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a b s t r a c t

An Artin–Schreier tower over the finite field Fp is a tower of field
extensions generated by polynomials of the form Xp

− X − α.
Following Cantor and Couveignes, we give algorithms with quasi-
linear time complexity for arithmetic operations in such towers.
As an application, we present an implementation of Couveignes’
algorithm for computing isogenies between elliptic curves using
the p-torsion.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Definitions. If U is a field of characteristic p, polynomials of the form P = Xp
− X − α, with α ∈ U,

are called Artin–Schreier polynomials; a field extension U′/U is Artin–Schreier if it is of the form
U′

= U[X]/P , with P , an Artin–Schreier polynomial.
An Artin–Schreier tower of height k is a sequence of Artin–Schreier extensions Ui/Ui−1, for 1 ≤ i ≤

k; it is denoted by (U0, . . . , Uk). In what follows, we only consider extensions of finite degree over Fp.
Thus, Ui is of degree pi over U0, and of degree pid over Fp, with d = [U0 : Fp].

The importance of this concept comes from the fact that all Galois extensions of degree p are
Artin–Schreier. As such, they arise frequently, e.g., in number theory (for instance, when computing
pk-torsion groups of Abelian varieties over Fp). The need for fast arithmetic in these towers is
motivated in particular by applications to isogeny computation and point-counting in cryptography,
as in Couveignes (1996).

Our contribution. The purpose of this paper is to give fast algorithms for arithmetic operations in
Artin–Schreier towers. Prior results for this task are due to Cantor (1989) and Couveignes
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(2000). However, the algorithms of Couveignes (2000) need as a prerequisite a fast multiplication
algorithm in some towers of a special kind, called ‘‘Cantor towers’’ in Couveignes (2000). Such
an algorithm is unfortunately not in the literature, making the results of Couveignes (2000) non
practical.

This paper fills the gap. Technically, our main algorithmic contribution is a fast change-of-basis
algorithm; it makes it possible to obtain fast multiplication routines, and by extension completely
explicit versions of all algorithms of Couveignes (2000). Along the way, we also extend constructions
of Cantor to the case of a general finite base field U0, where Cantor had U0 = Fp. We present
our implementation, in a library called FAAST, based on the library NTL by Shoup (2003). As an
application, we put to practice the isogeny computation algorithm by Couveignes (1996) (or, more
precisely, its refined version by De Feo (2011)).

Complexity notation. We count time complexity in number of operations in Fp. Then, notation being
as before, optimal algorithms in Uk would have complexity O(pkd); most of our results are (up to
logarithmic factors) of the form O(pk+αd1+β), for small constants α, β such as 0, 1, 2 or 3.

Many algorithms below rely on fast multiplication; thus, we let M : N → N be a multiplication
function, such that polynomials in Fp[X] of degree less than n can be multiplied in M(n) operations,
under the conditions of von zur Gathen and Gerhard (1999, Ch. 8.3). Typical orders of magnitude
for M(n) are O(nlog2(3)) for Karatsuba multiplication or O(n log(n) loglog(n)) for FFT multiplication.
Using fast multiplication, fast algorithms are available for Euclidean division or extended GCD (von
zur Gathen and Gerhard, 1999, Ch. 9 & 11).

The cost ofmodular composition, that is, of computing F(G) mod H , for F ,G,H ∈ Fp[X] of degrees at
most n, will be written C(n). We refer to von zur Gathen and Gerhard (1999, Ch. 12) for a presentation
of known results in an algebraic computational model: the best known algorithms have subquadratic
(but superlinear) cost in n. Note that in a Boolean RAM model, the algorithm by Kedlaya and Umans
(2008) takes quasi-linear time.

For several operations, different algorithms will be available, and their relative efficiencies can
depend on the values of p, d and k. In these situations, we always give details for the case where p is
small, since cases such as p = 2 or p = 3 are especially useful in practice. Some of our algorithms
could be slightly improved, but we usually prefer giving the simpler solutions.

Previous work. As said above, this paper builds on former results by Cantor (1989) and Couveignes
(2000, 1996); to our knowledge, prior to this paper, no previousworkprovided themissing ingredients
to put Couveignes’ algorithms to practice. Part of Cantor’s results were independently discovered by
Wang and Zhu (1998) and have been extended in another direction (fast polynomial multiplication
over arbitrary finite fields) by von zur Gathen and Gerhard (2002) and Mateer (2008).

This paper is an expanded version of the conference paper De Feo and and Schost (2009). We
provide a more thorough description of the properties of Cantor towers (Section 3), improvements to
some algorithms (e.g. the Frobenius or pseudotrace computations) and amore extensive experimental
section.

Organization of the paper. Section 2 consists in preliminaries: trace computations, duality, basics on
Artin–Schreier extensions. In Section 3, we define a specific Artin–Schreier tower, where arithmetic
operations will be fast. Our key change-of-basis algorithm for this tower is in Section 4. In Sections 5
and 6, we revisit the algorithm for isomorphisms between Artin–Schreier towers by Couveignes
(2000) in our context, which yields fast arithmetics for any Artin–Schreier tower. Finally, Section 7
presents our implementation of the FAAST library and gives experimental results obtained by
applying our algorithms to the isogeny algorithm by Couveignes (1996) for elliptic curves.

2. Preliminaries

As a general rule, variables and polynomials are in upper case; elements algebraic over Fp (or some
other field, that will be clear from the context) are in lower case.
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2.1. Element representation

Let Q0 be in Fp[X0] and let (Gi)0≤i<k be a sequence of polynomials over Fp, with Gi in Fp[X0, . . . , Xi].
We say that the sequence (Gi)0≤i<k defines the tower (U0, . . . , Uk) if for i ≥ 0, Ui = Fp[X0, . . . , Xi]/Ki,
where Ki is the ideal generated by

Pi = Xp
i − Xi − Gi−1(X0, . . . , Xi−1)

...

P1 = Xp
1 − X1 − G0(X0)

Q0(X0)

in Fp[X0, . . . , Xi], and if Ui is a field. The residue class of Xi (resp. Gi−1) in Ui, and thus in Ui+1, . . ., is
written xi (resp. γi−1), so that we have xpi − xi = γi−1.

Finding a suitable Fp-basis to represent elements of a tower (U0, . . . , Uk) is a crucial question. If
d = deg(Q0), a natural basis of Ui is the multivariate basis

Bi =

xe00 · · · xeii

 0 ≤ e0 < d, 0 ≤ ej < p for 1 ≤ j ≤ i

.

However, in this basis, we do not have very efficient arithmetic operations, starting from
multiplication. Indeed, the natural approach to multiplication in Bi consists in a polynomial
multiplication, followed by reduction modulo (Q0, P1, . . . , Pi); however, the initial product gives a
polynomial of partial degrees (2d − 2, 2p − 2, . . . , 2p − 2), so the number of monomials appearing
is not linear in [Ui : Fp] = pid. See Li et al. (2007) for details.

As a workaround, we introduce the notion of a primitive tower, where for all i, xi generates Ui over
Fp. In this case, we let Qi ∈ Fp[X] be the minimal polynomial of xi, of degree pid. In a primitive tower,
unless otherwise stated, we represent the elements of Ui in the Fp-basis Ci = (xai | 0 ≤ a < pid).

To stress the fact that v ∈ Ui is represented in the basis Ci, we write v ⊢ Ui. In this basis,
assuming Qi is known, additions and subtractions are done in pid operations, multiplications in
O(M(pid)) operations (von zur Gathen and Gerhard, 1999, Ch. 9) and inversions in O(M(pid) log(pid))
operations (von zur Gathen and Gerhard, 1999, Ch. 11).

Note that having fast arithmetic operations in Ui enables us to write fast algorithms for polynomial
arithmetic in Ui[Y ], where Y is a new variable. Extending the previous notation, let us write A ⊢ Ui[Y ]

to indicate that a polynomial A ∈ Ui[Y ] is written in the basis (xα
i Y

β)0≤α<pid,0≤β of Ui[Y ]. Then, given
A, B ⊢ Ui[Y ], both of degrees less than n, one can compute AB ⊢ Ui[Y ] in O(M(pidn)) operations using
Kronecker’s substitution (von zur Gathen and Shoup, 1992, Lemma 2.2).

One can extend the fast Euclidean division algorithm to this context, as Newton iteration reduces
Euclidean division to polynomial multiplication. The analysis of von zur Gathen and Gerhard (1999,
Ch. 9) implies that Euclidean division of a degree n polynomial A ⊢ Ui[Y ] by a monic degree m
polynomial B ⊢ Ui[Y ], withm ≤ n, can be done in O(M(pidn)) operations.

Finally, fast GCD techniques carry over as well, as they are based on multiplication and division.
Using the analysis of von zur Gathen and Gerhard (1999, Ch. 11), we see that the extended GCD of two
monic polynomials A, B ⊢ Ui[Y ] of degree atmost n can be computed inO(M(pidn log(n))) operations.

2.2. Trace and pseudotrace

We continue with a few useful facts on traces. Let U be a field and let U′
= U[X]/Q be a separable

field extension of U, with deg(Q ) = n. For a ∈ U′, the trace Tr(a) is the trace of the U-linear map Ma
of multiplication by a in U′.

The trace is a U-linear form; in other words, Tr is in the dual space U′∗ of the U-vector space U′;
we write it TrU′/U when the context requires it. In finite fields, we also have the following well-known
properties:

TrFqn /Fq : a →

n−1
ℓ=0

aq
ℓ
, (P1)

TrFqmn /Fq = TrFqm /Fq ◦ TrFqmn /Fqm . (P2)
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Besides, if U′/U is a degree p extension generated by an Artin–Schreier polynomial Q and x is a
root of Q in U′, then

TrU′/U(xj) = 0 for j < p − 1; TrU′/U(xp−1) = −1. (P3)

Following Couveignes (2000), we also use a generalization of the trace. The nth pseudotrace of order
m is the Fpm-linear operator

T(n,m) : a →

n−1
ℓ=0

ap
mℓ

;

form = 1, we call it the nth pseudotrace and write Tn.
In our context, for n = [Ui : Uj] = pi−j andm = [Uj : Fp] = pjd, T(n,m)(v) coincides with TrUi/Uj(v)

for v in Ui; however T(n,m)(v) remains defined for v in a field extension of Ui, whereas TrUi/Uj(v) is not.

2.3. Duality

Finally, we discuss two useful topics related to duality, starting with the transposition of
algorithms.

Introduced by Kaltofen and Shoup, the transposition principle relates the cost of computing an
Fp-linear map f : V → W to that of computing the transposed map f ∗

: W ∗
→ V ∗. Explicitly, from

an algorithm that performs an r×smatrix-vector product b → Mb, one can deduce the existence of an
algorithm with the same complexity, up to O(r + s), that performs the transposed product c → M tc;
see Bürgisser et al. (1997), Kaltofen (2000) and Bostan et al. (2003). However, making the transposed
algorithm explicit is not always straightforward; we will devote part of Section 4 to this issue.

We give here first consequences of this principle, after Bostan et al. (2003) and Shoup (1999, 1994).
Consider a degree n field extension U → U′, where U′ is seen as an U-vector space. For w in U′, recall
that Mw : U′

→ U′ is the multiplication map Mw(v) = vw. Its dual M∗
w : U′∗

→ U′∗ acts on ℓ ∈ U′∗

by M∗
w(ℓ)(v) = ℓ (Mw(v)) = ℓ(vw) for any v in U′. We prefer to denote the linear form M∗

w(ℓ) by
w · ℓ, keeping in mind that (w · ℓ)(v) = ℓ(vw).

Suppose then that D is a U-basis of U′, in which we can perform multiplication using T operations
in U. Then by the transposition principle, givenw inD and ℓ in the dual basisD∗, we can computew ·ℓ
in the dual basis D∗ using T + O(n) operations in U. This was discussed already by Shoup (1999) and
Bostan et al. (2003), we will get back to this in Section 4.

Suppose finally that U′ is separable over U and that b ∈ U′ generates U′ over U; we will denote by
Q ∈ U[X] the minimal polynomial of b. Given w in U′, we want to find an expression w = A(b), for
some A ∈ U[X]. Hereafter, for P ∈ U[X] of degree at most e, we write reve(P) = X eP(1/X) ∈ U[X].
Then, recalling that n = [U′

: U], we define ℓ = w · TrU′/U ∈ U′∗ and

M =


j<n

ℓ(bj)X j, N = M revn(Q ) mod Xn. (1)

This construction solves our problem: Rouillier (1999, Theorem 3.1) shows that w = A(b), with
A = revn−1(N)Q ′−1 mod Q . We will hereafter denote by FindParameterization(b, w) a subroutine
that computes this polynomial A; it follows closely a similar algorithm by Shoup (1994).

Since this is the case we will need later on, we give details for the case where U′ is presented as
U′

= U[X]/P , with P an Artin–Schreier polynomial (so n = p), and where the minimal polynomial Q
of b is Artin–Schreier too. We denote by x the residue class of X in U[X]/P , then by P3

TrU′/U = (0, . . . , 0, −1) in the basis (1, x, . . . , xp−1),

and for some α ∈ U

Q = Xp
− X − α, revp Q = 1 − Xp−1

− αXp, Q ′
= −1.

Proposition 1. Under the assumptions above, the algorithm FindParameterization is correct and requires
p − 1 multiplications in the U-basis (1, x, . . . , xp−1) of U′, plus O(p2) operations (+, ×) in U.
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Proof. Correctness follows from the discussion above; to verify that w · TrU′/U is indeed equal to the
U-linear form given in step 1, simply write the multiplication matrix of w and multiply by the trace
form (0, . . . , 0, −1).

Then, step 1 requires one addition in U. Step 2 requires p − 1 multiplications in U′, plus O(p2)
operations in U. Step 3 requires one addition in U. Finally, step 4 simply amounts to read the
polynomial from right to left and change signs. �

Note that this cost can be improved with respect to p, by using the transposition principle and fast
modular composition as in Shoup (1994, 1999); we do not give details, as this would not improve the
overall complexity of the algorithms of the next sections.

3. A primitive tower

Our first task in this section is to describe a specific Artin–Schreier tower where arithmetic
operations will be fast; then, we explain how to construct this tower.

3.1. Definition

The following theorem extends results by Cantor (1989, Th. 1.2), who dealt with the case U0 = Fp.

Theorem 2. Let U0 = Fp[X0]/Q0, with Q0 irreducible of degree d, let x0 = X0 mod Q0 and assume that
TrU0/Fp(x0) ≠ 0. Let (Gi)0≤i<k be defined by

G0 = X0,
G1 = X1 if p = 2 and d is odd,
Gi = X2p−1

i in any other case.

Then, (Gi)0≤i<k defines a primitive tower (U0, . . . , Uk).

As before, for i ≥ 1, let Pi = Xp
i − Xi − Gi−1 and for i ≥ 0, let Ki be the ideal ⟨Q0, P1, . . . , Pi⟩

in Fp[X0, . . . , Xi]. Then the theorem says that for i ≥ 0, Ui = Fp[X0, . . . , Xi]/Ki is a field, and that
xi = Xi mod Ki generates it over Fp. We prove it as a consequence of a more general statement.

Lemma 3. Let U be the finite field with pn elements, and U′/U an extension field with [U′
: U] = pi. Let

α ∈ U′ be such that

TrU′/U(α) = β ≠ 0, (2)

then Fp[β] ⊂ Fp[α] and pi divides

Fp[α] : Fp[β]


.

Proof. Eq. (2) can be written as β =


j α
pjn , thus Fp[β] ⊂ Fp[α]. The rest of the proof follows by

induction on i. If [U′
: U] = 1, then α = β and there is nothing to prove. If i ≥ 1, let U′′ be the

intermediate extension such that [U′
: U′′

] = p and let α′
= TrU′/U′′(α), then, by P2, TrU′′/U(α′) = β

and by induction hypothesis pi−1 divides [Fp[α
′
] : Fp[β]].

Now, suppose that p does not divide [Fp[α] : Fp[α
′
]]. Since Fp[α

′
] ⊂ U′′, this implies that p does

not divide [U′′
[α] : U′′

]; butα ∈ U′ and [U′
: U′′

] = p by construction, so necessarily [U′′
[α] : U′′

] = 1
and α ∈ U′′. This implies TrU′/U′′(α) = pα = 0 and, by P2, β = 0. Thus, we have a contradiction and
p must divide [Fp[α] : Fp[α

′
]]. The claim follows. �
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Corollary 4. With the same notation as above, if TrU′/U(α) generates U over Fp, then Fp[α] = U′.
Hereafter, recall that we write γi = Gi mod Ki. We prove that the γi’s meet the conditions of the

corollary.
Lemma 5. If p ≠ 2, for i ≥ 0, Ui is a field and, for i ≥ 1, TrUi/Ui−1(γi) = −γi−1.
Proof. Induction on i: for i = 0, this is true by hypothesis. For i ≥ 1, by induction hypothesis
U0, . . . , Ui−1 are fields; we then set i′ = i − 1 and prove by nested induction that TrUi′ /Fp(γi′) ≠ 0
under the hypothesis that U0, . . . , Ui′ are fields. This, by Lidl and Niederreiter (1996, Th. 2.25), implies
that Xp

i − Xi − γi−1 is irreducible in Ui−1[Xi+1] and Ui is a field.
For i′ = 0, TrU0/Fp(γ0) = TrU0/Fp(x0) is non-zero and we are done. For i′ ≥ 1, we know that

γi′ = x2p−1
i′ = xpi′x

p−1
i′ , which rewrites

(xi′ + γi′−1)x
p−1
i′ = xpi′ + γi′−1x

p−1
i′ = γi′−1 + xi′ + γi′−1x

p−1
i′ .

By P3, we get TrUi′ /Ui′−1
(γi′) = −γi′−1 and by P2, we deduce the equality TrUi′ /Fp(γi′) =

− TrUi′−1/Fp(γi′−1). The induction assumption implies that this is non-zero, and the claim follows. �

Lemma 6. If p = 2, for i ≥ 0, Ui is a field. For i ≥ 2, TrUi/Ui−1(γi) = 1 + γi−1 and

TrU1/U0(γ1) =


1 + γ0 if d even,
1 if d odd.

Proof. The proof closely follows the previous one. For i′ = 0, TrU0/Fp(γ0) = TrU0/Fp(x0) is non-zero.
For i′ = 1 and d odd, TrU1/U0(γ1) = TrU1/U0(x1) = 1 by P3, and TrU0/Fp(1) = d mod 2 ≠ 0. For all the
other cases

γi′ = x2i′xi′ = γi′−1 + (1 + γi′−1)xi′ ,
thus TrUi′ /Ui′−1

(γi′) = 1+γi′−1 by P3 and TrUi′−1/Fp(1) = 0. In any case, using the induction hypothesis
and P2, we deduce TrUi′ /Fp(γi′) = 1 and this concludes the proof. �

Proof of Theorem 2. If p ≠ 2, by Lemma 5 and P2, TrUi/U0(γi) = (−1)iγ0, thus Ui = Fp[γi] by
Corollary 4 and the fact that γ0 = x0 generates U0 over Fp.

If p = 2, we first prove that U1 = Fp[γ1]. If d is odd, γ p
1 + γ1 = x0 implies U0 ⊂ Fp[γ1], but

γ1 ∉ U0, thus necessarily U1 = Fp[γ1]. If d is even, TrU1/U0(γ1) = 1 + γ0 clearly generates U0
over Fp, thus U1 = Fp[γ1] by Corollary 4. Now we proceed like in the p ≠ 2 case by observing that
TrUi/U1(γi) = 1 + γ1 generates U1 over Fp.

Now, for any p, the theorem follows since clearly Fp[γi] ⊂ Fp[xi]. �

Remark that the choice of the tower of Theorem 2 is in some sense optimal between the choices
given by Corollary 4. In fact, each of the Gi’s is the ‘‘simplest’’ polynomial in Fp[Xi] such that
TrUi/Fp(γi) ≠ 0, in terms of lowest degree and least number of monomials.

We furthermore remark that the construction we made in this section gives us a family of normal
elements for free. In fact, recall the following proposition from Hachenberger (1997, Section 5).
Proposition 7. Let U′/U be an extension of finite fields with [U′

: U] = kpi where k is prime to p and let
U′′ be the intermediate field of degree k over U. Then x ∈ U′ is normal over U if and only if TrU′/U′′(x) is
normal over U. In particular, if [U′

: U] = pi, then x ∈ U′ is normal over U if and only if TrU′/U(x) ≠ 0.
Then we easily deduce the following corollary.
Corollary 8. Let (U0, . . . , Uk) be an Artin–Schreier tower defined by some (Gi)0≤i<k. Then, every γi is
normal over U0; furthermore γi is normal over Fp if and only if TrUi/U0(γi) is normal over Fp.

In the construction of Theorem 2, if we furthermore suppose that γ0 is normal over Fp, using
Lemma 5 we easily see that the conditions of the corollary are met for p ≠ 2. For p = 2, this is
the case only if [U0 : Fp] is even (we omit the proofs that if γ0 is normal then so are −γ0 and 1 + γ0).
Remark. Observe however that this does not imply the normality of the xi’s. In fact, they can never be
normal because TrUi/Ui−1(xi) = 0 by P3. Granted that γ0 is normal over Fp, it would be interesting
to have an efficient algorithm to switch representations from the univariate Fp-basis in xi to the
Fp-normal basis generated by γi.
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3.2. Building the tower

This subsection introduces the basic algorithms required to build the tower, that is, compute the
required minimal polynomials Qi.

Composition.We give first an algorithm for polynomial composition, to be used in the construction of
the tower defined before. Given P and R in Fp[X], we want to compute P(R). For the cost analysis, it
will be useful later on to consider both the degree k and the number of terms ℓ of R.

Compose is a recursive process that cuts P into c + 1 ‘‘slices’’ of degree less than pn, recursively
composes themwith R, and concludes using Horner’s scheme and the linearity of the p-power. At the
leaves of the recursion tree, we use the algorithm NaiveCompose.

Lemma 9. NaiveCompose has cost O(deg(P)2kℓ).

Proof. At step i, ρ and S have degree at most ik. Computing the sum S + piρ takes O(ik) operations
and computing the product ρR takes O(ikℓ) operations, since R has ℓ terms. The total cost of step i is
thus O(ikℓ), whence a total cost of O(deg(P)2kℓ). �

Theorem 10. If R has degree k and ℓ non-zero coefficients and if deg(P) = s, thenCompose(P, R) outputs
P(R) in O(ps logp(s)kℓ) operations.

Proof. To analyze the cost, we let K(c, n) be the cost of Compose when deg(P) ≤ (c + 1)pn, with
c < p. Then K(c, 0) ∈ O(c2kℓ). For n > 0, at each pass in the loop at step 6, deg(Q ) < cpnk, so that
the multiplication (using the naive algorithm) and addition take O(cpnkℓ) operations. Thus the cost of
the loop is O(c2pnkℓ), and the total cost satisfies

K(c, n) ≤ (c + 1)K(p − 1, n − 1) + O(c2pnkℓ).

Let then K′(n) = K(p − 1, n), so that we have

K′(0) ∈ O(p2kℓ), K′(n) ≤ pK′(n − 1) + O(pn+2kℓ).

We deduce that K′(n) ∈ O(pn+2nkℓ), and finally K(c, n) ∈ O(cpn+1nkℓ + c2pnkℓ). The values c, n
computed at step 1 of the top-level call to Compose satisfy cpn ≤ s and n ≤ logp(s); this gives our
conclusion. �

A binary divide-and-conquer algorithm (von zur Gathen and Gerhard, 1999, Ex. 9.20) has cost
O(M(sk) log(s)). Our algorithm has a slightly better dependency on s, but adds a polynomial cost
in p and ℓ. However, we have in mind cases with p small and ℓ = 2, where the latter solution is
advantageous.
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Computing the minimal polynomials. Theorem 2 shows that we have defined a primitive tower. To be
able to work with it, we explain now how to compute the minimal polynomial Qi of xi over Fp. This is
done by extending a construction by Cantor (1989), which had U0 = Fp.

For i = 0, we are given Q0 ∈ Fp[X0] such that U0 = Fp[X0]/Q0(X0), so there is nothing to do; we
assume that TrU0/Fp(x0) ≠ 0 to meet the hypotheses of Theorem 2. Remark that if this trace was zero,
assuming gcd(d, p) = 1, we could replace Q0 by Q0(X0 − 1); this is done by taking R = X0 − 1 in
algorithm Compose, so by Theorem 10 the cost is O(pd logp(d)).

For i = 1, we know that xp1 − x1 = x0, so x1 is a root of Q0(X
p
1 − X1). Since Q0(X

p
1 − X1) is monic

of degree pd, we deduce that Q1 = Q0(X
p
1 − X1). To compute it, we use algorithm Compose with

arguments Q0 and R = Xp
1 − X1; the cost is O(p2d logp(d)) by Theorem 10. The same arguments hold

for i = 2 when p = 2 and d is odd.
To deal with other indices i, we follow Cantor’s construction. Let Φ ∈ Fp[X] be the reduction

modulo p of the (2p − 1)-th cyclotomic polynomial. Cantor implicitly works modulo an irreducible
factor of Φ . The following shows that we can avoid factorization, by working modulo Φ .

Lemma 11. Let A = Fp[X]/Φ and let x = X mod Φ . For Q ∈ Fp[Y ], define Q ⋆
=

2p−2
i=0 Q (xiY ). Then

Q ⋆ is in Fp[Y ] and there exists q⋆
∈ Fp[Y ] such that Q ⋆

= q⋆(Y 2p−1).

Proof. Let F1, . . . , Fe be the irreducible factors of Φ and let f be their common degree. To prove that
Q ⋆ is in Fp[Y ], we prove that for j ≤ e, Q ⋆

j = Q ⋆ mod Fj is in Fp[Y ] and independent from j; the claim
follows by Chinese Remaindering.

For j ≤ e, let aj be a root of Fj in the algebraic closure of Fp, so that Q ⋆
j =

2p−2
i=0 Q (aijY ). Since

gcd(pf , 2p−1) = 1, Q ⋆
j is invariant under Gal(Fpf /Fp), and thus in Fp[Y ]. Besides, for j, j′ ≤ e, aj = akj′

for some k coprime to 2p − 1, so that Q ⋆
j = Q ⋆

j′ , as needed.
To conclude, note that for j ≤ e,Q ⋆

j (ajY ) = Q ⋆
j (Y ), so that all coefficients of degree not amultiple of

2p− 1 are zero. Thus, Q ⋆
j has the form q⋆

j (Y
2p−1); by Chinese Remaindering, this proves the existence

of the polynomial q⋆. �

We conclude as in Cantor (1989): supposing that we know the minimal polynomial Qi of xi over
Fp, we compute Qi+1 as follows. Since xi is a root of Qi, it is a root of Q ⋆

i , so γi = x2p−1
i is a root of q⋆

i
and xi+1 is a root of q⋆

i (Y
p
− Y ). Since the latter polynomial is monic of degree pi+1d, it is the minimal

polynomial Qi+1 of xi+1 over Fp.

Theorem 12. Given Qi, one can compute Qi+1 in O(pi+2d logp(pid) + M(pi+2d) log(p)) operations.

Proof. Let A = Fp[X]/Φ . The algorithm by Brent (1993) computes Φ in O(p2) operations; then,
polynomial multiplications in degree s in A[Y ] can be done in O(M(sp)) operations by Kronecker
substitution. The overall cost of computing Q ⋆

i is O(M(pi+2d) log p) using von zur Gathen and
Gerhard (1999, Algo. 10.3). To get Qi+1 we use algorithm Compose with R = Y p

− Y , which costs
O(pi+2d logp(pid)). �

The former cost is linear in pi+2d, up to logarithmic factors, for an input of size pid and an output
of size pi+1d.

Some further operations will be performed when we construct the tower: we will precompute
quantities that will be of use in the algorithms of the next sections. Details are given in the next
sections, when needed.

4. Level embedding

We discuss here change-of-basis algorithms for the tower (U0, . . . , Uk) of the previous section;
these algorithms are needed for most further operations. We detail the main case where Pi =

Xp
i − Xi − X2p−1

i−1 ; the case P1 = Xp
1 − X1 − X0 (and P2 = X2

2 + X2 + X1 for p = 2 and d odd) is
easier.
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By Theorem 2, Ui equals Fp[Xi−1, Xi]/I , where the ideal I admits the following Gröbner bases, for
respectively the lexicographic orders Xi > Xi−1 and Xi−1 > Xi:Xp

i − Xi − X2p−1
i−1

Qi−1(Xi−1)
and

Xi−1 − Ri(Xi)
Qi(Xi),

with Ri in Fp[Xi]. Since deg(Qi−1) = pi−1d and deg(Qi) = pid, we associate the following Fp-bases of
Ui to each system:

Di =

xai−1x

b
i

 0 ≤ a < pi−1d, 0 ≤ b < p

,

Ci =

xai

 0 ≤ a < pid

.

(3)

We describe an algorithm called Push-down which takes v written in the basis Ci and returns its
coordinates in the basis Di; we also describe the inverse operation, called Lift-up. In other words,
Push-down inputs v ⊢ Ui and outputs the representation of v as

v = v0 + v1xi + · · · + vp−1x
p−1
i , with all vj ⊢ Ui−1 (4)

and Lift-up does the opposite.
Hereafter, we let L : N − {0} → N be such that both Push-down and Lift-up can be performed

in L(i) operations; to simplify some expressions appearing later on, we add the mild constraints that
p L(i) ≤ L(i + 1) and pM(pid) ∈ O(L(i)). To reflect the implementation’s behavior, we also allow
precomputations. These precomputations are performed when we build the tower; further details
are at the end of this section.

Theorem 13. One can take L(i) in O(pi+1d log2p(p
id) + pM(pid)).

Remark that the input and output have size pid; using fast multiplication, the cost is linear in pi+1d,
up to logarithmic factors. The rest of this section is devoted to proving this theorem. Push-down is a
divide-and-conquer process, adapted to the shape of our tower; Lift-up uses classical ideas of trace
computations (as in the algorithm FindParameterization of Section 2.3); the values we need will be
obtained using the transposed version of Push-down.

As said before, the algorithms of this section (and of the following ones) use precomputed
quantities. To keep the pseudo-code simple, we do not explicitly list them in the inputs of the
algorithms; we show, later, that the precomputation is fast too.

4.1. Modular multiplication

We first discuss a routine for multiplication by Xpn
i in Fp[Y , Xi]/(X

p
i − Xi − Y ), and its transpose.

We start by remarking that Xpn
i = Xi + Rn mod Xp

i − Xi − Y , with

Rn =

n−1
j=0

Y pj . (5)

Then, precisely, for k in N, we are interested in the operationMulModk,n : A → (Xi + Rn)A mod Xp
i −

Xi − Y , with A ∈ Fp[Y , Xi], deg(A, Y ) < k and deg(A, Xi) < p.
Since Rn is sparse, it is advantageous to use the naive algorithm; besides, to make transposition

easy, we explicitly give the matrix ofMulModk,n. Letm0 be the (k+pn−1)× kmatrix having 1’s on the
diagonal only, and for ℓ ≤ pn−1, letmℓ be the matrix obtained fromm0 by shifting the diagonal down
by ℓ places. Let finallym′ be the sum

n−1
j=0 mpj . Then one verifies that the matrix of MulModk,n is

m′ m1

m0 m′ m0

m0 m′

. . .
. . .

m0 m′

 ,
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with columns indexed by (X j
i , . . . , Y

k−1X j
i )j<p and rows by (X j

i , . . . , Y
k+pn−1

−1X j
i )j<p. Since this matrix

has O(pnk) non-zero entries, we can compute both MulModk,n and its dual MulMod∗

k,n in O(pnk)
operations.

4.2. Push-down

The input of Push-down is v ⊢ Ui, that is, given in the basis Ci; we see it as a polynomial V ∈ Fp[Xi]

of degree less than pid. The output is the normal form of V modulo Xp
i − Xi − X2p−1

i−1 and Qi−1(Xi−1).
We first use a divide-and-conquer subroutine to reduce V modulo Xp

i − Xi − X2p−1
i−1 ; then, the result is

reduced modulo Qi−1(Xi−1) coefficient-wise.
To reduce V modulo Xp

i − Xi − X2p−1
i−1 , we first computeW = V mod Xp

i − Xi − Y , then we replace
Y by X2p−1

i−1 in W . Because our algorithm will be recursive, we let deg(V ) be arbitrary; then, we have
the following estimate forW .

Lemma 14. We have deg(W , Y ) ≤ deg(V )/p.

Proof. Consider the matrixM of multiplication by Xp
i modulo Xp

i −Xi −Y ; it has entries in Fp[Y ]. Due
to the sparseness of the modulus, one sees thatM has degree at most 1, and so Mk has coefficients of
degree at most k. Thus, the remainders of Xpk

i , . . . , Xpk+p−1
i modulo Xp

i − Xi − Y have degree at most
k in Y . �

We compute W by a recursive subroutine Push-down-rec, similar to Compose. As before, we let
c, n be such that 1 ≤ c < p and deg(V ) < (c + 1)pn, so that we have

V = V0 + V1X
pn
i + · · · + VcX

cpn
i ,

with all Vj in Fp[Xi] of degree less than pn. First, we recursively reduce V0, . . . , Vc modulo Xp
i −Xi − Y ,

to obtain bivariate polynomials W0, . . . ,Wc . Let Rn be the polynomial defined in Eq. (5). Then, we
get W by computing

c
j=0 Wj(Xi + Rn)

j modulo Xp
i − Xi − Y , using Horner’s scheme as in Compose.

Multiplications by Xi + Rn modulo Xp
i − Xi − Y are done using MulMod.

Proposition 15. Algorithm Push-down is correct and takes O(pi+1d log2p(p
id) + pM(pid)) operations.

Proof. Correctness is straightforward; note that at step 5 of Push-down-rec, deg(W , Y ) < (c+1)pn−1,
so our call toMulMod(c+1)pn−1,n is justified. By the claim of Section 4.1 on the cost ofMulMod, the total
cost of that loop isO(nc2pn). As in Theorem 10, we deduce that the cost of Push-down-rec isO(n2c2pn).
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In Push-down, we have cpn < pid and n < logp(pid), so the previous cost is seen to be O(pi+1d
log2p(p

id)). Reducing one coefficient of Z modulo Qi−1 takes O(M(pid)) operations, so step 5 has cost
O(pM(pid)). Step 6 is free, since at this stage Z is already reduced. �

4.3. Transposed push-down

Before giving the details for Lift-up, we discuss here the transpose of Push-down. Push-down is the
Fp-linear change-of-basis from the basis Ci to Di, so its transpose takes an Fp-linear form ℓ ∈ U∗

i
given by its values on Di, and outputs its values on Ci. The input is the (finite) generating series
L =


a<pi−1d,b<p ℓ(xai−1x

b
i )X

a
i−1X

b
i ; the output isM =


a<pid ℓ(xai )X

a
i .

As in Bostan et al. (2003), the transposed algorithm is obtained by reversing the initial algorithm
step by step, and replacing subroutines by their transposes. The overall cost remains the same; we
review here the main transformations.

InPush-down-rec, the initial loop at step 5 is aHorner scheme; the transposed loop is run backward,
and its core becomes Lj = L mod Y n−1 and L = MulMod∗

(c+1)pn−1,n
(L); a small simplification yields

the pseudo-code we give. In Push-down, after calling Push-down-rec, we evaluate W at [X2p−1
i−1 , Xi]:

the transposed operation Evaluate∗ maps the series


a,b ℓa,bXa
i−1X

b
i to


a,b ℓ(2p−1)a,b Y aXb

i . Then,
originally, we perform a Euclidean division by Qi−1 on Z . The transposed algorithm mod∗ is in Bostan
et al. (2003, Sect. 5.2): the transposed Euclidean division amounts to compute the values of a sequence
linearly generated by the polynomial Qi−1 from its first pi−1d values.

4.4. Lift-up

Let v be given in the basis Di and let W be its canonical preimage in Fp[Xi−1, Xi]. The lift-up
algorithm finds V in Fp[Xi] such that W = V mod (Xp

i − Xi − X2p−1
i−1 ,Qi−1) and outputs the residue

class of V modulo Qi. Hereafter, we assume that both Q ′−1
i mod Qi and the values of the trace TrUi/Fp

on the basis Di are known. The latter will be given under the form of the (finite) generating series

Si =


a<pi−1d,b<p

TrUi/Fp(x
a
i−1x

b
i )X

a
i−1X

b
i ,

see the discussion below.
Then, as in Section 2.3, we use trace formulas to write v as a polynomial in xi: we see Ui as a

separable extension over Fp and we look for a parameterization v = A(xi). To do this, we compute
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the values of L = v · TrUi/Fp on the basis Di via transposed multiplication (see Section 2.3) and rewrite
Eq. (1) as

M =


j<pid

L(xji)X
j
i , N = M revpid(Qi) mod Xpid

i . (6)

To compute the values L(xji) for 0 ≤ j < pid we could use a naive algorithm, as in step 2 of
FindParameterization, or use Shoup (1994, Th. 4); it is however more efficient to use Push-down∗

as it was shown in the previous subsection. The rest of the computation goes as in steps 3 and 4 of
FindParametrization.

Proposition 16. Algorithm Lift-up is correct and takes O(pi+1d log2p(p
id) + pM(pid)) operations.

Proof. Correctness is clear by the discussion above. TransposedMul implements the transposed
multiplication; Pascal and Schost (2006, Coro. 2) give an algorithm of cost O(M(pid)) for this. The
last subsection showed that step 3 has the same cost as Push-down. Then, the costs of steps 4 and 5
are O(M(pid)) and step 6 is free since V is reduced. �

Propositions 15 and 16 prove Theorem 13. The precomputations, that are done at the construction
of Ui, are as follows. First, we need the values of the trace on the basis Di; they are obtained
in O(M(pid)) operations by Pascal and Schost (2006, Prop. 8). Then, we need Q ′

i
−1 mod Qi; this

takes O(M(pid) log(pid)) operations by fast extended GCD computation. These precomputations save
logarithmic factors at best, but are useful in practice.

5. Frobenius and pseudotrace

In this section, we describe algorithms computing Frobenius and pseudotrace operators, specific
to the tower of Section 3; they are the keys to the algorithms of the next section.

The algorithms in this section and the next one closely follow Couveignes (2000). However, the lat-
ter assumed the existence of a quasi-linear time algorithm for multiplication in some specific towers
in themultivariate basis Bi of Section 2.1. To our knowledge, no such algorithm exists.We use here the
univariate basis Ci introduced previously, whichmakesmultiplication straightforward. However, sev-
eral push-down and lift-up operations are now required to accommodate the recursive nature of the
algorithm.

Our main purpose here is to compute the pseudotrace Tpjd : x →
pjd−1

ℓ=0 xp
ℓ
. First, however, we

describe how to compute values of the iterated Frobenius operator x → xp
n
by a recursive descent in

the tower.
We focus on computing the iterated Frobenius for n < d or n = pjd. In both cases, similarly to (5),

we have:

xp
n

i = xi + βi−1,n, with βi−1,n = Tn(γi−1). (7)
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Assuming βi−1,n is known, the recursive step of the Frobenius algorithm follows: starting from v ⊢ Ui,
we first write v = v0 + · · · + vp−1x

p−1
i , with vh ⊢ Ui−1; by (7) and the linearity of the Frobenius, we

deduce that

vpn
=

p−1
h=0

v
pn
h


xi + βi−1,n

h
.

Then, we compute all vpn
h recursively; the final sum is computed using Horner’s scheme. Remark that

this variant is not limited to the case where n < d or of the form pjd: an arbitrary nwould do as well.
However, we impose this limitation since these are the only values we need to compute Tpjd.

In the case n = pjd, any v ∈ Uj is left invariant by this Frobenius map, thus we stop the recursion
when i = j, as there is nothing left to do. In the case n < d, we stop the recursion when i = 0 and
apply von zur Gathen and Shoup (1992, Algorithm 5.2).We summarize the two variants in one unique
algorithm IterFrobenius.

As mentioned above, the algorithm requires the values βi′,n for i′ < i: we suppose that they are
precomputed (the discussion of how we precompute them follows). To analyze costs, we use the
function L of Section 4.

Theorem 17. On input v ⊢ Ui and n = pjd, algorithm IterFrobenius correctly computes vpn and takes
O((i − j)L(i)) operations.

Proof. Correctness is clear. We write F(i, j) for the complexity on inputs as in the statement; then
F(0, j) = · · · = F(j, j) = 0 because step 1 comes at no cost. For i > j, each pass through step 6
involves a multiplication by xi + βi−1,n, of cost of O(pM(pi−1d)), assuming βi−1,n ⊢ Ui−1 is known.
Altogether, we deduce the recurrence relation

F(i, j) ≤ p F(i − 1, j) + 2 L(i) + O(p2M(pi−1d)),

so F(i, j) ≤ p F(i − 1, j) + O(L(i)), by assumptions on M and L. The conclusion follows, again by
assumptions on L. �

Theorem 18. On input v ⊢ Ui and n < d, algorithm IterFrobenius correctly computes vpn and takes
O(piC(d) log(n) + iL(i)) operations.

Proof. The analysis is identical to the previous one, except that step 2 is now executed instead of
step 1 and this costs O(C(d) log(n)) by von zur Gathen and Shoup (1992, Lemma 5.3). The conclusion
follows by observing that step 2 is repeated pi times. �

Next, we compute pseudotraces. We use the following relations, whose verification is
straightforward:

Tn+m(v) = Tn(v) + Tm(v)p
n
, Tnm(v) =

m−1
h=0

Tn(v)p
hn

.

We give two divide-and-conquer algorithms that do a slightly different divide step; each of them
is based on one of the previous formulas. The first one, LittlePseudotrace, is meant to compute Td.
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It follows a binary divide-and-conquer scheme similar to von zur Gathen and Shoup (1992,
Algorithm 5.2). The second one, Pseudotrace, computes Tpjd for j > 0. It uses the previous formula
with n = pj−1d and m = p, computing Frobenius-es for such n; when j = 0, it invokes the first
algorithm.

Theorem 19. Algorithm LittlePseudotrace is correct and takes

O(piC(d) log2(n) + iL(i) log(n))

operations.

Proof. Correctness is clear. For the cost analysis, we write PT(i, n) for the cost on input i and n, so
PT(i, 1) = O(1). For n > 1, step 3 costs PT(i, ⌊n/2⌋), steps 4 and 5 cost both O(piC(d) log2(n) + iL(i))
by Theorem 18. This gives PT(i, n) = PT(i, ⌊n/2⌋) + O(piC(d) log2(n) + iL(i)), and thus PT(i, n) ∈

O(piC(d) log2(n) + iL(i) log n). �

Theorem 20. Algorithm Pseudotrace is correct and takes

PT(i) = O((pi + log(d))iL(i) + piC(d) log2(d)) (8)

operations for j ≤ i.

Proof. Correctness is clear. For the cost analysis, we write PT(i, j) for the cost on input i and j, so
Theorem 19 gives PT(i, 0) = O(piC(d) log2(d)+ iL(i) log(d)). For j > 0, step 2 costs PT(i, j−1), step 3
costs O(piL(i)) by Theorem 17 and step 4 costs O(pi+1d). This gives PT(i, j) = PT(i, j − 1) + O(piL(i)),
and thus PT(i, j) ∈ O(pijL(i) + PT(i, 0)). �

The cost is thus O(pi+2d + piC(d)), up to logarithmic factors, for an input and output size of pid:
this time, due to modular compositions in U0, the cost is not linear in d.

Finally, let us discuss precomputations. On input v, i, d, the algorithm LittlePseudotracemakes less
than 2 log d calls to IterFrobenius(x, i, n) for some value x ∈ Ui and for n ∈ N where the set N only
depends on d. Whenwe constructUi+1, we compute (only) allβi,n = Tn(γi) ⊢ Ui, for increasing n ∈ N ,
using the LittlePseudotrace algorithm. The inner calls to IterFrobenius only use pseudotraces that
are already known. Besides, a single call to LittlePseudotrace(γi, i, d) actually computes all Tn(γi) in
O(piC(d) log2 d+ iL(i) log d) operations. Same goes for the precomputation of all βi,pjd = Tpjd(γi) ⊢ Ui,
for j ≤ i, using the Pseudotrace algorithm: this costs PT(i). Observe that in total we only store
O(k2 + k log d) elements of the tower, thus the space requirements are quasi-linear.
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Remark. A dynamic programming version of LittlePseudotrace as in von zur Gathen and Shoup (1992,
Algorithm 5.2) would only precompute βi,2e for 2e < d, thus reducing the storage from 2 log d to
⌊log d⌋ elements. This would also allow to compute Tn for any n < d without needing any further
precomputation. Using this algorithmand adecomposition ofn > d asn = r+


j cjp

jdwith r < d and
cj < p, one could also compute Tn and xp

n
at essentially the same cost. We omit these improvements

since they are not essential to the next Section.

6. Arbitrary towers

Finally, we bring our previous algorithms to an arbitrary tower, using the isomorphism algorithm
by Couveignes (2000). As in the previous section, we adapt this algorithm to our context, by adding
suitable push-down and lift-up operations.

Let Q0 be irreducible of degree d in Fp[X0], such that TrU0/Fp(x0) ≠ 0, with as before U0 =

Fp[X0]/Q0; as already remarked in Section 3.2, if p does not divide d we can easily lift the restriction
on the trace of Q0 by composing Q0 with X0 − 1.1 We let (Gi)0≤i<k and (U0, . . . , Uk) be as in Section 3.

We also consider another sequence (G′

i)0≤i<k, that defines another tower (U′

0, . . . , U′

k) with U0 =

U′

0 = Fp[x0]. Since (U′

0, . . . , U′

k) is not necessarily primitive, we fall back to the multivariate basis of
Section 2.1: we write elements of U′

i in the basis

B′

i =

x0e0x′

1
e1

· · · x′

i
ei

 for 0 ≤ e0 < d and 0 ≤ ej < p for 1 ≤ j ≤ i

.

To compute inU′

i , wewill use an isomorphismU′

i → Ui. Such an isomorphism is determined by the
images si = (s0, . . . , si) of (x0, x′

1 . . . , x′

i), with si ⊢ Ui (obviously, we take s0 = x0). This isomorphism,
denoted by σsi , takes as input v written in the basis B′

i and outputs σsi(v) ⊢ Ui.
To analyze costs, we use the functions L and PT introduced, respectively, in Theorem 13 and Eq. (8).

We also let 2 ≤ ω ≤ 3 be a feasible exponent for linear algebra over Fp (von zur Gathen and Gerhard,
1999, Ch. 12).

Theorem 21. GivenQ0 and (G′

i)0≤i<k, one can find sk = (s0, . . . , sk) in O(dωk+PT(k)+M(pk+1d) log(p))
operations. Once they are known, one can apply σsk and σ−1

sk using O(k L(k)) operations.

Thus, we can compute products, inverses, etc, in U′

k for the cost of the corresponding operation in Uk,
plus O(k L(k)).

6.1. Solving Artin–Schreier equations

As a preliminary, given α ⊢ Ui, we discuss how to solve the Artin–Schreier equation Xp
− X = α

in Ui. We assume that TrUi/Fp(α) = 0, so this equation has solutions in Ui.
Because Xp

− X is Fp-linear, the equation can be directly solved by linear algebra, but this is too
costly. Couveignes (2000) gives a solution adapted to our setting, that reduces the problem to solving
Artin–Schreier equations in U0. Given a solution δ ∈ Ui of the equation Xp

− X = α, he observes that
any solution µ of

Xpp
i−1d

− X = η, with η = Tpi−1d(α). (9)

is of the form µ = δ − ∆ with ∆ ∈ Ui−1, hence ∆ is a root of

Xp
− X − α + µp

− µ. (10)

This equation has solutions in Ui−1 by hypothesis and hence it can be solved recursively. First,
however, we tackle the problem of finding a solution of (9).

1 When p|d, this restriction is more serious: we can lift it by taking a finite field isomorphism, but this comes at the cost
of having to compute the isomorphism, and eventually loosing the benefit of an optimized arithmetic for U0 (e.g., when Q0 is
sparse). Hence we prefer keeping the restriction and leaving to the reader the task of adapting our construction to the more
general setting.
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For this purpose, observe that the left hand side of (9) is Ui−1-linear and its matrix in the basis
(1, . . . , xp−1

i ) is
0


1
0


βi−1,pi−1d . . .


p − 1
0


β

p−1
i−1,pi−1d

. . .
...

0

p − 1
p − 2


βi−1,pi−1d

0

 .

Then, algorithm ApproximateAS finds the required solution.

Theorem 22. Algorithm ApproximateAS is correct and takes O(L(i)) operations.

Proof. Correctness is clear from Gaussian elimination. For the cost analysis, remark that βi−1,pi−1d has
already been precomputed as a prerequisite for the iterated Frobenius and pseudotrace algorithms.
Step 2 takes O(p2) additions and scalar operations in Ui−1; the overall cost is dominated by that of the
push-down and lift-up by assumptions on L. �

Writing the recursive algorithm is now straightforward. To solve Artin–Schreier equations in U0,
we use a naive algorithm based on linear algebra, written NaiveSolve.

Theorem 23. Algorithm Artin--Schreier is correct and takes O(dω
+ PT(i)) operations, where PT(i) =

O((pi + log(d))iL(i) + piC(d) log2(d)) as in Theorem 20.

Proof. Correctness follows from the previous discussion. For the complexity, let AS(i) be the cost for
α ⊢ Ui. The cost AS(0) of the naive algorithm is O(M(d) log(p) + dω), where the first term is the cost
of computing xp0 and the second one the cost of linear algebra.

When i ≥ 1, step 2 has cost PT(i), steps 3, 4 and 6 all contribute O(L(i)) and step 5 contributes
AS(i − 1). The most important contribution is at step 2, hence AS(i) = AS(i − 1) + O(PT(i)). The
assumptions on L imply that the sum PT(1) + · · · + PT(i) is O(PT(i)). �
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6.2. Applying the isomorphism

We get back to the isomorphism question. We assume that si = (s0, . . . , si) is known and we give
the cost of applying σsi and its inverse. We first discuss the forward direction.

As input, v ∈ U′

i is written in the multivariate basis B′

i of U′

i; the output is t = σsi(v) ⊢ Ui. As
before, the algorithm is recursive: we write v =


j<p vj(x0, . . . , x′

i−1)x
′

i
j, whence

σsi(v) =


j<p

σsi(vj)s
j
i =


j<p

σsi−1(vj)s
j
i;

the sum is computed by Horner’s scheme. To speed-up the computation, it is better to perform the
latter step in a bivariate basis, that is, through a push-down and a lift-up.

Given t ⊢ Ui, to compute v = σ−1
si (t), we run the previous algorithm backward. We first

push-down t , obtaining t = t0 + · · · + tp−1x
p−1
i , with all tj ⊢ Ui−1. Next, we rewrite this as

t = t ′0 + · · · + t ′p−1s
p−1
i , with all t ′j ⊢ Ui−1, and it suffices to apply σ−1

si (or equivalently σ−1
si−1

)
to all t ′i . The non-trivial part is the computation of the t ′j : this is done by applying the algorithm
FindParameterization mentioned in Section 2.3, in the extension Ui = Ui−1[Xi]/Pi.

Proposition 24. Algorithms ApplyIsomorphism and ApplyInverse are correct and both take O(iL(i))
operations.

Proof. In both cases, correctness is clear, since the algorithms translate the former discussion. As to
complexity, in both cases, we do p recursive calls, O(1) push-downs and lift-ups, and a few extra
operations: for ApplyIsomorphism, these are p multiplications/additions in the bivariate basis Di of
Section 4; for ApplyInverse, this is calling the algorithm FindParameterization of Section 2.3. By using
Kronecker substitution to multiply elements in the basis Di, the cost of both is O(pM(pid)), which is
in O(L(i)) by assumption on L. We conclude as in Theorem 17. �

6.3. Proof of Theorem 21

Finally, assuming that only (s0, . . . , si−1) are known, we describe how to determine si. Several
choices are possible: the only constraint is that si should be a root of Xp

i − Xi − σsi(γ
′

i−1) = Xp
i − Xi −

σsi−1(γ
′

i−1) in Ui.
Using Proposition 24, we can compute α = σsi−1(γ

′

i−1) ⊢ Ui−1 in O((i − 1)L(i − 1)) ⊂ O(iL(i))
operations. Applying a lift-up to α, we are then in the conditions of Theorem 23, so we can find si for
an extra O(dω

+ PT(i)) operations.
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Fig. 1. An example of conversion from the univariate basis to the multivariate basis of the tower (U0, U′′

1, . . . , U′

k−1, U′′

k ).

We can then summarize the cost of all precomputations: to the cost of determining si, we add the
costs related to the tower (U0, . . . , Ui), given in Sections 3–5. After a few simplifications, we obtain
the upper boundO(dω

+PT(i)+M(pi+1d) log(p)). Summing over i gives the first claim of the theorem.
The second is a restatement of Proposition 24.

7. Experimental results

We describe here the implementation of our algorithms and an application coming from elliptic
curve cryptology, isogeny computation.

Implementation. We packaged the algorithms of this paper in a C++ library called FAAST and made
it available under the terms of the GNU GPL software license from http://www.lix.polytechnique.fr/
Labo/Luca.De-Feo/FAAST/.

FAAST is implemented on top of the NTL library by Shoup (2003) which provides the basic
univariate polynomial arithmetic needed here. Our library handles three NTL classes of finite fields:
GF2 for p = 2, zz_p for word-size p and ZZ_p for arbitrary p; this choice is made by the user
at compile-time through the use of C++ templates and the resulting code is thus quite efficient.
Optionally, NTL can be combinedwith the gf2x package by Brent et al. (2008) for better performance
in the p = 2 case, as we did in our experiments.

All the algorithms of Sections 3–5 are faithfully implemented in FAAST. The algorithms
ApplyIsomorphism and ApplyInverse have slightly different implementations that allow more
flexibility. Instead of being recursive algorithms doing the change to and from the multivariate basis
B′

i = (x0e0x′

1
e1 · · · x′

i
ei), they only implement the change to and from the bivariate basis

D′

i =

xi−1

ei−1x′

i
ei

 for 0 ≤ ei−1 < pi−1d and 0 ≤ ei < p

.

Equivalently, this amounts to switch between the representations

⊢ Ui and ⊢ Ui−1[X ′

i ]/(X
′

i
p
− X ′

i − γ ′

i−1).

The same result as one call to ApplyIsomorphism or ApplyInverse can be obtained by i calls to the
routines toUnivariate() and toBivariate() respectively. However, in the case where several
generic Artin–Schreier towers, say (U′

0, . . . , U′

k) and (U′′

0, . . . , U′′

k ), are built using the algorithms of
Section 6, this allows tomix the representations by letting the user choose to switch to any of the bases
(xe00 ye11 · · · yeii ) where yi is either x′

i or x
′′

i . In other words this allows the user to zig-zag in the lattice of
finite fields as in Fig. 1.

Besides the algorithms presented in this paper,FAAST also implements some algorithms described
in De Feo (2011) for minimal polynomials, evaluation and interpolation, as they are required for the
isogeny computation algorithm.

Experimental results.We compare our timings with those obtained inMagma 2.16 (Bosma et al., 1997)
for similar questions. All results are obtained on an Intel Xeon E5520 (2.26GHz). Our experiments

http://www.lix.polytechnique.fr/Labo/Luca.De-Feo/FAAST/
http://www.lix.polytechnique.fr/Labo/Luca.De-Feo/FAAST/
http://www.lix.polytechnique.fr/Labo/Luca.De-Feo/FAAST/
http://www.lix.polytechnique.fr/Labo/Luca.De-Feo/FAAST/
http://www.lix.polytechnique.fr/Labo/Luca.De-Feo/FAAST/
http://www.lix.polytechnique.fr/Labo/Luca.De-Feo/FAAST/
http://www.lix.polytechnique.fr/Labo/Luca.De-Feo/FAAST/
http://www.lix.polytechnique.fr/Labo/Luca.De-Feo/FAAST/
http://www.lix.polytechnique.fr/Labo/Luca.De-Feo/FAAST/
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Fig. 2. Build time (left) and isomorphism time (right) with respect to tower height. Plot is in logarithmic scale.

revealed a regression in the performances of Magma 2.16, concerning one algorithm. When such
difference is noticeable, we also plot the timings obtainedwithMagma 2.11 on an equivalentmachine
(Intel Xeon E5430).

The experiments for the FAAST library were only made for the classes GF2 and zz_p. The class
ZZ_p was left out because all the primes that can be reasonably handled by our library fit in one
machine-word. In Magma, there exist several ways to build field extensions:

• quo<U|P> builds the quotient of the univariate polynomial ring U by P ∈ U (written magma(1)
hereafter);

• ext<k|P> builds the extension of the field k by P ∈ k[X] (written magma(2));
• ext<k|p> builds an extension of degree p of k (written magma(3)).

We made experiments for each of these choices where this makes sense.
The parameters to our algorithms are (p, d, k). Thus, our experiments describe the following

situations:

• Increasing the height k. Here we take p = 2 and d = 1 (that is, U0 = F2); the x-coordinate gives the
number of levels we construct and the y-coordinate gives timings in seconds, in logarithmic scale.

This is done in Fig. 2.We let the height of the tower increase andwe give timings for (1) building
the tower of Section 3 and (2) computing an isomorphism with a random arbitrary tower as in
Section 6. In the latter experiment, only the magma(2) approach was meaningful for Magma.

• Increasing the degree d of U0. Here we take p = 5 and we construct 2 levels; the x-coordinate gives
the degree d = [U0 : Fp] and the y-coordinate gives timings in seconds. This is done in Fig. 3 (left).

• Increasing p. Here we take d = 1 (thus U0 = Fp) and we construct 2 levels; the x-coordinate gives
the characteristic p and the y-coordinate gives timings in seconds. This is done in Fig. 3 (right).

The timings of our code are significantly better for increasing height or increasing d. Not
surprisingly, for increasing p, the magma(1) approach performs better than any other: the quo
operation simply creates a residue class ring, regardless of the (ir)reducibility of the modulus, so
the timing for building two levels barely depend on p. The most adapted approach for this situation
presumably is magma(2); yet we notice that FAAST has reasonable performances for characteristics
up to about p = 50.

In Tables 1 and 2 we provide some comparative timings for the different arithmetic operations
provided by FAAST. The column ‘‘Primitive’’ gives the time taken to build one level of the primitive
tower (this includes the precomputation of the data as described in Section 4.4); the other entries are
self-explanatory. Product and inversion are just wrappers around NTL routines: in these operations
we did not observe any overhead compared to the native NTL code.

Finally, we mention the cost of precomputation. The precomputation of the images of σ as
explained in Section 6 is quite expensive; most of it is spent computing pseudotraces. Indeed it took
one week to precompute the data in Fig. 2 (right), while all the other data can be computed in a
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Fig. 3. Build times with respect to d (left) and p (right).

Table 1
Some timings in seconds for arithmetics in a generic tower built over F2 using GF2.

Level Primitive Push-d. Lift-up Product Reciprocal apply σ−1 apply σ

19 1.143 0.304 1.265 0.039 0.649 0.652 1.290
20 2.566 0.609 2.796 0.081 1.544 1.314 2.602
21 5.686 1.225 6.147 0.187 3.598 2.409 2.668
22 12.660 2.515 13.746 0.463 8.355 5.565 11.179
23 28.511 5.295 31.200 1.046 19.522 12.323 24.740

Table 2
Some timings in seconds for arithmetics in a generic tower built over F2 using zz_p.

Level Primitive Push-d. Lift-up Product Reciprocal apply σ−1 apply σ

18 13.618 0.884 13.712 0.476 10.753 1.337 3.578
19 30.288 1.814 30.432 1.001 23.046 2.850 7.798
20 65.632 3.953 66.889 2.106 51.544 6.564 18.141
21 128.190 8.347 131.271 4.791 121.349 14.396 39.296
22 296.671 11.396 298.541 6.413 249.520 28.851 86.628

few hours. There is still space for some minor improvement in FAAST, mainly tweaking recursion
thresholds and implementing better algorithms for small and moderate input sizes. Still, we think
that only a major algorithmic improvement could consistently speed up this phase.

Isogeny algorithm. An isogeny is a regularmap between two elliptic curves E and E ′ that is also a group
morphism. In cryptology, isogenies are used in the Schoof-Elkies-Atkin point-counting algorithm (see
Blake et al., 1999), but also in more recent constructions (e.g. Rostovtsev and Stolbunov, 2006; Teske,
2006), and the fast computation of isogenies remains a difficult challenge.

Our interest here is the isogeny algorithm by Couveignes (1996), which computes isogenies of
degree ∼pk; the algorithm relies on the interpolation of a rational function at special points in an
Artin–Schreier tower. The original algorithm by Couveignes (1996) was first implemented by Lercier
(1997); later, Couveignes (2000) described improvements to speed up the computation, but as we
already mentioned, a key component, fast arithmetic in Artin–Schreier towers, was still missing.
Recently De Feo (2011) has combined this paper’s algorithms and other improvements to achieve
a completely explicit version of Couveignes (2000).
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Fig. 4. Timings for the isogeny algorithm. Isogenies of degree increasing degree are computed between curves defined over
F2101 .

Table 3
Comparative timings for each phase of the isogeny algorithm using GF2.

Degree Step 2 Step 3 Step 5 Step 6
Preconditioning Avg # iterations Iteration

3 0.004 0.013 0.036 0.001 4 0.0000
5 0.002 0.041 0.092 0.004 8 0.0002

11 0.004 0.122 0.229 0.019 16 0.0003
17 0.006 0.354 0.554 0.094 32 0.0010
37 0.014 0.985 1.320 0.227 64 0.0039
67 0.038 2.662 3.100 1.133 128 0.0131

131 0.076 7.006 7.219 6.117 256 0.0477
257 0.185 17.931 16.606 34.524 512 0.1731

The algorithm is composed of 5 phases:

(1) Depending on the degree ℓ of the isogeny to be computed, a parameter k is chosen such that
pk−1(p − 1) > 4ℓ − 2;

(2) a primitive tower of height ∼k is computed (the precise height depends on E and E ′, in the
example of Fig. 4 it is always equal to k − 2);

(3) an Artin–Schreier tower in which the pk-torsion points of E are defined is computed and an
isomorphism is constructed to the primitive tower;

(4) an Artin–Schreier tower in which the pk-torsion points of E ′ are defined is computed and an
isomorphism is constructed to the primitive tower;

(5) a mapping from E [pk] to E ′
[pk] is computed through interpolation;

(6) all the possible mappings from E [pk] to E ′
[pk] are computed through modular composition until

one is found that yields an isogeny.

We ran experiments for curves defined over the base field F2101 for increasing isogeny degree. Fig. 4
shows the timings for two implementations ofDe Feo (2011) based onFAAST and one implementation
of the same algorithm based on the magma(2) approach; remark that the time scale is logarithmic.
The running time is probabilistic because step 6 stops as soon as it has found an isogeny; we plot
the average running times with bars around them for minimum/maximum times; the distribution is
uniform. Note that the plot in the original ISSAC’09 version of this paper shows timings that are one
order of magnitude worse. This was due to a bug that has later been fixed.

Table 3 shows comparative timings for each phase of the algorithm. The reason why we left step 4
out of the table is that it is essentially the same as step 3 and timings are nearly identical. Step 6 is
asymptotically the most expensive one; it uses some preconditioning to speed up each iteration of
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the loop. From the point of view of this paper, the most interesting steps are 2–5 since they are the
only ones that make use of the library FAAST.

For p = 2, it should be noted that the isogeny algorithm by Lercier (1996) has better performance;
for generic, small, p we mention as well a new algorithm by Lercier and Sirvent (2008). See De Feo
(2010, 2011) for further discussions on isogeny computation.
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