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Abstract

Let X and Y be two n × n Hermitian matrices. In the article Proof of a conjectured exponential formula
(Linear Multilinear Algebra 19 (1986) 187–197) R.C. Thompson proved that there exist two n × n unitary
matrices U and V such that

eiXeiY = eiUXU∗+V YV ∗
.

In this note we consider extensions of this result to compact operators as well as to operators in an embed-
dable II1 factor.
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1. Introduction

In his 1986 paper [13], studying the product eiXeiY (with X,Y Hermitian matrices) R.C.
Thompson considered the analytic map ξ(w) = eiXeiwY defined for some w ∈ C in a neighbor-
hood of the unit interval. Using perturbation theory techniques, he derived a series of inequalities
concerning the eigenvalues of X,Y and those of Z = log(eiXeiY ). The family of inequalities
found by Thompson happened to relate to those proposed by A. Horn [7] as the complete solu-
tion of the following (seemingly) elementary problem: find necessary and sufficient conditions
on the eigenvalues of the Hermitian matrices A,B,C in order to have UAU∗ + V BV ∗ = C for
some unitary matrices U and V . By that time, V.B. Lidskii had recently published the paper [12],
announcing the proof of Horn’s conjecture (see Appendix A below for a brief exposition on the
subject). Thus, Thompson’s computations lead him to conclude that there existed unitary ma-
trices U,V such that Z = UXU∗ + V YV ∗. However, details on Lidskii’s proof never saw the
light, and for a very long time, Horn’s conjecture remained open and consequently, Thompson’s
result was gently archived. It was not until twelve years later that a proof of Horn’s conjecture
was given in two exceptional papers, the first one due to A. Klyachko [9] and the second one due
to A. Knutson and T. Tao [10].

Later, Horn’s result was extended to the infinite dimensional setting by Bercovici et al. in two
papers [2,3] that deal with the case of operators in an embeddable II1 factor and with compact
operators respectively.

Then, it is only natural to ask for extensions of Thompson’s formula on adequate infinite
dimensional settings. In this paper, we provide generalizations of Thompson’s formula to the
setting of compact operators, and to the setting of finite von Neumann algebras. Our motivation
stems for the applications of Thompson’s identity to the study of the geometry of the Grassman-
nian manifold when it is endowed with a left-invariant metric induced by a unitarily invariant
norm (see [14] and the Appendix at [1]).

2. Preliminaries

Let H be a complex separable and infinite dimensional Hilbert space. In this paper B(H),
B0(H) and Bf (H) stand for the sets of bounded linear operators, compact operators and finite
rank operators in H respectively. The unitary group of B(H) is indicated by U (H). If x ∈ B(H),
then ‖x‖ stands for the usual uniform norm, and we will use | · | to indicate the modulus of
an operator, i.e. |x| = √

x∗x. We indicate with B(H)h (resp. B0(H)h) the real linear space of
Hermitian elements (resp. Hermitian compact elements) of B(H). Given η, ζ ∈ H, by means of
η ⊗ ζ we denote the rank one operator defined by η ⊗ ζ(ξ) = 〈ξ, ζ 〉η.

On the other hand, throughout this paper Mn(C) denotes the algebra of complex n × n ma-
trices, Gl(n) the group of all invertible elements of Mn(C), U (n) the group of unitary n × n

matrices, and H(n) the real subalgebra of Hermitian matrices.
Given x ∈ B(H) (or T ∈ Mn(C)), R(x) is the range or image of x, N(x) the null space of

x, and σ(x) denotes the spectrum of x. If x is normal (i.e. xx∗ = x∗x), then Ex(Ω) denotes the
spectral measure of x associated to the (measurable) subset Ω of the complex plane.

Let us give a precise statement of Thompson’s formula:

Theorem (Thompson). Given X,Y ∈ H(n), there exist unitary matrices U,V ∈ Mn(C) such
that

eiXeiY = ei(UXU∗+V YV ∗).
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2.1. Some preliminaries on II1 factors

Throughout this section, Rω denotes the ultrapower of the hyperfinite II1 factor, and M de-
notes any II1 factor that can be embedded in Rω. We are going to use the Greek letter τ to denote
the normalized tracial state of M. Given an Hermitian element a ∈ M, it can be written as

a =
1∫

0

λa(t) de(t),

where λa is a non-increasing right continuous function, and e(·) is a spectral measure on [0,1)

such that τ(e(t)) = t .
One of the characterizations of embeddable factors is the existence of a “sequence of matri-

cial approximations” for any finite family of Hermitian elements. This notion is described more
precisely in the following theorem:

Theorem 2.1. Let a1, . . . , ak be Hermitian elements of Rω. Then, there are integer numbers
1 � n1 < n2 < · · · and Hermitian matrices X

(m)
1 , . . . ,X

(m)
k ∈ Mnm(C) such that for every non-

commutative polynomial p it holds that

τ
(
p(a1, . . . , ak)

) = lim
m→∞ τnm

(
p
(
X

(m)
1 , . . . ,X

(m)
k

))

where τnm is the normalized trace of Mnm(C). Moreover, the matrices can be taken so that for

each j ∈ {1, . . . k} we have that ‖X(m)
j ‖ � ‖aj‖ for every m ∈ N.

Given a matrix M ∈ Mn(C) whose eigenvalues arranged in non-increasing order are denoted
by λ1, . . . , λn, let λM denote the real-valued function defined in [0,1) in the following way:

λM(t) =
n∑

j=1

λjχ[ j−1
n

,
j
n
)
.

With this notation, the following result is a direct consequence of Theorem 2.1, and the reader is
referred to [2] for a detailed proof:

Corollary 2.2. Let a ∈ M be an Hermitian element, and {X(m)}m∈N a sequence of matricial
approximations of a. Then, λX(m) −−−−→

m→∞ λa almost everywhere.

Finally, we mention the following result valid in every finite factor:

Proposition 2.3. (See Kamei [8].) Let a and b be Hermitian elements of a finite factor M. Then,
the following statements are equivalent:

1. λa = λb;
2. a belongs to the norm closure of the unitary orbit of b.
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3. Thompson-type formulae for compact operators

Throughout this section, given a compact operator x, the eigenvalues of x are arranged in
non-increasing order with respect to their moduli, i.e., if i � j then |λi(x)| � |λj (x)|.
Theorem 3.1. Given x, y ∈ B0(H)h, there exist unitary operators uk and vk ∈ B(H), for k ∈ N,
such that

eixeiy = lim
k→∞ eiukxu∗

k+ivkyv∗
k . (1)

Proof. Let x = u|x| and y = v|y| be polar decompositions of x and y, and

|x| =
∑
j∈N

λj

(|x|)βj ⊗ βj and |x| =
∑
j∈N

λj

(|y|)ζj ⊗ ζj ,

spectral decompositions of |x| and |y| respectively. Recall that the eigenvalues are arranged in
non-increasing order. Define

xk =
k∑

j=1

λj

(|x|)βj ⊗ (uβj ) and yk =
k∑

j=1

λj

(|y|)ζj ⊗ (vζj ),

and Sk = R(xk) + R(yk). Then xk(Sk) ⊂ Sk and yk(Sk) ⊂ Sk . So, xk, yk ∈ B(Sk) � Mn(C)

(where n = dim(Sk)). On the other hand,

eixeiy = lim
k→∞ eixk eiyk . (2)

Due to Thompson’s formula for matrices, there exist uk, vk unitary linear transformations in Sk

(which means that uku
∗
k = pSk

and vkv
∗
k = pSk

, where pSk
denotes the orthogonal projection

onto Sk) such that

eixk eiyk = eiukxku
∗
k+ivkykv

∗
k . (3)

We can extend uk, vk ∈ B(Sk) to the unitaries ũk = uk + pS ⊥
k

and ṽk = vk + pS ⊥
k

∈ B(H). Then
from the equality (3) valid in Sk we get the following in B(H)

eixk eiyk = eiũkxkũ
∗
k+iṽkyk ṽ

∗
k . (4)

Since (ũkxũ∗
k + ṽkyṽ∗

k ) − (ũkxkũ
∗
k + ṽkykṽ

∗
k ) → 0, using (2) we get

ei(ũkxũ∗
k+ṽkyṽ∗

k ) − eixeiy ‖·‖−−−−→
k→∞ 0. �

Since the unitary orbit of a fixed operator in B(H) is not closed in general [15], to avoid the
limit in (1) we have to pay some price. The following theorem follows this path.

Theorem 3.2. Given x, y ∈ B0(H)h, there is an isometry w ∈ B(H), and unitary operators u

and v such that

eiwxw∗
eiwyw∗ = eiu(wxw∗)u∗+iv(wyw∗)v∗

.
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Remark 3.3. Another way to state the theorem follows: there is a bigger Hilbert space K con-
taining H such that the extensions x̂, ŷ ∈ B(K) defined by

x̂ =
(

x 0
0 0

)
H
K � H , ŷ =

(
y 0
0 0

)
H
K � H

satisfy the identity eix̂eiŷ = ei(ux̂u∗+vŷv∗), for some unitary operators u and v acting on K. �
Let us roughly sketch the idea behind the proof. We know that there are unitary operators

un, vn ∈ U (H) such that

eixeiy = lim
n→∞ ei(unxu∗

n+vnyv∗
n).

Let zn = unxu∗
n + vnyv∗

n . Extending to a bigger space K the operators zn, un, vn, x and y as in
the previous remark, we can conjugate the sequence {ẑn}n∈N with unitary operators wn acting on
K so that eẑn = ewnẑnw∗

n , and the modified sequence {wnẑnw
∗
n}n∈N has a convergent subsequence.

If ŝ denotes the limit of that subsequence, provided dim K � H = ∞, we can always find two
unitary operators û0 and v̂0 such that

ŝ = û0x̂û∗
0 + v̂0ŷv̂∗

0 .

As this limit ŝ satisfies that eix̂eiŷ = eiŝ , this would complete the proof. Since the proof of
Theorem 3.2 is rather long, some technical parts are included in the next three lemmas:

Lemma 3.4. Let {an}n∈N be a bounded sequence of finite rank normal operators, and let pn

denote the orthogonal projection onto R(an). If there exists a finite rank projection p such that

pn
‖·‖−−−−→

n→∞ p, then {an}n∈N has a convergent subsequence.

Proof. Since pn
‖·‖−−−−→

n→∞ p, the operators sn := pnp + (1 − pn)(1 − p) converge to 1 as n → ∞.

We can suppose that for every n ∈ N, sn is invertible. Note also that pnsn = snp. For each n ∈ N,
let sn = un|sn| be the polar decomposition of sn. Then, straightforward computations show that
pnun = unp. So, as the sequence {an}n∈N is bounded, {u∗

nanun}n∈N is a bounded sequence of
normal operators whose range is the finite dimensional subspace R(p). Therefore, it has a norm-

convergent subsequence. Since un
‖·‖−−−−→

n→∞ 1, the original sequence {an}n∈N also has a convergent

subsequence. �
Lemma 3.5. Let z ∈ B0(H)h be such that ‖z‖ � π , and let {wn}n∈N be a bounded sequence of
Hermitian compact operators which satisfies:

(a) eiwn
‖·‖−−−−→

n→∞ eiz;

(b) There exists n0 ∈ N and ε > 0 such that( ⋃
n�n0

σ(wn)

)
∩

( ⋃
k∈Z,k �=0

(2kπ − ε,2kπ + ε)

)
= ∅.

Then, {wn}n∈N has a convergent subsequence.
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Proof. Since ‖z‖ � π and the operators wn satisfy condition (b), there exists ε > 0 such that ±ε

is not contained neither in the spectrum of any wn nor in the spectrum of z, and it satisfies

pn = Eewn

(
B1

(
2 sin

ε

2

))
= Ewn

(
(−ε, ε)

)
,

p = Eez

(
B1

(
2 sin

ε

2

))
= Ez

(
(−ε, ε)

)
,

where Bα(ρ) denotes the ball in C of radius ρ centered at α. Standard arguments of functional

calculus imply that pn
‖·‖−−−−→

n→∞ p. If log denotes the principal branch of the complex logarithm,

then

log
(
(1 − pn) + pne

wn
) = pnwn and log

(
(1 − p) + pez

) = pz.

So, pnwn
‖·‖−−−−→

n→∞ pz because the sequence {(1 − pn) + pne
wn}n∈N converges in the norm topol-

ogy to (1 − p) + pez, and the holomorphic functional calculus is continuous with respect to
this topology. On the other hand, if qn = 1 − pn, the sequence {wnqn}n∈N satisfies the condi-
tions of Lemma 3.4. Hence, it has a convergent subsequence {wnk

qnk
}k∈N. Therefore, {wnk

}k∈N

converges, which concludes the proof. �
The next lemma is a variation of Lemma 4.3 in [3], and its proof follows essentially in the

same lines. We include a sketch of its proof for the sake of completeness.

Lemma 3.6. Let x, y ∈ B0(H)h, and suppose there exist unitary operators uk and vk , for k ∈ N

such that

s = lim
k→∞ukxu∗

k + vkyv∗
k ,

for some s ∈ B0(H). Then, there exist compact operators s̄, x̄, ȳ satisfying s̄ = x̄ + ȳ, σ(s̄) =
σ(s), σ(x̄) = σ(x), and σ(ȳ) = σ(y) with the same multiplicity for every non-zero eigenvalue.

Sketch of proof. Let xk = ukxu∗
k , yk = vkyv∗

k , and sk = xk + yk . For each k ∈ N consider an

increasing sequence of projections {pk,n}n∈N such that dimR(pk,n) = n, pk,n
SOT−−−−→

n→∞ 1, and

εn := sup
k∈N

(∥∥(1 − pk,n)sk
∥∥ + ∥∥(1 − pk,n)xk

∥∥ + ∥∥(1 − pk,n)yk

∥∥)−−−−→
n→∞ 0.

This last requirement can be achieved by choosing the projections in such a way that they capture
for each n as many eigenvectors of xk and yk as it is possible, among those corresponding to the
biggest eigenvalues (in modulus) of xk and yk .

Now, consider a fixed increasing sequence of projections {qn}n∈N such that dimR(qn) = n,

and qn
SOT−−−−→

n→∞ 1, and for each k ∈ N define a unitary operator wk such that

wkpk,nw
∗ = qn.
k
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Let s̄k = wkskw
∗
k , x̄k = wkxkw

∗
k , and ȳk = wkykw

∗
k . Straightforward computations show that

these operators satisfy the following inequalities:

‖s̄k − qns̄kqn‖ � 2εn, ‖x̄k − qnx̄kqn‖ � 2εn, and ‖ȳk − qnȳkqn‖ � 2εn. (5)

Note that, for each n ∈ N, set {qns̄kqn: k ∈ N} is bounded, hence totally bounded. So, the first
inequality of (5) implies that the set {s̄k: k ∈ N} is totally bounded as well. Therefore, passing
to a subsequence if necessary, we may assume that the sequence {s̄k} converges to a compact
Hermitian operator s̄. The same argument can be applied to the sequences {x̄k} and {ȳk}, and we
get the operators x̄, and ȳ, respectively. Clearly these operators satisfy

s̄ = x̄ + ȳ,

and standard arguments of functional calculus show that σ(s̄) = σ(s), σ(x̄) = σ(x), and σ(ȳ) =
σ(y) with the same multiplicity for every non-zero eigenvalue. �
Proof of Theorem 3.2. Let z be any bounded and Hermitian operator such that eiz = eixeiy . For
simplicity, we are going to prove the alternative version of the statement described in Remark 3.3,
and without lost of generality, we are going to assume that ‖z‖ � π . Then note that, since
eiz − 1 = eixeiy − 1 and the right hand is compact, then an elementary argument using the func-
tional calculus of the entire map F(λ) = (eiλ − 1)λ−1 shows that z is also a compact operator.

By Theorem 3.1, there are unitary operators un and vn such that:

eiz = lim
n→∞ ei(unxu∗

n+vnyv∗
n).

Let zn := unxu∗
n + vnyv∗

n . Since x and y are compact, there exists M > 0 big enough such that
for every j � M and every n ∈ N it holds that λj (|zn|) < π . For technical reasons, passing to a
subsequence if necessary, we can assume that {λj (zn)}n∈N converges for every j ∈ {1, . . . ,M}.
Define

Ω =
{
m ∈ N: lim sup

n→∞
λm

(|zn|
) = 2kπ for some k ∈ N

}

=
{
m ∈ N: lim

n→∞λm

(|zn|
) = 2kπ for some k ∈ N

}
.

The second equality holds because #Ω < M . Let {ζ (n)
j }j∈N be an orthonormal basis of H such

that ζ
(n)
j is an eigenvector of λj (zn). Then

lim
n→∞

〈|zn|ζ (n)
j , ζ

(n)
j

〉 = 2kπ for j ∈ Ω , and some k ∈ Z. (6)

Let K = H ⊕ H, and extend x, y, z to K as:

x̂ =
(

x 0
0 0

)
H
H , ŷ =

(
y 0
0 0

)
H
H , and ẑ =

(
z 0
0 0

)
H
H .
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The unitary operators un and vn are also extended, but in this case as the identity in the second
copy of H. Denote with ûn and v̂n these extensions. With these definitions, we get

ẑn = ûnx̂û∗
n + v̂nŷv̂∗

n =
(

zn 0

0 0

) H
H .

Fix an orthonormal basis {βj }j∈N of H, and define for each n ∈ N the unitary operator wn as the
unique unitary operator in B(K) that satisfies

wn

(
ζ

(n)
j ⊕ 0

) = 0 ⊕ βj if j ∈ Ω,

wn(0 ⊕ βj ) = ζ
(n)
j ⊕ 0 if j ∈ Ω,

wn

(
ζ

(n)
j ⊕ 0

) = ζ
(n)
j ⊕ 0 if j /∈ Ω,

wn(0 ⊕ βj ) = 0 ⊕ β
(n)
j if j /∈ Ω.

Consider the new sequence sn = wnẑnw
∗
n. Let p

(n)
2π , p(n)

s , pc and p0 be the orthogonal projections
such that:

R
(
p

(n)
2π

) = span
{
ζ

(n)
j ⊕ 0: j ∈ Ω

}
,

R
(
p(n)

s

) = span
{
ζ

(n)
j ⊕ 0: j /∈ Ω

}
,

R(pc) = span{0 ⊕ βj : j ∈ Ω},
R(p0) = span{0 ⊕ βj : j /∈ Ω}.

Note that, for each n ∈ N, the operator sn commutes with the four projections.

Claim. There exists n0 large enough so that

1. sn(p
(n)
2π + p0) = 0 for every n ∈ N;

2. {|snpc|}n∈N converges to an operator whose spectrum is contained in {2kπ : k ∈ Z};
3. There exists ε > 0 such that

( ⋃
n�n0

σ
(
snp

(n)
s

)) ∩
( ⋃

k∈Z,k �=0

(2kπ − ε,2kπ + ε)

)
= ∅.

The first item is clear, and the second item is a direct consequence of (6). In order to prove the
third one, recall that for every j > M and every n ∈ N the eigenvalues λj (|zn|) are contained in
(−π,π). On the other hand, we can take n0 large enough so that the sequences {λj (zn)}n∈N for
j ∈ {1, . . . ,M} are close to their limits. Note that, for j /∈ Ω the limits are far from the integer
multiples of 2π . These facts, all together, imply (3), and conclude the proof of the claim.

Straightforward computations show that

eiẑ = lim ei(ûnx̂û∗
n+v̂nŷv̂∗

n) = lim eiwn(ûnx̂û∗
n+v̂nŷv̂∗

n)w∗
n ,
n→∞ n→∞
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which implies

eiẑ = lim
n→∞ ei(snp

(n)
s ), (7)

because

lim
n→∞ ei(sn(pc+p

(n)
2π +p0)) = 1.

The identity (7) and the claim allow us to apply Lemma 3.5 to the sequence {snp(n)
s }n∈N, and to

obtain a convergent subsequence. Therefore, the sequence {sn}n∈N has a convergent subsequence
{snk

}k∈N. Let s be its limit, that is

s = lim
k→∞ snk

= lim
k→∞wnk

(
ûnk

x̂û∗
nk

+ v̂nk
ŷv̂∗

nk

)
w∗

nk
. (8)

Clearly, this limit satisfies the identity eiẑ = eis . On the other hand, if we consider the restriction
of (8) to S = R(1 − p0), then by Lemma 3.6 there are operators s̄, x̄, ȳ ∈ B(S) which have the
same non-zero eigenvalues (counted with multiplicity) as the operators s, x̂, and ŷ. Extended
as zero in S ⊥ (and using this notation), s̄, x̄ and ȳ become unitary equivalent to s, x̂, and ŷ

respectively. Therefore, as s̄ = x̄ + ȳ, there exist two unitary operators u0 and v0 acting on K
such that

s = u0x̂u∗
0 + v0ŷv∗

0 .

This concludes the proof. �
4. Thompson-type formulae for operators in an embeddable II1 factor

Throughout this section, let M be a II1 factor that can be embedded in Rω. We start with two
technical lemmas.

Lemma 4.1. Let a, b ∈ M be Hermitian elements, and let {(A(m),B(m))}m∈N be a sequence of
matricial approximations. Then, for every polynomial p ∈ C[z, z̄]

τ
(
p
(
eiaeib

)) = lim
m→∞ τnm

(
p
(
eiA(m)

eiB(m)))
.

Proof. It is a straightforward consequence of Theorem 2.1. �
Let us recall the definition of decreasing rearrangements of functions: given a measurable

function f : [0,1) → R, its decreasing rearrangement f ∗ : [0,1) → R is defined by

f ∗(t) = inf
{
s:

∣∣{x: f (x) > s
}∣∣ � t

}
.

Remark 4.2. Note that, given two functions f,g : [0,1) → R, if they satisfy |{x: f (x) > s}| =
|{x: g(x) > s}| for every s ∈ R, then f ∗ = g∗. The reader is referred to [4] for more details on
decreasing rearrangements. �



1524 J. Antezana et al. / Journal of Functional Analysis 262 (2012) 1515–1528
Lemma 4.3. Let f,g : [0,1) → R be bounded non-increasing functions such that ‖g‖∞ � π ,
and for any interval I of the unit circle S1 it holds that

1∫
0

χ
I

(
eif (t)

)
dt =

1∫
0

χ
I

(
eig(t)

)
dt. (9)

Then, there is a function ḡ : [0,1) → R such that eif (t) = eig(t), and ḡ∗ = g.

Proof. Let Ω = {t ∈ [0,1): eif (t) = −1}, and divide it in two measurable sets Ω+ and Ω− such
that

|Ω+| = ∣∣{t ∈ [0,1): g(t) = π
}∣∣ and |Ω−| = ∣∣{t ∈ [

0,1): g(t) = −π
}∣∣.

This is possible because |Ω| = |{t ∈ [0,1): eig(t) = −1}| by (9). Define ḡ : [0,1) → R as follows:

ḡ(t) :=
⎧⎨
⎩

f (t) − 2kπ if f (t) ∈ ((2k − 1)π, (2k + 1)π);

π if t ∈ Ω+;

−π if t ∈ Ω−.

The function ḡ clearly satisfies the identity eif (t) = eig(t). So, for every arc I of the unit circle

1∫
0

χ
I

(
eig(t)

)
dt =

1∫
0

χ
I

(
eif (t)

)
dt,

and therefore

1∫
0

χ
I

(
eig(t)

)
dt =

1∫
0

χ
I

(
eig(t)

)
dt. (10)

The next (and last) step, is to prove that ḡ∗ = g∗ = g (almost everywhere). The last identity holds
because g is decreasing and the decreasing rearrangements considered here are with respect to
the Lebesgue measure. To prove that ḡ∗ = g∗, it is enough to verify that for every s ∈ R

∣∣{x: ḡ(x) > s
}∣∣ = ∣∣{x: g(x) > s

}∣∣. (11)

Note that, by construction, ‖ḡ‖∞ � π . Hence, ‖ḡ‖∞ = ‖g‖∞ by (10). Moreover, also by con-
struction, it holds that

∣∣{x: ḡ(x) = −π
}∣∣ = ∣∣{x: g(x) = −π

}∣∣.
Therefore, the equality in (11) is apparent if s > ‖g‖∞ or s � −π . On the other hand, if −π <

s � ‖g‖∞, let I = {eit : s < t � π}. Then
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∣∣{x: ḡ(x) > s
}∣∣ =

1∫
0

χ
I

(
eig(t)

)
dt − ∣∣{x: ḡ(x) = −π

}∣∣

=
1∫

0

χ
I

(
eig(t)

)
dt − ∣∣{x: g(x) = −π

}∣∣ = ∣∣{x: g(x) > s
}∣∣.

This concludes the proof. �
Theorem 4.4. Given a, b ∈ M Hermitian, there are two sequences of unitaries {un}n∈N and
{vn}n∈N such that

eiaeib = lim
n→∞ ei(unau∗

n+vnbv∗
n),

where the convergence is with respect to the operator norm topology.

Proof. Let {A(m)}m∈N and {B(m)}m∈N be sequences of matricial approximations of a and b

respectively. By Thompson’s theorem, there are unitary matrices Um and Vm such that for each
m ∈ N

eiA(m)

eiB(m) = ei(UmA(m)U∗
m+VmB(m)V ∗

m).

Define Dm = UmA(m)U∗
m + VmB(m)B∗

m. By Theorem A.1, the functions λA(m) , λB(m) , and λD(m)

satisfy Eq. (A.2). Since the sequence of non-increasing functions {λD(m)}m∈N is uniformly
bounded, by Helly’s selection theorem, there is a subsequence of this sequence that converges for
all but almost countable many points t ∈ [0,1). To simplify the notation, let us assume that the
original sequence converges in this way, and let f be its limit. This limit is also non-increasing
and bounded. Moreover, as λA(m) , λB(m) , and λD(m) satisfy (A.2) for every m ∈ N, by the domi-
nated convergence theorem, λa , λb and f also satisfy those inequalities. Then, there are operators
a′, b′ such that

λa′ = λa, λb′ = λb, and λa′+b′ = f . (12)

Let c ∈ M such that eiaeib = eic and ‖c‖ � π . Given a polynomial p, on one hand by
Lemma 4.1:

lim
m→∞ τnm

(
p
(
eiA(m)

eiB(m))) = τ
(
p
(
eiaeib

)) = τ
(
p
(
eic

)) =
1∫

0

p
(
eiλc(t)

)
dt. (13)

On the other hand, by the dominated convergence theorem, we obtain

lim
m→∞ τnm

(
p
(
eiA(m)

eiB(m))) = lim
m→∞ τnm

(
p
(
eiD(m))) = lim

m→∞

1∫
0

p
(
eiλ

D(m) (t)
)
dt

=
1∫
p
(
eif

)
dt. (14)
0
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Therefore, (13) and (14) imply that for every polynomial p

1∫
0

p
(
eiλc(t)

)
dt =

1∫
0

p
(
eif (t)

)
dt.

Using standard arguments we obtain the same result replacing the polynomials by characteristic
functions of arcs. Then, by Lemma 4.3, there is a function λ̄c such that eif = eiλc , and λ̄∗

c = λc .
Suppose that

c =
1∫

0

λc(t) de(t),

and define

c′ =
1∫

0

λ̄c(t) de(t) and d =
1∫

0

f (t) de(t).

Then, eic′ = eid , λd = f , and λc′ = λc. Combining these facts with Eq. (12), and using Proposi-
tion 2.3, we get that there are sequences {u(a)

n }n∈N, {u(b)
n }n∈N, {u(c)

n }n∈N, and {u(d)
n }n∈N of unitary

elements of M so that

d = lim
n→∞

(
u(d)

n

)(
a′ + b′)(u(d)

n

)∗
,

a′ = lim
n→∞

(
u(a)

n

)
a
(
u(a)

n

)∗
,

b′ = lim
n→∞

(
u(b)

n

)
b
(
u(b)

n

)∗
, and

c = lim
n→∞

(
u(c)

n

)
c′(u(c)

n

)∗
.

Finally, if we define un = u
(c)
n u

(d)
n u

(a)
n y vn = u

(c)
n u

(d)
n u

(b)
n we get

eic = lim
n→∞ ei(unau∗

n+vnbv∗
n),

which concludes the proof. �
Appendix A. Brief review on Horn’s conjecture

One of the most challenging problems in linear algebra has been to characterize the real n-
tuples α, β , and γ that are the eigenvalues of n × n Hermitian matrices A, B , and C such that
C = A + B . In his remarkable 1962 paper [7], Alfred Horn found necessary condition on the
n-tuples α, β , and γ and conjectured that this conditions were also sufficient. This conjecture
remained open for several years, and it was solved at the end of the 20th century. Later on, these
results were extended to operators in embeddable II1 factors. In this appendix, we briefly recall
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these results; for some really deep material on the subject, we point the reader to the nice surveys
by R. Bhatia [5] and W. Fulton [6].

To begin with, we are going to fix some notation and conventions in order to state correctly
the results in the finite dimensional setting. Firstly, the n-tuples will be considered arranged in
non-increasing order, and by means of λ(A) we denote the vector of eigenvalues of a self-adjoint
matrix, also arranged in non-increasing order.

Clearly, one necessary condition that three n-tuples α, β , and γ have to satisfy in order to be
the eigenvalues of Hermitian matrices A, B , and C such that C = A + B , is the next identity

n∑
j=1

γj =
n∑

j=1

αj +
n∑

j=1

βj . (A.1)

This equality is far from being sufficient. In [7], Horn prescribed sets of triples (I, J,K) of
subsets of {1, . . . , n}, that we will always write in increasing order, and he proved that the system
of inequalities

n∑
k∈K

γk �
∑
i∈I

αi +
∑
j∈J

βj ,

are necessary. The triples (I, J,K) are defined by the following inductive procedure. Set

Un
r :=

{
(I, J,K):

∑
i∈I

i +
∑
j∈J

j = r(r + 1)

2
+

∑
k∈K

k

}
.

For r = 1 set T n
1 = Un

1 . If n � 2, set

T n
r :=

{
(I, J,K) ∈ Un

r : for all p < r and all (F,G,H) ∈ T r
p ,

∑
f ∈F

if +
∑
g∈G

jg � p(p + 1)

2
+

∑
h∈H

kh

}
.

Then, the system of inequalities considered by Horn runs over all the triples in the set Tn :=⋃n
k=1 T n

k . He also conjectured that this system of inequalities, together with the identity (A.1),
were sufficient. The proof of this conjecture is a consequence of several deep works of Klyachko,
Knutson, and Tao (see [6,9–11]).

Theorem A.1. Given α,β, γ ∈ R
n, the following statements are equivalent:

1. There are n × n Hermitian matrices A, B and C such that C = A + B and λ(A) = α,
λ(B) = β , and λ(C) = γ ;

2.
∑n

k=1 γk = ∑n
i=1 αi + ∑n

j=1 βj , and for every (I, J,K) in T n
r ,

∑
k∈K γk �∑

i∈I αi + ∑
j∈J βj

Later on, this result was extended by Bercovici and Li in [2] to operators in an embeddable II1
factor M, i.e. a factor that can be embedded in the ultrapower of the hyperfinite factor. To state
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correctly this generalization, we need to introduce some notations. Given n ∈ N, if I ⊆ {1, . . . , n},
then σI denotes the set

⋃
i∈I

[
(i − 1)

n
,

i

n

)
.

With this notation, the set T is defined by

T :=
∞⋃

n=1

n−1⋃
r=1

{
(σI , σJ , σK): (I, J,K) ∈ T n

r

}
.

Theorem A.2. Consider bounded non-increasing and right-continuous functions u, v, and w

defined in the [0,1). The following are equivalent:

1. There exist a, b ∈ M such that u = λa , v = λb and w = λa+b;
2. The functions u, v, and w satisfy:

1∫
0

u(t) dt +
1∫

0

v(t) dt =
1∫

0

w(t) dt, and

∫
ω1

u(t) dt +
∫
ω2

v(t) dt �
∫
ω3

w(t) dt, ∀(ω1,ω2,ω3) ∈ T . (A.2)
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