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a b s t r a c t

Let Vn(q) denote a vector space of dimension n over the field with q elements. A set P of
subspaces of Vn(q) is a partition of Vn(q) if every nonzero vector in Vn(q) is contained in
exactly one subspace of P . If there exists a partition of Vn(q) containing ai subspaces of
dimension ni for 1 ≤ i ≤ k, then (ak, ak−1, . . . , a1)must satisfy the Diophantine equation∑k
i=1 ai(q

ni − 1) = qn − 1. In general, however, not every solution of this Diophantine
equation corresponds to a partition of Vn(q). In this article, we determine all solutions of
the Diophantine equation for which there is a corresponding partition of Vn(2) for n ≤ 7
and provide a construction of each of the partitions that exist.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let K = GF(q) be the finite field with q elements and V = Vn(q) be a vector space of dimension n over K . We say that a
set P = {Vi}ki=1 of subspaces of V is a partition of V if and only if V = ∪

k
i=1 Vi and Vi ∩ Vj = {0}when i 6= j.

Suppose that P = {Vi}ki=1 is a partition of V , and let ni = dim Vi. It is easy to see that the following conditions are
satisfied:

qn − 1 =
k∑
1

(qni − 1) (1)

and

ni + nj ≤ n when i 6= j. (2)

Condition (1) is true because every nonzero vector in Vn(q) belongs to exactly one of the subspaces Vi, and (2) holds because
Vi ⊕ Vj is a subspace of V with dimension ni + nj. LetW be a subspace of Vn(q) having dimension n− 1. Then {Vi ∩W }ki=1 is
a partition ofW , which we call the partition of W induced by P , and, for i = 1, 2, . . . , k, we have dim(Vi ∩W ) = dim Vi if
Vi ⊆ W , and dim(Vi ∩W ) = dim Vi − 1 otherwise.
Bu [3] presents a number of sufficient conditions for the existence of certain partitions of Vn(q). The first of these is a

well-known result.

Lemma 1.1. If m is a divisor of n and k = (qn − 1)/(qm − 1), there exists a partition of Vn(q) consisting of k subspaces of
dimension m.

Lemma 1.2. For 1 ≤ d < 1
2n, there exists a partition of Vn(q) consisting of 1 subspace of dimension n− d and q

n−d subspaces
of dimension d.
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Lemma 1.3. If n = ks− 1, where s > 1, there exists a partition of Vn(q) consisting of q(k−1)s subspaces of dimension s− 1 and
(q(k−1)s − 1)/(qs − 1) subspaces of dimension s.

Other authors have considered variations on this problem. Let T = {t1, t2, . . . , tk} be a set of positive integers with

2 ≤ t1 < t2 < · · · < tk = t. (3)

A partition P of Vn(q) is called a T-partition if (i) for every α ∈ T , there is a U ∈ P with dimU = α; and (ii) dimU ∈ T for
any U ∈ P . Beutelspacher proved in [1] that if t1 = 2, then V2t(q) has a T -partition. Heden shows in [6] that V2t(q) has a
T -partition for any arbitrary set of integers satisfying (3).
In a later paper [7], Heden characterized the partitions of Vn(2) for n ≥ 9 that contain only subspaces of dimensions 1, 2,

3, and n− 3. He also presents there results about the existence and nonexistence of certain partitions of V6(2) and V7(2).
Before proceeding, we note that this partition problem also relates to the problem of finding optimal partial spreads and

has applications in byte error control codes. For further information, we direct the interested reader to the article by Clark
and Dunning [4], and to the references therein.
Suppose there exists a partition of Vn(q) into ai subspaces of dimension i for 1 ≤ i ≤ k. By (1), (a1, a2, . . . , ak) must

satisfy the Diophantine equation

k∑
i=1

ai(qni − 1) = qn − 1. (4)

In general, however, not every solution of (4) corresponds to a partition of Vn(q). For example, Corollary 2.2 shows that
there is no partition of V5(2) into 10 subspaces of dimension 2 and 1 subspace of dimension 1. In this article, we classify all
solutions of (4) for which there is a corresponding partition of Vn(2) when n ≤ 7 and provide an explicit construction of
those that exist. Some of these partitions were shown to exist in [7], but we include them here for completeness.

2. Feasible partition types

We begin by proving a third necessary condition for a solution to (4) to correspond to a partition of Vn(2).

Lemma 2.1. Let V be a finite dimensional vector space over a finite field F . Then
∑

v∈V v = 0 if dim V ≥ 2 or char F 6= 2.

Proof. If char F 6= 2, then every nonzero vector v ∈ V has a unique additive inverse−v 6= v. So, in this case, it is clear that∑
v∈V v = 0.
If char F = 2, then we can reduce to the case where F is the field with two elements. Let V be a finite-dimensional vector

space over F of dimension n ≥ 2, and let {u1, u2, . . . , un} be a basis for V . Define w =
∑

v∈V v. Then w =
∑n
i=1 αiui for

some αi ∈ F .
We claim αi = 0 for all i. Indeed, for any v ∈ V , we can write v =

∑n
i=1 εi,vui. Therefore w =

∑
v∈V

∑n
i=1 εi,vui =∑n

i=1

(∑
v∈V εi,v

)
ui, so that αi =

∑
v∈V εi,v . In particular, αi = t(1F ), where t is the number of vectors such that εi,v = 1F .

But the set of vectors whose ith component is 1F is given by {ui +
∑
j6=i εjuj: εj ∈ F}. Since the order of this set is even,

t(1F ) = 0F ; so αi = 0 for all i. Therefore
∑

v∈V v = 0. �

Corollary 2.2. In any partition of Vn(q) (n ≥ 2) into subspaces, the sum of the vectors in the 1-dimensional subspaces of the
partition is 0.

Proof. From Lemma 2.1, the sum of the vectors in Vn(q) is 0, and the same is true for the sum of the vectors in the subspaces
of dimension greater than 1. The result follows. �

Note that Corollary 2.2 shows that there can be no partition of V5(2) containing exactly ten subspaces of dimension 2
and one subspace of dimension 1. However, such a partition satisfies both of the necessary conditions (1) and (2). Thus
Corollary 2.2 provides a new necessary condition for the existence of a partition of Vn(2). Because every vector in Vn(2) is
its own additive inverse, Corollary 2.2 implies that if a partition of Vn(2) contains subspaces of dimension 1, then there cannot
be fewer than 3 subspaces of dimension 1.
We call a sequence of nonnegative integers 〈ak, ak−1, . . . , a1〉 a partition type for Vn(2) and say that it is feasible if the

following four conditions hold:

(a)
∑k
i=1 ai(2

i
− 1) = 2n − 1.

(b) If both ai and aj are nonzero for i 6= j, then i+ j ≤ n.
(c) If i > n/2, then ai ≤ 1.
(d) a1 6= 1 and a1 6= 2.

Thus a necessary condition for the existence of a partition of Vn(2) containing exactly ai subspaces of dimension i for
i = 1, 2, . . . , k and no subspaces of dimension greater than k is that the partition type 〈ak, ak−1, . . . , a1〉 be feasible.
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If there is a partition of Vn(2) containing exactly ai subspaces of dimension i for i = 1, 2, . . . , k and no subspaces of
dimension greater than k, then we say that the partition type 〈ak, ak−1, . . . , a1〉 is realized. In Sections 3, 5 and 6 below,
we determine, for n ≤ 7, all of the feasible partition types for Vn(2) that are realized. Specifically, we prove the following
result.

Main theorem. For n ≤ 7, all the feasible partition types of Vn(2) are realized except 〈7, 3, 5〉 when n = 6 and 〈1, 13, 7, 0〉,
〈1, 13, 6, 3〉, 〈1, 14, 3, 5〉, and 〈17, 1, 5〉 when n = 7.

In [5], we use this result to provide the base of a proof by mathematical induction showing that, for every integer n > 2,
a feasible partition type of Vn(2) with the form 〈a3, a2, 0〉 is realized if and only if a2 6= 1. In another article [2], we show
how partitions of Vn(q) relate to uniformly resolvable designs.
Convention. Throughout the remainder of this paper, if S is a subset of Vn(2) such that S ∪ {0} is a subspace, we will use the
term subspace to refer to S.

3. Partitions of Vn(2) for n ≤ 5

Partitions of V3(2).
The 3 feasible partition types are 〈1, 0, 0〉, 〈1, 4〉, and 〈7〉. Clearly all of these can be realized.

Partitions of V4(2).
The 8 feasible partition types are 〈1, 0, 0, 0〉, 〈1, 0, 8〉, and 〈5− i, 3i〉 for 0 ≤ i ≤ 5. Partitions of type 〈1, 0, 0, 0〉 and 〈5, 0〉

are realized by Lemma 1.1. A partition of type 〈1, 0, 8〉 can be obtained by extracting a 3-dimensional subspace of V4(2) and
regarding the remaining vectors as the nonzero vectors in subspaces of dimension 1. The other partitions are obtained by
regarding the nonzero vectors in 2-dimensional subspaces in a partition of type 〈5, 0〉 as the nonzero vectors in 3 subspaces
of dimension 1.
Partitions of V5(2).
The 21 feasible partition types are 〈1, 0, 0, 0, 0〉, 〈1, 0, 0, 16〉, and 〈1− i, 8+ i− j, 4i+3j〉 for 0 ≤ j ≤ 8+ i and 0 ≤ i ≤ 1.

Partitions of types 〈1, 0, 0, 0, 0〉 and 〈1, 0, 0, 16〉 clearly exist, and a partition of type 〈1, 8, 0〉 can be realized by Lemma 1.2.
The remaining partitions can be obtained from one of type 〈1, 8, 0〉 by regarding the subspace of dimension 3 as 1 subspace
of dimension 2 and 4 subspaces of dimension 1, or regarding some subspaces of dimension 2 as 3 subspaces of dimension 1.

4. Reconfiguring subspaces

In Section 3, subspaces in a partition were changed into new subspaces to create a new partition. We call this process
reconfiguring the subspaces. Reconfiguring subspaces plays an essential role in our construction of partitions of V6(2) and
V7(2).
We have already seen that a subspace of dimension m can be reconfigured into a subspace of dimension k < m and

subspaces of dimension 1. In addition, any subspace of dimension 4 can be reconfigured into 5 subspaces of dimension 2.
If n = 2k, then any three subspaces of dimension k in a partition of Vn(2) can be reconfigured into r = 2k − 1 subspaces

of dimension 2. For suppose that V1, V2, and V3 are any three k-dimensional subspaces in a partition of Vn(2). Let the nonzero
elements in these subspaces be

x1, x2, . . . , xr , y1, y2, . . . , yr , and z1, z2, . . . , zr ,

respectively. Since Vn(2) = V1 ⊕ V2, it is possible to number the elements of V1, V2, and V3 so that xi + yi = zi for
i = 1, 2, . . . , r . Thus V1, V2, and V3 can be reconfigured into the 2-dimensional subspaces

{0, x1, y1, z1}, {0, x2, y2, z2}, . . . , {0, xr , yr , zr}.

In particular, any 3 subspaces of dimension 3 in a partition of V6(2) can be reconfigured into 7 subspaces of dimension 2.

5. Partitions of V6(2)

Clearly, only one feasible partition type for V6(2) contains a subspace of dimension 6, and, because of (b) in the definition,
only one feasible partition type for V6(2) contains a subspace of dimension 5. A feasible partition type that contains a
subspace of dimension 4 must be a nonnegative integer solution of the system

15a4 + 7a3 + 3a2 + a1 = 63
a4 = 1

a3 = 0,

where a1 6= 1 and a1 6= 2, that is, a nonnegative integer solution of the equation 3a2+a1 = 48 such that a1 6= 1 and a1 6= 2.
We can regard these feasible partition types as solutions of the inequality 3a2 ≤ 48, and so there are 17 feasible partition
types containing a subspace of dimension 4.
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Table 1
Feasible partition types of V6(2)

Category Type

1 〈1, 0, 0, 0, 0, 0〉
2 〈1, 0, 0, 0, 32〉
3 〈1, 0, 16− j, 3j〉 0 ≤ j ≤ 16
4 〈9− 3i, 7i− j, 3j〉 0 ≤ j ≤ 7i and 0 ≤ i ≤ 3
5 〈8− 3i, 1+ 7i− j, 4+ 3j〉 0 ≤ j ≤ 1+ 7i and 0 ≤ i ≤ 2
6 〈7− 3i, 3+ 7i− j, 5+ 3j〉 0 ≤ j ≤ 3+ 7i and 0 ≤ i ≤ 2

As above, we can regard a feasible partition type having no subspaces of dimension greater than 3 as a nonnegative
integer solution of 7a3 + 3a2 ≤ 63 such that 63 − (7a3 + 3a2) 6= 1 and 63 − (7a3 + 3a2) 6= 2. A straightforward count
shows that there are 106 such solutions, and hence 106 feasible partition types having no subspaces of dimension greater
than 3. Thus, in all, there are 125 feasible partition types for V6(2), which are shown in Table 1.
Each partition in categories 3, 4, 5, and 6 can be obtained by reconfiguration from the one in the same category with

i = j = 0. For example, a partition of type 〈1, 0, 14, 6〉 (category 3) can be obtained from one of type 〈1, 0, 16, 0〉 by
reconfiguring 2 subspaces of dimension 2 into 6 subspaces of dimension 1. Also, a partition of type 〈5, 4, 16〉 (category 5)
can be obtained from one of type 〈8, 1, 4〉 by reconfiguring 3 subspaces of dimension 3 into 7 subspaces of dimension 2
and then reconfiguring 4 subspaces of dimension 2 into 12 subspaces of dimension 1. In fact, Table 1 is arranged so that if
a partition in some category is obtained, then all other partition types in that category having larger values of i or j can be
realized in this manner. Hence, to verify which feasible partition types of V6(2) can be realized, it is sufficient to show that
one partition in each category exists and to prove that partition types in that category having smaller values of i or j cannot
be realized.
Partitions in categories 1 and 2 clearly exist. A partition of type 〈1, 0, 16, 0〉 (category 3) exists by Lemma 1.2. A partition

of type 〈9, 0, 0〉 (category 4) can be obtained from Lemma 1.1. A partition of type 〈8, 1, 4〉 (category 5) can be obtained from
a partition of type 〈9, 0, 0〉 by reconfiguring 1 subspace of dimension 3 into 1 subspace of dimension 2 and 4 subspaces
of dimension 1. Finally, Theorem 5 in [7] shows that a partition of type 〈7, 3, 5〉 (category 6) does not exist. However, a
partition of type 〈7, 2, 8〉 can be obtained from a partition of type 〈9, 0, 0〉 by reconfiguring 2 subspaces of dimension 3 into
2 subspaces of dimension 2 and 8 subspaces of dimension 1, and a partition of type 〈4, 10, 5〉 is constructed in Example 2.
Although a partition of type 〈9, 0, 0〉 exists by Lemma 1.1, we now describe an explicit construction of such a partition

that is used in the rest of this paper.

Example 1. In what follows, we always identify a subspace by the set of its nonzero elements. Let V be the set of nonzero
elements of a 3-dimensional subspace of Vn(2)with basis {v1, v2, v3}. Then

V = {v1, v2, v3, v4 = v1 + v2, v5 = v2 + v3, v6 = v1 + v2 + v3, v7 = v1 + v3}.

For any integer 1 ≤ k ≤ 7, define V k to be the 7-tuple generated by the elements of V with first entry vk, that is,

V k = (vk, vk+1, . . . , vk+6),

where the addition of indices is done modulo 7. If we do not need to specify the first entry of this k-tuple, then we simply
write [V ].
Consider the recurrence relation

vi+3 = vi + vi+1,

with the addition of indices performed modulo 7. The sequence defined by this recurrence relation yields [V ].
Now let U and W be subspaces of Vn(2) having dimension 3 such that U ∩ W = {0}. As above, the nonzero elements

u1, u2, . . . , u7 andw1, w2, . . . , w7 of U andW , respectively, can be chosen to satisfy the recurrence relations

ui+3 = ui + ui+1 and wi+3 = wi + wi+1,

where addition of indices is done modulo 7.
Define

Ai−1 = {u1 + wi, u2 + wi+1, . . . , u7 + wi+6},

for 1 ≤ i ≤ 7. Then Ai−1 is the set of nonzero elements from a subspace of dimension 3 with basis

{u1 + wi, u2 + wi+1, u3 + wi+2}.

For 1 ≤ k ≤ 7, let

Uk = (uk, uk+1, . . . , uk+6) and W k = (wk, wk+1, . . . , wk+6),
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and for 0 ≤ i ≤ 6, let

Aki = (uk + wi+k, uk+1 + wi+k+1, . . . , uk+6 + wi+k+6).

The subspaces U ,W , and Ai ∪ {0} (0 ≤ i ≤ 6) form a partition of

U ⊕W = {u+ w: u ∈ U andw ∈ W }

into 9 subspaces of dimension 3. Note that the 7-tuples Uk andW k satisfy the same recurrence relation as the vectors uk and
wk, that is,

Uk + Uk+1 = Uk+3 and W k +W k+1 = W k+3.

Moreover, we have Aki = U
k
+W i+k. �

Example 2. We prove the existence of a partition of V6(2) of type 〈4, 10, 5〉 by showing that the 3-dimensional subspaces
A0, A1, A2, A3, and A4 in Example 1 can be reconfigured into 10 subspaces of dimension 2 and 5 subspaces of dimension 1.
The nonzero vectors in the subspaces of dimension 2 are:

{u1 + w1, u2 + w3, u4 + w7}, {u2 + w2, u6 + w1, u7 + w4},
{u3 + w3, u4 + w5, u6 + w2}, {u4 + w4, u6 + w7, u3 + w5},
{u5 + w5, u7 + w1, u4 + w6}, {u6 + w6, u2 + w4, u7 + w3},
{u7 + w7, u1 + w2, u3 + w6}, {u3 + w4, u5 + w7, u2 + w5},
{u5 + w6, u1 + w4, u6 + w3}, and {u1 + w5, u2 + w6, u4 + w1}.

Together with the 3-dimensional subspaces W , U , A5, and A6, these 10 subspaces of dimension 2 and the remaining 5
subspaces of dimension 1 form a partition of V6(2) of type 〈4, 10, 5〉. �

The results obtained in this section show that every feasible partition type for V6(2) can be realized except 〈7, 3, 5〉.

6. Partitions of V7(2)

6.1. Feasible partition types of V7(2)

By an analysis similar to that in Section 5, it can be shown that there are 758 feasible partition types for V7(2), which are
shown in Table 2. Note that Table 2 is arranged so that if a partition in some category is obtained, then all other partition
types in that category having larger values of j can be realized by reconfiguring 2-dimensional subspaces into subspaces
of dimension 1. For example, the partition in category 3 of type 〈1, 0, 0, 32 − j, 3j〉 can be obtained from one of type
〈1, 0, 0, 32, 0〉 by regarding j subspaces of dimension 2 as 3j subspaces of dimension 1.
Wewill show that all of the partition types in Table 2 can be realized except for four: 〈1, 14, 3, 5〉 (category 6), 〈1, 13, 7, 0〉

(category 7), 〈1, 13, 6, 3〉 (category 7), and 〈17, 1, 5〉 (category 21).

Table 2
Feasible partition types of V7(2)

Category Partition type Example Category Partition type Example

1 〈1, 0, 0, 0, 0, 0, 0〉
2 〈1, 0, 0, 0, 0, 64〉
3 〈1, 0, 0, 32− j, 3j〉 0 ≤ j ≤ 32 21 〈17, 1− j, 5+ 3j〉 0 ≤ j ≤ 1
4 〈1, 16, 0, 0〉 22 〈16, 5− j, 3j〉 0 ≤ j ≤ 5
5 〈1, 15, 1− j, 4+ 3j〉 0 ≤ j ≤ 1 5 23 〈15, 6− j, 4+ 3j〉 0 ≤ j ≤ 6
6 〈1, 14, 3− j, 5+ 3j〉 0 ≤ j ≤ 3 5 24 〈14, 8− j, 5+ 3j〉 0 ≤ j ≤ 8 8
7 〈1, 13, 7− j, 3j〉 0 ≤ j ≤ 7 4 25 〈13, 12− j, 3j〉 0 ≤ j ≤ 12 9
8 〈1, 12, 8− j, 4+ 3j〉 0 ≤ j ≤ 8 5 26 〈12, 13− j, 4+ 3j〉 0 ≤ j ≤ 13
9 〈1, 11, 10− j, 5+ 3j〉 0 ≤ j ≤ 10 6 27 〈11, 15− j, 5+ 3j〉 0 ≤ j ≤ 15
10 〈1, 10, 14− j, 3j〉 0 ≤ j ≤ 14 3 28 〈10, 19− j, 3j〉 0 ≤ j ≤ 19
11 〈1, 9, 15− j, 4+ 3j〉 0 ≤ j ≤ 15 5 29 〈9, 20− j, 4+ 3j〉 0 ≤ j ≤ 20
12 〈1, 8, 17− j, 5+ 3j〉 0 ≤ j ≤ 17 7 30 〈8, 22− j, 5+ 3j〉 0 ≤ j ≤ 22
13 〈1, 7, 21− j, 3j〉 0 ≤ j ≤ 21 3 31 〈7, 26− j, 3j〉 0 ≤ j ≤ 26
14 〈1, 6, 22− j, 4+ 3j〉 0 ≤ j ≤ 22 5 32 〈6, 27− j, 4+ 3j〉 0 ≤ j ≤ 27
15 〈1, 5, 24− j, 5+ 3j〉 0 ≤ j ≤ 24 6 33 〈5, 29− j, 5+ 3j〉 0 ≤ j ≤ 29
16 〈1, 4, 28− j, 3j〉 0 ≤ j ≤ 28 3 34 〈4, 33− j, 3j〉 0 ≤ j ≤ 33
17 〈1, 3, 29− j, 4+ 3j〉 0 ≤ j ≤ 29 5 35 〈3, 34− j, 4+ 3j〉 0 ≤ j ≤ 34
18 〈1, 2, 31− j, 5+ 3j〉 0 ≤ j ≤ 31 6 36 〈2, 36− j, 5+ 3j〉 0 ≤ j ≤ 36
19 〈1, 1, 35− j, 3j〉 0 ≤ j ≤ 35 3 37 〈1, 40− j, 3j〉 0 ≤ j ≤ 40
20 〈1, 0, 36− j, 4+ 3j〉 0 ≤ j ≤ 36 5 38 〈41− j, 4+ 3j〉 0 ≤ j ≤ 41
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6.2. Partition types of V7(2) that cannot be realized

In this subsection, we prove that 3 of the feasible partition types of V7(2) cannot be realized. A fourth feasible partition
type, 〈1, 14, 3, 5〉, cannot be realized by virtue of Theorem 5 in [7].

Lemma 6.1. Let B be a basis for an n-dimensional vector space V , and let B ′ be a proper subset of B . Then V has an (n − 1)-
dimensional subspace W such that W ∩B = B ′.

Proof. We can assume that B is the basis {e1, e2, . . . , en} and B ′ = {e1, e2, . . . , ek} for some k < n, where ei is the
vector whose ith component is 1 and whose other components are 0. The desired subspace is W = {(α1, α2, . . . , αn) ∈
V :αk+1 + αk+2 + · · · + αn = 0}. �

Proposition 6.2. No partition of V7(2) of type 〈1, 13, 7, 0〉 exists.

Proof. Assume that P is a partition of type 〈1, 13, 7, 0〉. By (2), the partition of a 6-dimensional subspace of V7(2) induced
by P is of type 〈1, 0, a2, a1〉, where a2 and a1 satisfy

a2 + a1 = 20
3a2 + a1 = 48,

or of type 〈a3, a2, a1〉, where a3, a2, and a1 satisfy

a3 + a2 + a1 = 21
7a3 + 3a2 + a1 = 63.

It is easily checked that there is no integral solution of either system in which a1 = 7. Moreover, only the second system
has an integral solution in which a1 = 0, and it is a3 = 0, a2 = 21, a1 = 0. However, there can be no induced partition of
type 〈21, 0〉 because there must be at least one subspace of dimension 3 in the induced partition. Thus no partition induced
by P can contain 0 or 7 subspaces of dimension 1.
LetV1, V2, . . . , V7 denote the 2-dimensional subspaces inP , and let S = {u1, u2, . . . , uk} be a linearly independent subset

of V1 ∪ V2 ∪ · · · ∪ V7 that is maximal with respect to the property that each ui is in a different 2-dimensional subspace inP .
By renumbering, if necessary, we may assume that ui ∈ Vi for i = 1, 2, . . . , k.
Case 1: k = 7.
In this case, S is a basis for V7(2). Apply Lemma 6.1 to find a 6-dimensional subspaceW of V7(2) that contains none of

the vectors in S. ThenW does not contain any Vi, and hence the partition ofW induced by P must contain 7 subspaces of
dimension 1, a contradiction.
Case 2: k < 7.
We claim that Vi ⊆ Span S for k < i ≤ 7. For otherwise, there is a vector ui in Vi that is not in Span S. But then the set

{u1, u2, . . . , uk, ui} contradicts the maximality of S.
LetW be a 6-dimensional subspace ofV7(2) containing S. SinceVi ⊆ Span S for k < i ≤ 7, the 1-dimensional subspaces in

the partition ofW induced byP must be Vi∩W = {0, ui}, where 1 ≤ i ≤ k. But the sum of the vectors in the 1-dimensional
subspaces of this partition must be 0; so we have a contradiction of the linear independence of S.
Since each case leads to a contradiction, we conclude that there is no partition of type 〈1, 13, 7, 0〉. �

Corollary 6.3. No partition of V7(2) of type 〈1, 13, 6, 3〉 exists.

Proof. Suppose thatP is a partition of V7(2) of type 〈1, 13, 6, 3〉. Because the vectors in the subspaces ofP of dimension 1
must sum to 0, the union of these subspaces must be a subspace of dimension 2. This yields a partition of type 〈1, 13, 7, 0〉,
in contradiction of Proposition 6.2. �

Proposition 6.4. No partition of V7(2) of type 〈17, 1, 5〉 exists.

Proof. Assume that P is a partition of V7(2) of type 〈17, 1, 5〉. Let u1, u2, . . . , u5 denote the nonzero vectors in the five
subspaces of dimension 1. If these were all contained in a subspace S of dimension 3, then, by Lemma 2.1 and Corollary 2.2,
both the sum of the vectors in S and the sum of u1, u2, . . . , u5 would be 0. But then the sum of the other two nonzero vectors
in S would be 0, which is impossible. Thus we can assume that u1, u2, u3, and u4 are linearly independent and that u5 is their
sum.
Extend {u1, u2, u3, u4} to a basis for V7(2), and apply Lemma 6.1 to obtain a 6-dimensional subspace W of V7(2) that

contains none of u1, u2, u3, and u4. The complement of W in V7(2) can contain no 2-dimensional subspace, and because
u1 and u2 are not in W , it follows that u1 + u2 is in W . Similarly, u3 + u4 is in W , and so u5 = (u1 + u2) + (u3 + u4) is
in W . Therefore the partition of W induced by P contains either one or two subspaces of dimension 1, a contradiction of
Corollary 2.2. Hence there is no partition of type 〈17, 1, 5〉. �
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Table 3
The subspaces Si formed from Eq. (5)

x+W 1 x+ A60 A11 A66 x+ A13 x+ A52 A55
S1 x+ w1 x+ u6 + w6 u1 + w2 u6 + w5 x+ u1 + w4 x+ u5 + w7 u5 + w3
S2 x+ w2 x+ u7 + w7 u2 + w3 u7 + w6 x+ u2 + w5 x+ u6 + w1 u6 + w4
S3 x+ w3 x+ u1 + w1 u3 + w4 u1 + w7 x+ u3 + w6 x+ u7 + w2 u7 + w5
S4 x+ w4 x+ u2 + w2 u4 + w5 u2 + w1 x+ u4 + w7 x+ u1 + w3 u1 + w6
S5 x+ w5 x+ u3 + w3 u5 + w6 u3 + w2 x+ u5 + w1 x+ u2 + w4 u2 + w7
S6 x+ w6 x+ u4 + w4 u6 + w7 u4 + w3 x+ u6 + w2 x+ u3 + w5 u3 + w1
S7 x+ w7 x+ u5 + w5 u7 + w1 u5 + w4 x+ u7 + w3 x+ u4 + w6 u4 + w2

6.3. Partitions of V7(2) containing a subspace of dimension 4 or more

Partition types of V7(2) that contain a subspace of dimension 5 or more are listed in categories 1, 2, and 3 of Table 2.
Because a partition of type 〈1, 0, 0, 32, 0〉 exists by Lemma 1.2, all the partition types in categories 1, 2, and 3 can be realized.
Although a partition of type 〈1, 16, 0, 0〉 (category 4) is known to exist by Lemma 1.2, we now construct a particular

partition of this type that is useful in our examples. This construction uses the notation of Example 1, where U and W
denote 3-dimensional subspaces of V7(2) such that U ∩W = {0}. Choose an element x of V7(2) not in U ⊕W , and letW ∗
denote the set of nonzero elements inW . Then the sets {0, x} ⊕ U ,W ∗, x+W ∗, Ai, and x+ Ai (0 ≤ i ≤ 6) form a partition
of the set V7(2) into 17 subsets in which each set other than {0, x} ⊕ U contains precisely 7 elements.
For any 7-tuple S = (s1, s2, . . . , s7), denote by x+ S the 7-tuple

x+ S = (x+ s1, x+ s2, . . . , x+ s7).

By using the ideas in Example 1, we see that the following equations are true.

(x+W 1)+ (x+ A60)+ A
1
1 + A

6
6 + (x+ A

1
3)+ (x+ A

5
2) = A

5
5 (5)

W 1 + A20 + (x+ A
6
1)+ A

2
2 + (x+ A

6
4)+ (x+ A

7
6) = (x+ A

7
5). (6)

We can use Eqs. (5) and (6) to create 16 subspaces of dimension 3 from the 7-tuples [W ], x+[W ], [Ai], and x+[Ai] (0 ≤ i ≤ 6).
In Table 3, the respective components of the 7-tuples in Eq. (5) are listed vertically. Using the recurrence relations defined in
Example 1, we see that each set Si consisting of the ith components of these 7-tuples is a 3-dimensional subspace of V7(2).
Thus Eq. (5) yields 7 subspaces of V7(2) of dimension 3. Similarly, Eq. (6) yields 7 subspaces of V7(2) of dimension 3.
So we have a partitionP ∗ of V7(2) of type 〈1, 16, 0, 0〉 that consists of {0, x} ⊕ U , A3, A4, and the 14 subspaces produced

by Eqs. (5) and (6).
Note that the set of entries ofW j equalsW , and the set of entries of Aji equals Ai. So from each of Eqs. (5) and (6), we can

also obtain two sets of 7 subspaces of dimension 2 and 1 of the 3-dimensional subspaces Ai in a similar manner. These sets
of 2-dimensional subspaces are described by the following equations.

(x+ A60)+ A
1
1 = (x+ A

5
2) and (x+W 3)+ (x+ A13) = A

1
5 (7)

A20 + (x+ A
6
1) = (x+ A

7
6) and W 1 + (x+ A14) = (x+ A

1
5). (8)

In Examples 3–7,we use this partitionP ∗ to construct all the desired partitions in categories 5–20 of Table 2. The relevant
example number is indicated in Table 2.

Example 3. There is a partition of type 〈1, 10, 14, 0〉 (category 10) that consists of {0, x} ⊕ U , A3, A4, A6, the 7 subspaces of
dimension 3 produced by Eq. (6), and the 14 subspaces of dimension 2 produced by Eq. (7). In addition, there is a partition
of type 〈1, 4, 28, 0〉 (category 16) that consists of {0, x}⊕U , A2, A3, A4, A6 and the 28 subspaces of dimension 2 produced by
Eqs. (7) and (8). Moreover, because any three of the subspaces Ai are contained in the 6-dimensional space U ⊕W , they can
be reconfigured into 7 subspaces of dimension 2. Thus these partitions yield partitions of types 〈1, 7, 21, 0〉 (category 13)
and 〈1, 1, 35, 0〉 (category 19). Therefore all of the partitions in categories 4, 10, 13, 16, and 19 of Table 2 can be realized. �

Example 4. Proposition 6.2 and Corollary 6.3 show that partitions of types 〈1, 13, 7, 0〉 and 〈1, 13, 6, 3〉 do not exist. Thus,
in category 7, we must construct a partition of type 〈1, 13, 5, 6〉. Such a partition can be obtained fromP ∗ by reconfiguring
the 3-dimensional subspaces S1, S2, and S3 into 5 subspaces of dimension 2 and 6 subspaces of dimension 1. The nonzero
vectors in the subspaces of dimension 2 are:

{x+ u6 + w6, u6 + w4, x+ w3}, {x+ u5 + w7, x+ u2 + w5, u3 + w4},
{x+ w1, u1 + w2, x+ u1 + w4}, {x+ w2, x+ u7 + w7, u7 + w6},

and

{x+ u1 + w1, x+ u3 + w6, u7 + w5}.

Applying this reconfiguration to P ∗, we obtain a partition of type 〈1, 13, 5, 6〉 (category 7). �
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Example 5. A partition of type 〈1, 15, 1, 4〉 (category 5) can be obtained fromP ∗ by reconfiguring a subspace of dimension
3 into 1 subspace of dimension 2 and 4 subspaces of dimension 1. The same method can be used to construct a partition in
categories 11, 14, 17, and 20 with j = 0 from the corresponding partition in the preceding category.
Because there is no partition of type 〈1, 14, 3, 5〉, we can use the same technique to produce the necessary partition in

category 6. If we reconfigure each of two 3-dimensional subspaces inP ∗ into a subspace of dimension 2 and 4 subspaces of
dimension 1, we obtain a partition of type 〈1, 14, 2, 8〉 (category 6).
This technique cannot be used to produce a partition of type 〈1, 12, 8, 4〉 (category 8), however, because there is no

partition of type 〈1, 13, 7, 0〉. Instead, we reconfigure the 3-dimensional subspaces S1, S2, S3, and S4 in P ∗ into 8 subspaces
of dimension 2 and 4 subspaces of dimension 1. The nonzero vectors in the subspaces of dimension 2 are:

{x+ w1, u1 + w7, x+ u1 + w3}, {u6 + w5, u7 + w6, u2 + w1},
{x+ u7 + w7, u7 + w5, x+ w4}, {x+ u6 + w1, x+ u3 + w6, u4 + w5},
{x+ u6 + w6, u5 + w3, x+ u1 + w4}, {u2 + w3, x+ u2 + w5, x+ w2},
{x+ u1 + w1, u3 + w4, x+ u7 + w2}, and {x+ u2 + w2, x+ u4 + w7, u1 + w6}.

Thus we obtain a partition of type 〈1, 12, 8, 4〉 (category 8). �

Example 6. It is possible to reconfigure the subspaces S1, S2, S3, S5, and S6 into 10 subspaces of dimension 2 and 5 subspaces
of dimension 1. The nonzero vectors in the subspaces of dimension 2 are:

{u1 + w2, u6 + w5, u5 + w3}, {x+ u7 + w7, u4 + w3, x+ u5 + w1},
{x+ w3, x+ u1 + w1, u1 + w7}, {x+ w6, x+ u3 + w5, u3 + w1},
{u2 + w3, u3 + w4, u5 + w6}, {x+ w5, x+ u3 + w3, u3 + w2},
{x+ u4 + w4, x+ u5 + w7, u7 + w5}, {x+ w2, x+ u6 + w6, u6 + w7},
{u7 + w6, x+ u2 + w5, x+ u6 + w1}, and {x+ w1, x+ u6 + w2, u6 + w4}.

Applying this reconfiguration to P ∗, we obtain a partition of type 〈1, 11, 10, 5〉 (category 9).
In this partition, we can use Eq. (8) to reconfigure 7 subspaces of dimension 3 into 1 subspace of dimension 3 (which is A2)

and 14 subspaces of dimension 2. Applying this to the partition of type 〈1, 11, 10, 5〉 described in the preceding paragraph
produces a partition of type 〈1, 5, 24, 5〉 (category 15). The subspaces of dimension 3 in this partition include A2, A3, and A4.
As in Example 3, they can be reconfigured into 7 subspaces of dimension 2 to yield a partition of type 〈1, 2, 31, 5〉 (category
18). �

Example 7. The 7 subspaces from Eq. (5) and A3 can be reconfigured into 17 subspaces of dimension 2 and 5 subspaces of
dimension 1. The nonzero vectors in the subspaces of dimension 2 are:

{u4 + w3, x+ w1, x+ u4 + w7}, {u7 + w6, x+ w2, x+ u7 + w7},
{u2 + w5, x+ w3, x+ u2 + w2}, {u1 + w2, x+ w4, x+ u1 + w1},
{u3 + w2, x+ w5, x+ u3 + w3}, {u3 + w1, x+ w6, x+ u3 + w5},
{u6 + w2, x+ w7, x+ u6 + w6}, {u5 + w1, x+ u4 + w4, x+ u7 + w2},
{u7 + w1, x+ u4 + w6, x+ u5 + w5}, {u2 + w3, u3 + w4, u5 + w6},
{u1 + w6, u2 + w1, u4 + w5}, {u6 + w7, x+ u1 + w3, x+ u5 + w1},
{u4 + w7, u7 + w5, u5 + w4}, {u6 + w5, x+ u1 + w4, x+ u5 + w7},
{u5 + w3, x+ u2 + w4, x+ u3 + w6}, {u2 + w7, x+ u7 + w3, x+ u6 + w1},

and

{u1 + w4, u3 + w6, u7 + w3}.

Applying this reconfiguration to P ∗ produces a partition of type 〈1, 8, 17, 5〉 (category 12). �

Thus Examples 3–7 produce all the desired partitions in categories 5–20.

6.4. Partitions of V7(2) containing no subspace of dimension greater than 3

The partitions of V7(2) that do not contain a subspace of dimension 4 or more are listed in categories 21–38 of Table 2.
By Proposition 6.4, the only realizable partition type in category 21 is 〈17, 0, 8〉. A partition of this type can be obtained

from P ∗ by reconfiguring the subspace of dimension 4 into 1 subspace of dimension 3 and 8 subspaces of dimension 1.
With two exceptions, a partition type in category k (22 ≤ k ≤ 38) can be obtained from the corresponding partition in

category k − 18 by reconfiguring the subspace of dimension 4 into 5 subspaces of dimension 2, and then reconfiguring 2-
dimensional subspaces into subspaces of dimension 1 as necessary. For example, a partition of type 〈16, 3, 6〉 (category
22) can be obtained from P ∗ by reconfiguring the subspace of dimension 4 into 5 subspaces of dimension 2 and then
reconfiguring 2 subspaces of dimension 2 into 6 subspaces of dimension 1.
The exceptions arise in categories 24 and 25 because there are no partitions of types 〈1, 14, 3, 5〉 (category 6) and

〈1, 13, 7, 3〉 (category 7). So, to complete our analysis, we must construct partitions of types 〈14, 8, 5〉 (category 24) and
〈13, 12, 0〉 (category 25).
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Example 8. We construct a partition of type 〈14, 8, 5〉 (category 24) by reconfiguring the subspaces {0, x} ⊕ U , S1, and S2
into 8 subspaces of dimension 2 and 5 subspaces of dimension 1. The nonzero vectors in the subspaces of dimension 2 are:

{u3, u5 + w3, u2 + w3}, {x+ u7 + w7, x+ u2 + w5, u6 + w4},
{x+ u1, u1 + w2, x+ w2}, {u6 + w5, x+ u1 + w4, x+ u5 + w7},
{u6, x+ w1, x+ u6 + w1}, {x+ u2, x+ u6 + w6, u7 + w6},
{x+ u3, x+ u5, u2}, and {x+ u4, x+ u7, u5}. �

Example 9. We construct a partition of type 〈13, 12, 0〉 (category 25) by reconfiguring the subspaces {0, x} ⊕ U , S1, S2, S3,
and S4 into 1 subspace of dimension 3 and 12 subspaces of dimension 2. The nonzero vectors in the subspace of dimension
3 are:

{u4, u3, x, u6, x+ u4, x+ u3, x+ u6},

and the nonzero vectors in the subspaces of dimension 2 are:

{u1, x+ u1 + w4, x+ w4}, {u1 + w2, u5 + w3, u6 + w5},
{u1 + w6, x+ u5, x+ u6 + w6}, {u1 + w7, x+ u1 + w3, x+ w1},
{u2, x+ u2 + w2, x+ w2}, {u2 + w1, x+ u6 + w1, x+ u7},
{u2 + w3, x+ u2, x+ w3}, {u4 + w5, u5, u7 + w5},
{u3 + w4, x+ u1 + w1, x+ u7 + w2}, {u7, x+ u4 + w7, x+ u5 + w7},
{u7 + w6, x+ u1, x+ u3 + w6}, and {u6 + w4, x+ u2 + w5, x+ u7 + w7}. �

Thus all the partition types in categories 21–38 can be realized except the partition of type 〈17, 1, 5〉.
The results in Sections 3, 5 and 6 establish our main theorem.

7. Equivalence of partitions

In this paper, we have concentrated on the type of a partition. Let us call partitions of Vn(2) of the same type, P =
{V1, V2, . . . , Vk} andP ′, equivalent if there is a change of basis T : Vn(2)→ Vn(2) such thatP ′ = {T (V1), T (V2), . . . , T (Vk)}.
In conclusion, we note that partitions of the same type need not be equivalent. Using the notation of Section 5, we define
partitions P and P ′ of V6(2) as follows. The nonzero vectors in the subspaces of P are

V1 = {u1, w3, u1 + w3}, V2 = {u2, u3, u5}, V3 = {u4, u7 + w3, u5 + w3},
V4 = {u6, u3 + w3, u4 + w3}, V5 = {u7, u2 + w3, u6 + w3}, {w1, w2, w4},
{w5, u6 + w6, u6 + w1}, {w6, u3 + w7, u3 + w2}, {w7, u1 + w4, u1 + w5},
{u1 + w1, u2 + w4, u4 + w2}, {u2 + w2, u5 + w7, u3 + w6}, {u4 + w4, u2 + w5, u1 + w7},
{u5 + w5, u7 + w1, u4 + w6}, {u7 + w7, u6 + w2, u2 + w6}, {u1 + w2, u5 + w6, u6 + w7},
{u3 + w4, u5 + w2, u2 + w1}, {u4 + w5, u5 + w1, u7 + w6}, {u7 + w2, u4 + w1, u5 + w4},
{u3 + w5, u4 + w7, u6 + w4}, {u7 + w4, u2 + w7, u6 + w5}, {u1 + w6, u3 + w1, u7 + w5},

and the nonzero vectors in the subspaces of P ′ are

{u1, w1, u1 + w1}, {u2, w2, u2 + w2}, {u3, w3, u3 + w3},
{u4, w4, u4 + w4}, {u5, w5, u5 + w5}, {u6, w6, u6 + w6},
{u7, w7, u7 + w7}, {u1 + w2, u4 + w6, u2 + w7}, {u2 + w3, u6 + w7, u7 + w1},
{u3 + w4, u2 + w6, u5 + w3}, {u4 + w5, u7 + w3, u5 + w2}, {u5 + w6, u1 + w4, u6 + w3},
{u1 + w3, u5 + w7, u6 + w1}, {u2 + w4, u4 + w7, u1 + w5}, {u3 + w5, u6 + w2, u4 + w3},
{u7 + w2, u6 + w4, u2 + w1}, {u2 + w5, u3 + w7, u5 + w4}, {u3 + w6, u4 + w1, u6 + w5},
{u5 + w1, u7 + w4, u4 + w2}, {u1 + w6, u3 + w1, u7 + w5}, {u1 + w7, u3 + w2, u7 + w6}.

BothP andP ′ are partitions of type 〈21, 0〉. It is easily checked that the subspacesV1, V2, . . . , V5 inP can be reconfigured
into a 4-dimensional subspace. Amore tedious calculation shows that the span of no 2 subspaces inP ′ contains 5 subspaces
in P ′, and so no 5 subspaces in P ′ can be reconfigured into a 4-dimensional subspace. Thus P and P ′ are not equivalent.
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