ C provides 

the required set of higher degree. 

Before continuing we need to verify that &? is sufficiently non-regular. 

Definition 2.5. A E L, is strongly irregular iff V6, y 37’ 2 y + 6 [y, y’] II A is 

irregular. 

We note that not every irregular set is strongly irregular, since, for instance, 

any Z,-mastercode is irregular, but, since it is bounded, it cannot be strongly 

irregular. We shall call such sets weakly irregular. 

Lemma 2.6. g is strongly irregular. 

Proof. Let AI = W, be a Z:,-mastercode, and y E (Y be any ordinal. Let A’ = 

{y + 6 ) 6 E W,} = Wecvj. Then Wecvj c [y, y + p1] and is irregular. 

Since Wecuj x {e(y)} cK, we obtain the desired result, since m-reductions 

preserve the property of strong irregularity. q 

Blocking Lemma 2.7. Let K;< p: be the &-cofinality of LY. Then there is a 

family ( B6 1 6 < K:) such that 

(1) v & = L,, 

(2) 6,< 82 + B~,sB~~, 

(3) Pal”< PP. 

Proof. Let q: K~-,P~ be a total, z2, cofinal function, and f : (Y-+ p1 be a l-l, 

JZr, total function. Note that q exists since the Z,“cofinality of p1 = K~. Then 

define 

B, = {e If(e)<q(Y)). 0 
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Since (B, 1 Y<K*) is &, we require a recursive approximation to it, for which 

purpose we shall use 

B Ys- = {e IL&fW<h4~. 

Note that 

(2) Vy3rVa~zV6sy B6,0=B6. 
We now define the priority function as 

y(e, s) dzf least y such that e E B,,,. 

Now define the length of agreement function by 

I(e, o) = sup+ I &?A&) r x = ccl 1 x>. 

The restraint function r(e, a) will be defined inside the construction, and the 

block-restraint functions are given by 

and 

?(Y, 4 = sup{r(e, 4 ) e E By,2 

R(Y, 4 = sup{f(y’, o) ( y’ < Y>. 

The construction at stage o + 1 

For each e E L,, proceed as follows: 

If o is the first stage at which I(e, a) has attained its current value and there is a 

z < I(e, a) such that 

(i) z E&, 

(ii) z >R(y(e, o), 4, 

then put the least such z into CO+l, and set 

r(e, (7 + 1) = max{r(e, a), 2 + 1, e}. 

Otherwise do nothing. 

If u is a limit stage, let 

C,=U{Cz I z<o> and r(e, a) = U {r(e, t) 1 z < a}. 

In order to see that the construction succeeds, we show by induction that 

(i) C is regular; 

(ii) Ve I(e, a) converges to a value I(e) < cu, and hence R, is satisfied for all e; 

(iii) Vy R( y, a) converges to a value Z?(y). 

We illustrate the proof for e E BO, and indicate the changes for arbitrary By. 
We wish to show f(e, a) converges to a limit. Suppose not. Then 1(e, a) is 

unbounded in (Y. Let y be least such that 2 fl y 4 L,, and let u be a stage such 
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that 

(9 Vb s Y 44W = A(@, 
(ii) if y’ = IJ ~#IJ y + l] then D n y’ E D,, 

(iii) Vt 3 o&. = BO. 

Let a, 3 (J be a stage such that I(e, a,) > y, and I(e, a,) is taking this value for 

the first time, and there is a z E I&, with z < y. Then at stage a, we put some 

z < y into C. Now the computation c~~,~~,(D,,J 1 y is permanent by (ii) above, and 

so we have created a permanent disagreement below y. 

Furthermore by (ii), any later z to go into C below y for sake of R, has to be 

smaller, since the length of agreement is smaller, and so only finitely many more 

z go into C below y for the sake of R,. Notice also that for t 3 a,, 

r(e, r) = r(e, oO). 

Hence r(e, a) and r(e, a) both go to a limit. 

Now, let 

Sodzf {e E B0 1 3 a stage o’ 2 u with f(e, a’) > y and 1(e, a’) takes 

this value for the first time and 3z E &, with z < y}. 

S,, is a Z,-subset of BO, and since ]BO]“< py, S, is a-finite. 

The function e ++ “the least witness u’ to e E S,” is total on S,, and hence is 

bounded in L, by admissibility. Let r be an upper bound, then I?(O) = R(0, z + 1) 

and so R(0, -) goes to a limit. 

Now C n I?(O) EL,, as follows: Let /3 be such that p 3 r and D n 
(U ~e[fiCN) E D,. C onsider I? rl (C\C,) n R(O). By the reasoning above, this 

has Zy-cardinality bounded by the .Y:,“-cardinality of B, x w, since after stage p 

only permanent additions for sake of e E B, are made, and only finitely many of 

these. But JB,, x wI’~~ < pr, hence the set is a-finite, and we have the result. 

For the general case, suppose e E B,, and we have R(6) bounded for 

6 < y < K~. Let o be a stage such that 

(i) V6< yVt2aB,,.=B6, 
(ii) V6 < y Vr 2 a&6) = R(6, z). 

We will assume that y = y’ + 1. Let A be such that I? n [R( y’), A] is irregular, 

and let o’ 2 o be a stage such that 

(i) G,,,, 1 A = Ge 1 A, 
(ii) if A’ = U rng(4e 1 I.) then D n A’ c D,.. 

The remainder of the argument is exactly the same as the B0 case, and so we 

obtain Ve E B, R, is satisfied, and C n I?(y) E L,. 
Notice also that the definition of Z? is AZ-since it is total and .&, hence if y is 

a limit, then I?(y) is bounded, since y < K;. 

The argument that C n fi( y) E L, is similar to the successor case. 

This proves the theorem. 0 (Theorem 2.4) 
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It is an interesting question as to whether the above theorem holds below every 

irregular cu-mtt degree. I.e., is it the case that if A is irregular with Dd,_,,A 
then there is a C a-re and regular with D G,_,~~ Cc,_,,,A? 

We remark that this theorem actually obtains a C such that D <a_tt C, and 

hence shows that for no given reducibility there is a maximum regular a-re 

degree. 

The problem caused by the failure of the regular sets theorem is quite severe 

but will not be dealt with any further in this paper, and so we shall continue by 

generalizing theorems from w-recursion theory to a-recursion theory only for 

regular sets, and leave open, for now, the extensions to irregular sets. 

The first, and possibly simplest such example is the following theorem, due to 

Jockusch when (Y = w, which shows that even when we have a regular degree, we 

need not have a simple set in that degree. 

Theorem 2.8. There is a regular a-re non-recursive set A whose a-tt degree 
contains no simple set. 

Proof. We wish to construct a set A which is m-re and non-recursive, and 

auxiliary sets V, to satisfy the requirements 

Q,: A # W, to make A nonrecursive, 

R,: A =a_tt W, + V, is a-infinite and V, fl W, is a-finite 

The form in which we will use R, is 

R,: if A ca_tt W,,, via e, and W,,, ccu_tt A via e2 

then V, is m-infinite and V, fl W,,, is a-finite. 

We assign priorities to the R, by < La-order, and the priority of Q, immediately 

follows that of R,. 
Let h : (Y- (Y x LY be A?, and define, for p < LY 

Z, = {z 1 Iyh(z) = (P> Y)>. 

Then 

xeZ, e gygyh(y)= (y,y) A Y#P 

and so Z, is AT. Let 

Z,, = U+ Z, and Z,, = Uyza Z,. 
Z ark(ej will be used to provide witnesses for R,. 

At any stage a, having built A,, so far, and attacking requirement e we define 

4 = A, u Zr,+), and use AZ instead of A,. This will ensure that lower priority 

requirements do not interfere with our work for R,. 
Q, will be met by a Friedberg-Muchnik style argument-we will find the least 

element of Z zrk(ej rl W, and put it into A. 
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Two strategies are followed in attempting to satisfy R,. The first is to tI;y to 
destroy W,, +_tt A via e2 and the second is to try and destroy A C_ W,, via e,. 

The first strategy has us build the auxiliary set V,, such that 

x E v,,, @ SM,, M2 W c&L A M2 nA,+ = 0 A (MI, M2, 1) E ~,,,,~(,x,). 

If x E V,,, fl W,,, because of a pair (Ml, M2) then put Ml fl .&k(e) into A,+1 (and 
say that R, received attention under the first strategy). Give no further attention 
to R, unless some higher priority requirement later receives attention. If this 
never occurs then A and A,+ agree on Ml, and M2 (they agree on Ml since M, is 
put into A,+l, and they agree on M2, as no lower priority requirement puts 
anything into M2, and no higher priority requirement ever acts again). Thus we 
have 

3M1, 442 W GA A M2nA =0 A (MI, M2, 1) ED,,,,,,,,) AX E We, 

which gives us W,, &t, A via e2. 
Now suppose that R, never receives attention under the first strategy after 

some stage a,, and no higher priority requirement receives attention either. 
We now consider the second strategy. R, will receive attention at most twice 

under this strategy, so there will be a stage u1 2 a, so that A,, fl Zsrk+) = A n 
Z srk(e). 

For o 2 o1 no new elements of V, will be in W,,, and so V, fl W,, will be 
a-finite. Thus, if we ensure that V, is a-infinite, then R, will be satisfied. 

So suppose V, is a-finite, and W,, sor_ttA via e2, then the second strategy will 
ensure that A yk,,, W,, via e,. 

Let 

f’,,,(i)~f{~13K3M1,M2 M,~A,+r\M,flA,+=@/\zEK 

A (M,, M2, i> ED (ez)o(K)} for i = 0 or 1. 

We will say that x is an eligible witness for R, at stage (T iff 

(i) X e Zrk(ej \A,, 
(ii) 3ml, m2 3 ml E p,,,(O) A m2 n p&O) = 0 A hi, m2, i> E ~~,,~o~~,~~ 

A (m2 E P,,,(l) via information in LX). 

At stage a, if x is an eligible witness for R,, we enumerate all elements of 
Z >&@_) which are used positively in showing ml E P,,_(O) and m2 E P,,,(l), into A. 

Then do nothing for R, until we come to a stage r > o such that ml c W,,,. and 

=I, K2 K1 c We,,. A K2 n We,,. = 0 A (K,, K2, 1) E D(e,,,,((x)). 

At the first such stage enumerate x into A, and give no further attention to R, 
unless a higher priority requirement receives attention. 

Lemma 2.9. lim, (min Z,) = by. 
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Proof. The function f(y) = min(Z,)isA,asf(y)=ziffzeZy~Vy<zy$Zyis 
clearly total and zr. Hence, for any y < CK, f[yJ is bounded in (Y. 

Claim. rng(f) is AI. 

2 E w(f) iff 3yf(y) = z, 

z$rng(f) iff 3y,xzeZ,A(xEZ,r\x<z). 

Now suppose rng(f) is bounded in a: Then by the claim rng(f) is a-finite, and 
so we have a l-l, total, A,-function from LY to an a-finite set X. By 
zr-uniformization f-’ is defined and 2, on X, and is also onto (as f is l-l). But, 
since (Y is admissible, f -‘[Xl is bounded in (Y, and so we have a contradiction. 
Hence rng(f) is unbounded in LY. 

Furthermore Vy 36 V6’ 3 Sf(S’) > y. If not, say y,, is a counterexample. Then 
by the claim rng(f) fl yO is a-finite, and by the above argument f 1 (rng(f) n y,,) 
is bounded in (Y, providing a contradiction. 0 

Lemma 2.10. A is regular. 

Proof. Let j3 < (Y. Let y be such that Vy’ 2 y min(Z,,) > p. Such a y exists by 
Lemma 2.9. Each R, acts at most a-finitely often, and so let o be a stage by 
which all the Ri with rk(i) < y’ have finished acting. 

Then all higher priority requirements only put in elements from Zc, for y’ > y, 
and so only put in elements above /I. Hence A n/3 = A, n /3 E L,. 0 

Lemma 2.11. (i) {y 1 A rl Z, # 0} is unbounded in LY. 

(ii) {y ) A rl Z,, # 0} is unbounded in cx 

Proof. (i) Let Wcy = Z,,. Then requirement Q, will be met since it contains 
arbitrarily large elements, and higher priority requirements eventually stop 
acting. This means that for all y, A n Z,, # 0. 

(ii) By the construction A n Z, is a-finite for all y. But Z, is not a-finite, and 
so Z,\A is a-finite. Cl 

Corollary 2.12. A and A are not cu-finite. q 

Lemma 2.13. For all e, if {y ) W, n Z,} is unbounded in a; then W, f ii. 

Proof. Given any stage, there is always a later one at which we will be able to 
satisfy Qe. This will be done. 0 

Notice that acting on Q, has no effect on higher priority requirements. 
We now need to show that R, is satisfied. Suppose that R, is not satisfied, and 

so we have A sor_tt W,, via e, and W,, sa+, A via e, and V, is n-finite. We want to 
show that there is an abundance of eligible witnesses. 
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We note that P,,,( 1) = V,,,, and that P&O) is a u-stage approximation to W,, 

(since We, sa_ttA via eJ. 
Also A is non-recursive, and so neither is W,, and, in particular, W,, is not 

a-finite. Because ZrkCe) Cl A is o-finite, and ZrkCe) is not a-finite and as A ca_tt W,, 

via e,, we will have many x’s in ZrkCe) \A which bound V, such that 

+rl, m2 ml E K, A m2 c-3 W,, = 0 A (ml, m2, 1) E ~~,,~~~,~~. (*I 

For each such pair ml, m2 we will eventually find a, My, i@, M:, M: such 
that, for i = 0, 1: 

M’, G A II A,+ A M: f-~ A = M$ n A,+ = 0 A (M;, M;, i) E D+_z~o~m;+,~. (**) 

Let o be a stage such that there is an x as above for which m, E W,,,, and 

{ei>&])l (and h ence (*) occurs), and at which (**) occurs. Then, at this stage 
ml G P&O) and m2 G P,,,(l) (by (**)). As P,,,(l) E V, which is a-finite, as x is a 
bound for V,, then we have m2 E P,,,(l) via information in L,. Thus x is an 
eligible witness that remains eligible at all later stages and so R, will receive 
attention at some stage under the second strategy. 

Now, x $A and so, as A 6a_tt We, via e,, we must come to a stage t as 
described above after which no elements conflicting with m, c W,, via e2 ever 
enter A, since we eventually get true computations. At the second step of this 
strategy, which must come, as we have ‘correct’ information, we put x into A. It 
remains to verify that the ml, m2 used by this x are true information about W,,. 

By definition of t, ml G We,. -since we put all information into A required by 
e2 to verify this fact. Since we also put enough information into A to verify that 
m2 E P_(l) and x is well above this, we will obtain m2 n W,, = 0 (since A sa_tt We, 

via e2 and A,+1 is correct on the use of the computation showing m2 fl W,, = 0). 
Hence, we get 

ml c W,, A m2 O W,, = 0 A (ml, m2, 1) E D,e,jc,xjj, 

and so We, +(Y_tt A via e,, a contradiction. El (Theorem 2.8) 

3. a-tt degrees 

As an application of finite injury techniques to cu-tt degrees, we include the 
following theorem relating cy-m degrees, and a-tt degrees. Our presentation 
follows Downey [3]. We note that further work of Downey has shown that these 
singular degrees are in fact dense, but we shall not tackle this question for 
a-recursion theory within this paper. 

Theorem 3.1. Let LY be Z,-admissible. Then there is an a+re regular non-recursive 

set A such that for all a-re sets B, if B E,_,~A, then B =*_,,,A. 
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[Remark. The regularity of A is forced upon us by the method by which we 
construct A. It is therefore an interesting question as to whether such an A can be 
irregular, and incomplete.] 

Proof. As usual we build A by stages, A, will denote the construction at the end 
of stage o. Also, we use the Blocking Lemma to give us an appropriate blocking 
family ( B6 1 6 < K;) and a A,-approximating familjr (B,,, ( 6 < K;, u < a). 

The requirements we have to meet are: 

P,: A#Ww,, 

N,: As,.~~ V,, via e,, and Veo~,.ttA via ez + V,,=,A 

(where V,, is an Ly-re set, in some previously fixed listing of the Ly-re sets). 

P, is met by finding x E W, greater than the current e-restraint, at a stage (I 
where W,,,II A,, = 0. We then put x in A, and P, is met once and for all. 

Each block has a restraint associated with it: 

r(y, a) = restraint for B,,,. 

Matters will be arranged as to ensure lim, r(y, a) = i(y) exists for all y. 
We will build A s (Y, and assume every W, and V, is a subset of CY. Our strategy 

for N, will be to try and falsify the antecedent of the implication if at all possible, 
and if it’s not possible the reason for this will provide the desired m-reductions. 
For more discussion of this, see Downey [3]. 

A will be built by ‘dumping’, i.e., at stage 0 we let {u~,~ 1 /I < A, s a} 

enumerate a\A, monotonically. Then, if we put up.0 into A,,,, we will also put 
a y,. into A,+1 for all y such that p s y < A,. 

Claim. If A is built by dumping, then A is regular. 

Indeed, if /? E (Y is any ordinal, we wish to show that there is a stage u with 
A fI j3 E A,, from which we get that A fl j3 = A, n p E L,. Let u0 = fi, and given 
uj, define, if possible, Ui+l to be the least stage z > uj such that (A, \A,) n /3 # 0, 
i.e., Ui+l is the next stage after ui at which an element below /3 enters A. Let xi+1 
be the least element of (A,+,\Ao,) n p. By the dumping property, we have 
X~+~ <xi, and so, by well-foundedness, there is a greatest k for which a, is 
defined. It is then apparent that A fl p = A,, n p. 

We now need to define our length of agreement functions. There will be 
auxiliary use functions which we also need to define, associated with each 
reduction: 

L(e, o) = sup@ ( VY <I ((Y E V,,,, A A, ke,y E V,,,) 

v (Y 4 V,,, A A,~,,Y $ V,,,,,))>, 

l/e(y) = max(L-rk(4)(c,}Jj L-rk(y) + I), 

Ke, 4 = sup{x ( VY <x ((V,,,,k,, Y E A A Y E A) 

v (V,,,,k,, Y $ A A Y 4 A)) A L(e, 4 > Y,(Y)}. 

1 is the A-controllable length of the agreement function. 
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Definition 3.2. We say N, requires attention via 6 at stage u + 1 iff 
(i) N, is currently unsatisfied, and e E B,,, 

(ii) /3 is the least ordinal such that ag,o> max{a,,,,,, lJ6<,,r(b, 0)) and one of 
options I or II hold: 

Option I: l(e, a) > aS,o and if we set At=A, U {as,G) p S 6 <A,} then the 
following sentence fails: 

3 sequence ((MT, MS), Y),,~,+-, 0) E L,+l such that for all y E l(e, a) 

(i) Vz E MT A! be2 z E V,,, and Vz E h4; A! kc2 z $ V,,,, 

(ii) Y EA! e ((MT, MY2), 1) E D{e,j(tyl) and 

Y $ At - ((M;, MS), 0) E D{e,)((y)), 

(iii) V,,, O E $J M?;. 

Notice that by making A,,, = A!, and setting the restraint to be as,,, then if 
this is never injured, and A 2 n_tt V,, via e2 and V,, 2 n_ttA via e, then 
An o=A~+~, and we now have a contradiction. Indeed for y < I(e, a) we have 
ye(y) < L(e, a) c u and hence there must be M,, M2 with 

(i) Ml G V,, A M2 rl V& = 0, 

(ii) (MI, M2) EL, and &,)({y}) E LO, 
(iii) ((MI, Md, i> E Dc~,)((~}) e y E A’ (where A” = A and A’ = A). 

Furthermore M,, M2 G ye( y ) < l(e, a) and so for all x E Ml A be, x E V,,, for all 
x E M2 A be2x $ V,,, and this is known below a, so is comprehended by L,. Thus 
in L, there is a sequence witnessing the truth of the sentence, which provides the 
contradiction. This, then, provides one way to destroy A =m_tt V,,. 

Option II: We have an (~~+i,~< f(e, a) such that if 

AL=AOU{a,.,,I y<y’SA,} for y=P, /3+1, 

P(e, o)efmax{y,(y) 1 y < l(e, 4>, 

J, ,ef {X 1 A!+’ ke2x E V,,} rl P(e, a), 

then there is a z such that 

(z $ At and J,,, Le, z E A) or (z E At and J,,, Le, z $ A). 

So, if option II obtains, we first set A,+1 = AC+‘, and set the restraint to as,O+l. 
If this is permanent and V,, G,_~~A via e,, e2 then we eventually get to a stage 

r where V,,. n P(e, a) = J,,,. At this stage we will be able to change A by 
adding aS, r = aS, O to A, and so obtain a permanent disagreement. 

The construction at stage u + 1 
Step 1. Find the least e such that N, requires attention. If none exists go to Step 

2, setting A,,, =A,. Otherwise, find the least /3 such that N, requires attention 
via /3. Then for all e’ > e cancel r(e’, a), and declare N,, to be unsatisfied. 
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If option I holds, set a,,, = AC, declare N, to be satisfied, and set 
r(e, u + 1) = aP,o 

If option I fails, but option II holds, set a,,, = A!+’ and set r(e, u + 1) = u~,~. 
Step 2. Find the least C such that W,,, fl a,,, = 0 and 

3x X E w,,, A x > u,~,,o AX>R(&, a)d~fsup{r(e’, t) I&&, tea}. 

Choose the least such X, and let y be such that x = a,,,. Let A,+1 = AY,. Cancel all 
r(e’, a) for e’ > C, and declare N,, to be unsatisfied. 

If there is no such e^, let A,+1 = a,,,, . 
By induction we will show that lim, r(e, a) exists for all e and lim, r(y, a) 

exists for all y < K2. 
Suppose we know this for y’ < y < K~. Let uO be a stage such that for all y’ < y 

and all ua a,, r(y’, a) = r(y’) is at its final value, and for y G y, B,,,,, = B,., and 
without loss of generality, for y’ < y, e E B,. + P, is satisfied. 

Now, let S = {e E B, 1 there exists a stage at which N, requires attention after 
stage uO}. This is a Z,-set, contained in B, and (B, ( m < pl. Hence S is a-finite. 

We can let S = S, U .!$ where 

S1 = {e E S ) N, receives attention because of option I}, 

S, = {e E S ( N, receives attention because of option II}. 

We now define a function f on S as follows: 

f (min S) = 
1 

least t > u,, at which Nmins receives attention if minSESi, 

second t > U, at which Nmins receives attention if min S l S,, 

f(e) = ( 
least r>lJf[{ e’ E S ) e’ < e}] at which N, receives attention ifee&, 

second z>LJf[{ e’ E S 1 e’ < e}] at which N, receives attention if e E S,. 

f is Z, and total on S, and so lJ rng f exists, call it ui. 
By stage ui, every N, (e E BY) has received attention for the last time, and so 

we have r(y, u,) = r(y) and in fact for all e E B,, r(e, a,) = r(e). 
Now, let 

T = {e E B, 1 P, requires and receives attention after stage al}. 

Then T is a X,-subset of B,, and so is &mite, and the function g : T + a given by 

g(e) = least stage u > ul at which P, receives attention 

is Zi and total on T. Therefore lJ rng(g) = a2 exists below cr. By stage a2 all 
requirements in B, are met forever. 

The fact that the function y I+ r( y) is A2 enables us to get past limit points in 

K2. 

The remainder of the argument follows Downey [2] and will be 
omitted. Cl (Theorem 3.1) 
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This proof is not especially difficult, and we expect that the result of Downey 
[3] showing that the re T-degrees containing such tt-degrees are in fact dense will 
also succeed with minimal fuss. However this is beyond the scope of the current 
paper. 

4. a-+ degrees 

In this section we will generalize some results on w-wtt degrees to (Y-G? degrees. 
It is unclear whether these generalizations extend to a-wtt degrees for arbitrary 
a, since the results use permitting. 

In Section 2 we showed that if pr < LY then there are many a-w degrees. 
However that theorem says nothing about the case when p: = a nor about the 
‘spread’ of the cy-\ii degrees, which this next theorem deals with, for the regular 
degrees. 

Theorem 4.1. Let (Y be admissible, and let D, C be regular wre sets, such that 

D <a C. Then there are regular a-re sets AI, A2 such that 

D <n-tt Al, AZ <n-ti C, 

and 

AIUA2=C~A1nA2=fl. 

[Note. This proof actually needs D <= C in general, but in special cases D <n_+ C 

will suffice. This will be discussed after the proof.] 

Proof. We construct AI, A2 to satisfy requirements 

R,,i: i(A, G3 D an_+, C via e). 

A, and A2 will be sa_\; C from the construction. These requirements will be met 
by a finite injury, preservation of length of agreement strategy. 

We recall from Shore [9], the existence of a blocking family (B, 1 y < K?) and 
an approximating family (B,,, ) y < K?, (J < a) with IB, llVD < of. 

Associated with e = (e,,, el, e2) we will have an index & such that for all y, 

P](Y) = {e0>({y))7 and we will define subblocks BC z B, to be the set of all 
e E B, such that {e^} is increasing. This family also has an approximating family 
BG,o which is defined so that 

e e BY,,\&, e e e BY,, A 32 s o 3~1, ~2 yl sy2 A {~),(yd > {C),(YZ). 

Clearly, given an e = (e,, er, e2) there is an associated e’ = (eh, e;, ei) where 
e; = e,, e; = e2 and {e;}(K) = lJ {D{eoj(Lj 1 L cL, K} for which {C’} is increasing 
and A s=_+ B via e +A G=_+ B via e’. Hence, destroying all of these computa- 
tions suffices for our argument. 

We denote the eth cr-w reduction procedure applied to a set B by &(e, B). 
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We now define the length of agreement and restraint functions: 

&(e, a) = sup{x ( &(e, Ai,, G3 D,) r x = C, 1 x} 

and 

&( Y* o) = s”p{l( e,a)jeeBY,,} fori=1,2. 

Restraint is given by: 

and 

ri(Y, 0) = U {C)o[h(ep a)] 

MY, o) = U {rice, a) I e e BC,,] 

= lJ {&},[fi(y, a)] for i = 1, 2. 

Without loss of generality, we will assume that for all u, lCO+l \ C,,l G 1. 
We are now ready to describe the construction at stage u + 1: 
Let x E Co+i \C, and let YE K? be least such that 3e E Bb,U x < r,(e, a) or 

x < q(e, a). If x < ri(e, a) put x into A, and set r2(e, (J + 1) = max{x, r*(e, a)}. 
Otherwise put x into Al and set r,(e, u + 1) = max{x, r,(e, a)}. 

At stage k Do nothing. 
It is easy to see from this construction that A, U A2 = C and Al fl A2 = 0. We 

now wish to show that 

(i) lim Ri(Y, U) exists for all Y < KF, 
CJ 

(ii) lim ii(y, a) exists for all Y < KF. 
0 

To prove this we require the following lemma. 

Lemma 4.2. For all y < K? and all x, {{k?}(y) 1 y < x and e E BC} is bounded in CY. 

Proof. We recall that there is a total l-l function f : CY+ pp which is Af’, and a 
J$’ cofinal function q : K$‘+ pp used in defining B,, and that f[B,] is bounded in 

P?, by q(y). 
Since {e} is increasing, it suffices to show that X = {{C}(x) ) e E BC} is bounded 

in a. But if e E B;, then {C}(x) is an element of the Zf-hull of q(y) U {(x, p)} 

where p is the parameter for J But this hull is already bounded in (Y, hence X is 
bounded in (Y. Cl 

By this lemma, and as Ri(Y, u) = lJ { {C}[fi( Y, a)] 1 e E BC}, in order to prove 
(i) and (ii), it suffices to prove (ii). 

Suppose i,(y, U) is unbounded in a, and Y = 6 + 1. Let Z?,(6) = lim,R,(6, a), 
which exists by induction. Let u be a stage such that for all t 2 u 

(a) R,(6) t) = Ri(6) for i = 1, 2, 
(b) C[Ri(6)] G C, for i = 1, 2, 
(c) V6 G y B6,== B6 and BA,, = Bh. 
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Notice that 

s,Sf{eEBy Iat 2 u 3~ &Je, Ai,, G3 I&)(X) = 0 using 

D-correct information and C,(X) = l} 

is Zp, hence a-finite, and so the set of stages giving witness to e E SO is bounded, 
by u’ say. Notice also that, by the definition of a, disagreements witnessing e E S, 
are permanent. 

We will now indicate how D is able to compute C. For /3 E cu, we wish to 
compute C r f3. 

Let r 2 o be a stage such that 

Vr’ 2 t 3e E B,t I,(e, t’) > B. 

Now let t’ 3 t, e E BC \S, be such that I,(e, r’) > p using D-correct information. 
Then we have &(e, A 1.r 63 &) r B + 1 = Cd r B + 1 with D-correct information. 

Now suppose C changes below /I. Then we claim that the left-hand side cannot 
change-so contradicting the fact that e $ SO. 

If any y goes into C below Rr(y, -) then it cannot be below any R,(6, -) for 
any 6 < y (since C through R(6) is at its final value), hence that y goes into AZ. 
Therefore AI,,,, through the use in the computation, is at its final value. Hence D 
computes C l/3. 

Note that this is not a G-reduction, since the choice of e is D-recursive, and not 
recursive. 

This shows that lim sup,, i,(y, a) < a, and we will suppose it has value A. Let 

B$= {e 1 {k?,,} is total on A A e E BY}. 

This is X1 (since (Y is admissible), and hence a-finite, and so we can find 

SU~{{~~}[A] 1 e E Bt} = p < a. 

Let z be a stage, t 2 u’, such that D, 1 p = D 1 p. Then after stage t the 
argument proceeds as a standard finite injury argument with D 1 p as a 
parameter, which shows that lim, i,(y, a) exists. 

It remains only to verify that Al, A2 s~_,,,~~ C. Let A, = W, and A2 = W,. Then 

KEA, iff ~uVXEKL,~XEA, (note this is 2,) 

and 

KnA,=0 iff 3M1, M2 MI, M2~Lrk(K)~M,~C~M2nC=0 

/\MIUM2=K/\M1~A2. 

Furthermore A 1 63 A2 2 n_wtt C as K c C is already Z, and 

KflC=O iff ~MED,,.,,,={Kx{O,~}}AM~IA,~~A~=~ 

A K X (0, I} = M. 

Theorem 4.1 is proved. •i 
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Now, having proven this when D <a C, the question arises about what happens 
if D cm_,+ C. In one case we can readily answer this: if & < K;. If this happens, 
then block with JB,] n < pg with K: many blocks--use the approximations given 
by Shore [9]. 

Now, to get the contradiction that shows length of agreement is bounded, 
consider B,* = {e E B, 1 {a,} is total}. 

This is a &-subset of B, and as IB,I”< p? we have BG is a-finite. For e E B,\ By* 
there is a &-function f, such that {i?,}(f(e)) is undefined, and as p2 =Z K*, rng(f) 
is bounded, and we can work above this bound. So if Il(y, a) is unbounded, it is 
caused by e E BY*, but now we can choose any e E By* and demand that D 1 {2,}[P] 

be correct-hence getting an a+computation of C in exactly the same way we 
previously got an cu-computation. 

The question of what happens if K? < p; remains, but some observations about 
A = X,, may be relevant. Firstly the set C = {/3 ( /3 < A and /3 is not a cardinal} is 
hypersimple, and by usual arguments, can be shown to be not cu+complete, i.e., 
C <a_a K. Secondly, the arguments of Friedman [6] obtaining a negative solution 
to Post’s Problem above 0’ actually only use the set C. This suggests that a 
refinement of that analysis might give a failure of density in the A-v%-re degrees. 

The last theorem used a permitting argument. The next theorem shows that 
permitting does not always produce a-wtt reductions, although it does produce 
(~-6 reductions, by constructing an example of sets A, B, with B sa_+A by 
permitting, and l(B s_,,,~~ A) by diagonalization. Essential use is made of the fact 
that the power set function on cy is not recursive, and in our example, is not even 
total. It is possible to vary the argument to the case where the power set function 
is total, and this will be discussed following the proof. 

Theorem 4.3. Let (Y = ml. Then there exist AZ-sets A, B such that 

(a) B s~_,s,A, 

(b) l(B %wtt A). 

Proof. To obtain B s ,.+A we use a permitting argument, i.e., we construct a 
recursive sequence (x, ( u < CX) with lim, X, = LY, and 

A, rx,=A rx, + B, rx,=B lx,. 

This ensures B C (y_G A. 
To obtain B +_,,ttA, we use requirements 

R,: l(B ~a-wtt A) via the eth reduction procedure. 

Each of these is satisfied by finding witnesses x such that using e, A believes x is 
both in and out of B, or we create a disagreement. 

The only problem is ensuring that we create a disagreement using a 
configuration of A r x never yet seen, and so we are able to make changes to B. 
This is possible because for any o < (Y, b(a) is unbounded in a: 
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For technical convenience we work, at stage a, in Lb(@) where a(a) = the least 
admissible strictly larger than o and b(a) = the least /3 which is p.r. closed such 
that b > a(a) and L, k “CO is the greatest cardinal”. 

We define a restraint function r(e, a) for R,. 

At stage a, for e G u we will define sets A,,, B,,,, and elements x,,,. 

A,, = 0 = B,,o, and let x,,~ = o. 

Substage t + 1: We are given A_ B,,. and ~(t’, a) for r’ < r. Let 

x 0,t = the least primitive recursively closed ordinal greater than or equal to 

max{r, + 1, U {x0,,, 1 ((J’, t’> < (0, z)>> 

(where (a’, r’) < (a, r) iff u’ < u or u’ = u and t’ < r, and rl = U,,,, r(r’, a)). 
Notice that (u’, r’) G ( CJ, r) 3x,,,,, sx,,,, and that the only way x,,, can 

change is because a higher priority requirement starts to act in a different (and 
hence earlier) case, causing the restraint function to increase. 

Let x = x_ and t = (eo, e,, e2). 

Definition 4.4. We say (M,, M,) is appropriate if (MI, M,) E Lbc,,), and 

L b(o) k (MI, Md E &q,,(x) A MI n Mz = 0 

AM,nr,~A,,,r\M,nr,nA,,,=O. 

We act according to the earliest of the cases below to occur: 
Case 1: There exist (L,, L,), (MI, M2) w ic h’ h are appropirate with L, fl M2 = 

0, L2fl MI =0 and Lbcoj k @,,(x, L1, L2) A Ge,,(x, MI, M,). Then take the least 
such pair ((L,, L2), (M,, M2)) and let A,,,+1 =A,,,U L1 U MI, and set 

r(t, a) = max{x + 1, L-rk(D,,,,,J}. 

We now look for lengths of agreement previously established with A,,,+l, 

before defining B,,.+r. 

Definition 4.5. (a) Let w dx,,. be agreeable by u’ iff u’ < u and A,. fl (w + 1) = 
A u,F+l n (W + 1). 

(b) w is agreeable iff it is agreeable by u’ for some u’ < u. 

Let 

Y =ys,0 = lJ {w 1 w is agreeable}. 

If y is agreeable, let u’ < u be least such that y is agreeable by u’, and let 
B u,t+l = B,. rl (y + 1). Otherwise, let (a, 1 i E w) be the L-least sequence for 
which there exists a sequence ( wi 1 i E o) cofinal in y with We agreeable by ui. 
Then let 

B o,s+l n (wi + 1) = B, n (Wi + 1) for each i < o. 
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Case 2: Case 1 fails, and for some appropriate (M,, A4,) we have Lb(o) k 
@c,(x, MI, M2). Then pick the L-least such pair (MI, &I,) and let A,,,+1 = A,,, U 
Ml, and treat r and B as in Case 1 except that we work strictly below x,,~, instead 
of just below. 

Case 3a: Case 1 and 2 both fail, and for some appropriate (MI, M,), 
L b(o) k Qe,,(x, M,, M2) and this is the first time we have addressed this case for this 
value of x0,*, i.e., for o’ < u: x0,,, #x0,. or if x,,, =x0,,, then we were in Case 4. 

In this case, pick S c x\rr to be Lbco)-generic (S E Lb(oj+w) and let 

A, = A,,,+1 = A,,, U S, 

B, = B,,,+I = B,,,U (~1, 

r(t, 0)=x+1 

and go to stage b(a), i.e., for u< t< b(a): A, =A, and B, = B,. 
Case 3b: Case 1, 2 and 3a all fail, and for some appropriate (MI, M,), 

L b(oj k Ge,,(x, M,, M2). Then for some least u’ < u we have x,,, = x,,, and at stage 
( u’, r) we were in Case 3. 

Let S =A OI,T U (x\rl(u’, t)) and 

A o,r+l = A,,, u S, 

B o,r+~ = B,,, u Ix>, 

r(t, u)=x+l. 

Notice that T~(u’, t) = rI(u, t) since if not, we had to have t = 6 + 1 and 

XO,,S f X0,6, as r, is defined using only x,,,~. This means that x,,~ >x,,,. which is 
impossible. 

Case 4: All of the above cases fail in which case we do nothing, i.e., let 
A o,t+l = A,,,, r(z, a) =x + 1 and B,.,, = B,,.. 

At limit r, take unions. 
Let A, = A,,, and B, = B,,,. Then 

XEA ti 3uVt~ux~A,, 

XEB e 3uVr~ux~B,. 

Since both are built so that initial segments settle down (see Lemma 4.7), 

x$A e 3uVt~ux$A,, 

x$B e 3uVt>ux$B,, 

and so both A and B are A*. 

Lemma 4.6. Let (u, z) be a stage at which Case 3 was addressed, and a generic S 
was used. Then for all 6 < u and p G 6, S # A6,p II (x \r) and for all (M,, M,) , 

(L, L) •Dl~,,l(~)~ S#Gh,,UL UMJ n @\r) and S fG%,,UM) f~ (x\r), 
where x =x0,., r = r(u, t). 

Proof. By generality of S. 0 
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Lemma 4.7. For all e, 

(a) lim,r(e, a) = r(e) exists, 

(b) lim, A,, = A, = A rl r(e) exists, 

(c) lim, x,,, = x, exists, 

(d) lim, B,,, = B, = B fl x, exists. 

Proof. By induction on e. The regularity of or will be used implicitly throughout 
this argument. Suppose that the result is true for e’ < e and let r = &+_r(e’). 

Let u > e be a stage such that for all e’ -=z e all of the above limits have been 
attained by stage u. Then for all o’ 3 u, x,,,, = x, = x, and the corresponding r, is r. 

Now, either for some u’ 2 a, Lbtofj k 32 {e,,}(x) = z or not. If not, nothing 
changes for e after stage u. So assume u1 Z= o is the least stage for which 
L bco,j b 3z {e,,}(x) = z, and let a2 2 ul be the least stage such that for all 
(M,, M2) which are appropriate at stage u2, if L,, k Ge,(x, MI, M,) then 
L b(oz) k @c,,(~F M1, M2)- 

Then at stage a,, A,,,,, B,,,, r(e, u2) and X_ reach their final values. By 
construction A, = A fl r(e) and B, = B fl x,. Cl 

Lemma 4.8. Let u’ < u and A,,,, 1 x,,~ + 1 = A,. r x,.,~ + 1 for any z c u. Then 

B o,r+l 1 x,,,~ + 1 = B,, 1 x,,~ + 1. 

Proof. Let u be the least stage for which the lemma fails, for some t, a’, and let 
r be least for which it fails for some u’, so that 

A 0,r+l r X0.6 + 1 = A,. r x,tb + 1 but T(B~,~+~ 1 x,,~ + 1 = B,. r x,.,~ + 1). 

Then at stage u, x,,~GY(u, t)=y, andx,,, is agreeable-if (u, r) is in Case 1 or 
2. We first suppose (a, t) is in Case 1 or 2. 

If we need to use a cofinal sequence to reach y, i.e., ( wi 1 i E CO) by ( ui ) i E o), 

then for some i, we have Wi >x,,,,~ and so A,. r x,,,~ + 1 = A, r x,,~ + 1 and as 
B o,r+l r Xd,6 + 1= B, 1 ~,,,a + 1 we also have B,, 1 x,,,~+ 1 #B, 1 x,,,~ + 1. 
This contradicts our choice of u, r and u’. Likewise, we cannot have any 

agreeable w with w >x,,,~, and w agreeable by CJ-” # u’ without achieving a 
similar contradiction to minimality. Hence, we may assume y is agreeable by a’. 
But, in this case, we set B,,,+l = B,, rl (y + 1) (notice, it is equal to B,. il (y + l), 
since, if not, we would get another contradiction to minimality). But y + 12 
x,.,~ + 1 contradicting our choice of (u, t, a’). Thus we cannot be in Case 1 or 2 

at stage (u, t). 
Suppose we were in Case 3 at stage (u, t ). If 6 < t, then r(u, t) > x,.,~ and as 

nothing happens to either A or B below r,, u cannot be the least stage of the 
contradiction. Hence 6 2 r. 

If x,,,a #x0,,, then we have to have x,, > x,,,6-by choice of x,,, and, in fact 

X o,r-12 X0,,& and thus r(u, r) a~~,,~, as it is SX,,,_~. 
This means that x,,, 6 = x, =, and this, necessarily, implies 6 = r, and so 

A,, 1 x,.,~ + 1 = Aor,& 1 x,,,, + 1. 
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Now, since we are in Case 3 at (u, t), we cannot be in Case 3a, since 

otherwise we create a difference in A. Hence we are in Case 3b, and so we make 

A, and therefore B, look like earlier values of A, B. This will contradict the 

minimal choice of 0, r and u’. 

If we are in Case 4 at (o, t), the above analysis gives again that x,,,~ =x,,, and 

6 = r, and so we had to have been in Case 4 at (o’, r), and since both give no 

change in A and B, we get a contradiction to the choice of t. Cl 

Lemma 4.9. Let A, 1 x,,. = A r x,,, for any o and z. Then B, r x,,, = B 1 x,,.. 

Proof. This follows immediately from Lemmas 4.7 and 4.8. Cl 

Corollary 4.10. B sw+,A. 

Proof. We show how to determine K E B. The case K II B = 0 is similar. 

Let K E x0,, 5, and let o a u’ be any stage such that A, r x,,, = A r x0,.. Then 

KGBeKKBB,byLemma4.9. 

o is a bound suitable for all subsets of x0,,,, and indeed for subsets of x,,.. This 

gives us an cu-w-reduction. q 

Lemma 4.11 For all e, l(B s_,,~~A via e). 

Proof. Suppose not, and e is least such that B sm.wttA via e. 

Let u be a stage such that for e’ < e and all t > u, A f~ r(e’) = A, rl r(e’) and 

B fl r(e’) = B, fl r(e’) and all relevant information for e has been established 

correctly in Lb(_)- as in the proof of Lemma 4.6. As in that proof, we create a 

permanent computation and A and B take their limiting values through r(e), at 

stage u. We claim, that at this stage, we created a disagreement. 

If (a, e) is a Case 1 stage, this is clear, as A says that x,,, is both in and out of 

B. Likewise in Cases 3a, and 4. 

In Case 2, A says that x,,, is in B, but our construction of B omits x,.,--as we 

do all our work strictly below x0,,, and restrain above it. 

In Case 3b, A can only say, if it does, that x,,, is out of B, but we put x,,, into 

B, so creating a disagreement. 

Since this a permanent computation, and all cases give disagreement, we are 

unable to choose e as in the hypothesis. 0 

This completes the proof of Theorem 4.3. 0 

To adapt this to the case when the power set function is total (and a > w), it 

suffices to notice that limits are reached by the next stable ordinal after e is first 

seen. Thus the same argument using b(u) can be used, except we need to have 
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b(a) = least p.r. closed 6 > a(a) such that 

L, k (la(a)l < ICJ[ and there is a greatest cardinal). 

Now two cases occur, either b(x) is unbounded in b(a) or it is bounded. 
However, any lub is a limit of stables, and so the construction before the eth 
requirement takes place well below the bound. Thus the desired new sets can still 
be seen. The only problem is at o itself, and in this case, the choice of b(a) 
ensures that $#++)(a) is unbounded in LbCoj. 

The construction can be adapted in fact, to any nonprojectible ordinal, using 
blocking. Nonprojectibility appears to be required in order to see that 
{(MI, M,) E D+o)(K) 1 (M,, MJ is appropriate at some stage and 
(@,,,(x, MI, M2) v @&, MI, MJ)} is a-finite. 

We do not know if the result can be improved to make A and B to be cy-re. 
This particular argument makes strong use of the ability to go back and make 
‘corrections’ at some x which we have chosen to be our witness for R,, i.e., in the 
second part of Case 2. 

However, our next theorem points out further difficulties. 

Theorem 4.12. Let B sa_\tA and B, A be a-re. Then there exists A* =a_GA with 
B <,_,,A*. A * depends on the reduction procedure. 

Proof. Let B c (Y_+,A via e = (eo, e,)-the function {er} bounds the use of the 
T-reduction given by e,. Let A+ = A x (0) U (L, x L, \ (0)). 

We now define A* as a subset of A+. We devote the Kth column up to {e,}(K) 
ofA+(forK#O)totestingKGBorKnB=@ 

Let o, be the least stage o at which we see A, correctly giving us information 
about K as a ‘subset’ of B,. 

Then for each x that later goes into A below {e,}(K) we put a new element 
((x, K)) into L, x {K} n A*-in order of first appearance, and if this is simul- 
taneous, then in order of L-rank. 

Now define 

&(K) = UK j%) I Ml u M2 = {4(K) x WI A Ml n M2 = 01. 

We now show that there is an a-wtt reduction computing B from A*. 

KcB @ 301<~~23(W, M2) &,Z3h, m2> EDGE&) 

u1 is least such that 

(AO, correctly gives information about K relative to B,,) 

~rn~c_A*r\m~nA*=0 

AXYEL,,, S&U, 

A 3f E Lo2+l Vt E S A,+,\A, # 0 
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A f is an order preserving bijection of m, into S 

/\M1~A,,/\M2nA,,=0 

A @,,(K, W, M2). 

a, is a stage by which everything in A below the use of a computation 
determining K E B is in A, and so A* on the Kth column is finished, and so we 
can use it to get true answers about K c B. 
K fl B = 0 is similar, except we change ac,, to Qe,. 
This gives us e;, and e; to get e’ = (e,!,, e;, e;) and so Bs,_,,,A* via e’, as 

required. Notice, in this proof, if we use LL and form A** by using column 
(e, K) instead of just K, we can make the set independent of the reduction 
procedure. 

It remains to check that A* G~_&A. 
Clearly 

KrA e Kx{O}GA* 

and 

KnA=0 e Kx{O}nA*=0. 
Thus A c,_,A*. 

Conversely 

KsA* e n,[K]sA andfor TEEJK] A,+,\A,#Oand t>o, 

and 

This can easily be modified to an cu-ti reduction-by obtaining the following 
bound on the use: Let K = {M 1 {M} x L, rl K #0} and o = U {nL[K] 1 L E k}. 
CJ is a recursive function of K, and bounds all searches for the ordinals required 
above. Thus A*s,_;A. 0 

In a similar way we can see that A* * = a_+ A-but note that in the construction 
of A** we cannot use oK, so we just use 0 instead. Since A** is o-re in A, the 
problem of obtaining A and B re with B s,++A and B $,.,,, A is ‘reduced’ to 
finding an A with A** &,ttA. 
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