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We present the results of a calculation of the perturbative QCD corrections for the semileptonic inclusive 
width of a heavy flavored meson. Within the Heavy Quark Expansion we analytically compute the QCD 
correction to the coefficient of power-suppressed contribution of chromo-magnetic operator in the limit 
of vanishing mass of the final state quark. The important phenomenological applications are decays of 
bottom mesons, and to the lesser extent, charmed mesons.
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1. Introduction

With the success of the LHC mission and the Higgs boson dis-
covery the validity of Standard Model (SM) as the theory of parti-
cle interactions at the energies below 1 TeV has been convincingly 
proved. However, it is hard to expect that we shall be able to 
explore still higher energy regions in the same manner, namely 
by a direct observation of new physics phenomena. It is conceiv-
able that new phenomena beyond the standard model can only be 
identified through detecting slight discrepancies between theoreti-
cal predictions within the SM and precision measurements at low 
energy with available machines. For this program to succeed, the 
availability of accurate theoretical predictions within the standard 
model is of crucial importance, especially precise numerical values 
of key parameters of the SM are necessary.

There is a common belief that the flavor physics of quarks is 
one of the most promising places for search of new physics [1]. 
The relevant standard model parameters in this sector are the 
Fermi constant G F , quark masses, and quark mixing parameters 
gathered in the CKM matrix. While the quark weak decays are 
mediated through charged currents at the tree level (which are be-
lieved not to have sizable contributions of possible new physics), 
their study is of paramount importance for precise determination 
of the numerical values of the CKM matrix elements. In contrast 
to leptons, obtaining a theoretical prediction for processes with 
quarks requires the use of genuinely nonperturbative computa-
tional methods (like QCD lattice calculations) due to confinement. 
Nevertheless, for heavy hadrons the theoretical treatment is some-
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what simplified because the large mass of the heavy quark opens 
the possibility for an expansion in powers of Λ/mQ where mQ

is the heavy quark mass and Λ ∼ 500 MeV is a hadronic scale 
of QCD. The technique of such an analysis is formalized as the 
Heavy-Quark Expansion and is formulated in the modern language 
of effective theory approach as an effective theory of heavy quarks 
(HQET). The method has been first used to extract the explicit de-
pendence of decay constant of heavy mesons on the heavy quark 
mass [2] and then developed into a full-scale effective theory 
framework (see, e.g., [4,3,5–8]). Top quarks do not form long liv-
ing hadrons due to the short top quark lifetime, charmed mesons 
are probably not heavy enough, rendering the application of the 
Heavy-Quark Expansion (HQE) almost marginal but still possible. 
The case of bottom meson decays is certainly tractable in this way 
and thus has been intensively studied. The technique is applicable 
to b → u and b → c transition and to both semileptonic and purely 
hadronic decays. Our general formulas can be used for the case of 
charm quark decays c → s of c → d as well but, for definiteness, 
we will stick to semileptonic b → c transitions in our notation be-
low.

Over the last ten years the heavy quark expansion method in 
inclusive semileptonic b → c decays has been refined to such an 
extend that the remaining theoretical uncertainty in the prediction 
of the total inclusive rate for B → Xc�ν̄ has reached a level of less 
than two percent. The structure of the HQE in the case at hand is 
given by the following expression (see, e.g., [9])

Γ (B → Xc�ν̄�)/Γ
0

= |V cb|2
[
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where Γ 0 = G2
F m5

b/(192π3) and mb is the b-quark mass the pre-
cise definition of which is discussed below. Here μ2

π is the kinetic 
energy parameter of a heavy hadron, μ2

G is the chromo-magnetic 
parameter, and ρ̄ is a generalized contribution of higher-dimension
operators. These are the nonperturbative power-suppressed contri-
butions whose numerical values are of the order of Λ, the hadronic 
scale of QCD. The coefficients ai accumulate the perturbative short-
distance physics and are functions of the quark (and, in general, 
lepton) masses and have a perturbative expansion in the strong 
coupling constant αs(mQ ) taken at the high scale of the heavy 
quark mass mQ . The leading order term a0 of the heavy quark ex-
pansion is known analytically to O(α2

s ) precision in the massless 
limit of the final state quark [10]. At the next-to-next-to-leading 
order of QCD perturbation theory expansion the corrections due 
to the nonzero value of the final state quark mass have been ana-
lytically accounted for as an expansion in mc/mb in Ref. [11] and 
numerically in [12]. The coefficient of the kinetic energy parameter 
is linked to the leading order coefficient a0 by Lorentz invariance 
(see an explicit analysis in [13]).

The expression (1) is a generalization of the result for the muon 
decay that is one of most precisely known processes that provide 
valuable information on the SM parameters. The muon decay is 
important for the determination of the Fermi constant G F with 
high accuracy. To match the precision of the experimental data in 
this case, the theoretical calculations have to be performed with 
very high accuracy. In this case this is feasible, since the purely 
leptonic decays are well described with perturbation theory and 
the expansion parameter α ≈ 1/137 is small. The latest theoretical 
result includes the second order (NNLO) radiative correction in the 
fine structure constant expansion [14] (as a recent review, see [15])

Γ (μ → νμeν̄e)/Γ̂
0

= 1 + 	
(0)
0

(
m2

e/m2
μ

) + α

π

[(
25

8
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2

)

− m2
e

m2
μ
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34 − 24 ln
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me
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+ 2α

3π
ln
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+ (6.700 ± 0.002)

(
α

π

)2

with Γ̂ 0 = G2
F m5

μ/(192π3), mμ is the muon mass, me is the elec-

tron mass. Here the function 	(0)
0 (m2

e /m2
μ) accounts for the tree-

level correction due to the non-vanishing electron mass and has 
the form

	
(0)
0 (z) = −8z − 12z2 ln z + 8z3 − z4. (2)

This result gives an O (1 ppm) accuracy of theoretical expres-
sion that is competitive for comparison with experimental data. 
The numerical value of the Fermi constant is now known with un-
precedented accuracy G F = (1.16637 ± 0.00001) × 10−5 GeV−2.

The parametrically largest contribution to the theoretical ex-
pression for the semileptonic decay width in Eq. (1) currently un-
known is the radiative correction of order αs to the coefficient a2
of the chromo-magnetic parameter. This correction has been inves-
tigated recently in Ref. [16], where a result for this contribution 
has been obtained after a numerical integration over the phase 
space of the final leptons.

In this Letter we report on an analytical calculation of correc-
tions to a2 in the limit of vanishing charmed quark mass. As it 
turns out, the precision gained in this approximation is sufficient 
for phenomenological applications.
2. Outline of the calculation

The decay rate of semileptonic inclusive decays of a meson con-
taining a heavy quark is a proper observable for QCD treatment in 
a model independent manner as it can be reduce to a computation 
of an appropriate correlation function. Indeed, due to unitarity of 
the S-matrix the rate (1) is obtained from taking the absorptive 
part of the forward matrix element of the transition operator T
responsible for the change of the flavor (e.g., [17])

T = i

∫
d4x T

[
Heff(x)Heff(0)

]
(3)

where Heff is the effective Hamiltonian for the semileptonic tran-
sition with 	B = 1

Heff = 2
√

2G F V cb(b̄LγμcL)
(
ν̄Lγ

μ�L
) + h.c. (4)

The representation (3) is a very general one and can be used for 
light mesons like the kaon as well. It is the large mass of the heavy 
quark that makes it possible to use perturbative QCD for a model 
independent treatment of the decay process of a heavy hadron. In 
order to make the dependence of the width on the heavy quark 
mass mb explicit and to build up an expansion in Λ/mb , one 
matches a time-ordered product of full QCD operators Heff in (4)
on an expansion in terms of Heavy Quark Effective Theory

(Im T )/R0 = C0O0 + C v
Ov

mb
+ Cπ

Oπ

2m2
b

+ CG
OG

2m2
b

(5)

where R0 = πΓ0|V cb|2. The local operators Oi in the expansion (5)
are ordered by their dimensionality O0 = h̄vhv , Ov = h̄v vπhv , 
Oπ = h̄vπ

2⊥hv , OG = h̄v
1
2 [/π⊥, /π⊥]hv . Here v is the velocity of 

the heavy hadron appearing in the HQET construction, πμ = i∂μ +
gs Aμ is the covariant derivative of QCD, πμ = vμ(vπ) + π

μ
⊥ , and 

hv is the heavy-quark field entering the HQET Lagrangian [18,19]. 
The expansion (5) is a matching relation from QCD to HQET with 
proper operators up to dimension five in mass units with the cor-
responding coefficient functions. Note that the operator Ov will be 
eliminated by using the equation of motion for the field hv once 
the forward matrix elements with mesonic states are taken. The 
Lagrangian for the modes hv is given by

L = Ov + 1

2mb

(
Oπ + Cm(μ)OG

) + O

(
Λ2

m2
b

)
(6)

with

Cm(μ) = 1 + αs(μ)

2π

{
C F + C A

(
1 + ln

μ

mb

)}
(7)

being the coefficient of chromo-magnetic operator OG including 
the O(αs) QCD correction [20]. Here C F = (N2

c − 1)/(2Nc) and 
C A = Nc are Casimir operators of QCD gauge group SU(Nc) with 
Nc = 3, and μ is a normalization point that appears because of 
the non-vanishing anomalous dimension of the chromo-magnetic 
operator OG . The result in Eq. (7) is given in MS scheme of renor-
malization. Note that we define the modes hv such that terms of 
the order O (1/m2

b) in the Lagrangian contain no time derivative 
[19,21].

It is convenient to chose the local operator b̄/vb defined in full 
QCD as a leading term of heavy quark expansion [22]. Indeed, the 
current b̄γμb is conserved and thus its forward matrix element 
with hadronic states is absolutely normalized. For implementing 
this one needs an expansion (matching) of a full QCD local opera-
tor b̄/vb in HQE through HQET operators. This procedure is similar 
to the way the expansions have been reorganized in Ref. [23]. The 
expansion of the local operator reads
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b̄/vb = O0 − C̃π
Oπ

2m2
b

+ C̃G
OG

2m2
b

+ O
(
1/m3

b

)
(8)

and is valid including the radiative corrections of order αs . The 
leading power operator O0 has no corrections and the kinetic op-
erator has the same coefficient as the leading one due to Lorentz 
invariance.

Substituting the expansion (8) into Eq. (5) one obtains after us-
ing the equation of motion for the operator Ov in the forward 
matrix elements

(Im T )/R0 = C0

{
b̄/vb − Oπ

2m2
b

}

+ {−C v Cm + CG − C̃G C0} OG

2m2
b

. (9)

The numerical value for the chromo-magnetic moment parame-
ter μ2

G related to the forward matrix element of the operator 
OG is usually taken from the mass splitting between the pseu-
doscalar and vector ground-state mesons. With mB∗ = 5325 MeV
and mB = 5280 MeV the mass difference of bottom ground-state 
mesons become m2

B∗ − m2
B = 	m2

B = 0.48 GeV2 and can be writ-
ten through the forward matrix element of the chromo-magnetic 
operator in the form

1

2mB
Cm(μ)

〈
B(pB)

∣∣OG
∣∣B(pB)

〉 = 3

4
	m2

B (10)

where we use the usual relativistic normalization of the particle 
states.

Taking the forward matrix element of (9) one gets

Γ (B → Xc�ν�)/Γ0 = |V cb|2
{

C0

(
1 + μ2

π

2m2
b

)

+
(

−C v + CG − C̃G C0

Cm

)
3	m2

B

8m2
b

}
. (11)

The matching procedure of obtaining the coefficients of expansion 
in Eq. (5) is straightforward and consists in computing matrix ele-
ments with partonic states (quarks and gluons on the mass-shell) 
at both sides of the expansion (5). In this way the coefficient func-
tion C0 of the dimension-three operator h̄vhv determines the total 
semileptonic decay width of the heavy quark and at the same time 
gives the leading contribution to the width of a bottom hadron in 
the HQE framework.

Going to order αs , the calculation of the matching of the transi-
tion operator T in Eq. (3) requires to consider three-loop diagrams 
with external heavy quark lines taken on mass shell.

The leading order result is well known and requires the calcu-
lation of the two-loop Feynman integrals of the simplest topology 
– the sunset type ones (see, e.g., [24]). This can be readily obtained 
with account of masses of final quarks and even leptons that can 
be of interest for decays of D-mesons to muons or tau leptons.

The contribution to the coefficient C0 is proportional to the ex-
pression of the general form∫

ū(p)γμ(1 − γ5)S(x,mc)γν(1 − γ5)u(p) × Πμν(x)eipxdx

where u(p) is a b-quark spinor, S(x, mc) is a charmed quark prop-
agator, p = mv , and Πμν(x) is the leptonic tensor. The Fourier 
transform of the leptonic tensor reads

Πμν(q) = (
qμqν − q2 gμν

)
Π

(
q2)

It is transverse in the limit of massless charged leptons. In case 
of decaying into the final massive leptons (muon or massive neu-
trino even) one can account for the lepton masses as well. In the 
massless limit the explicit expression for Π(q2) reads
Fig. 1. Perturbation theory diagrams for the matching computation at the leading 
order (LO), left – width type, right – power correction type (in an external gluon 
field).

Π
(
q2) = C

(4π)D/2

(
μ2

−q2

)(4−D)/2

in D-dimensional space time, D = 4 − 2ε , where

C =
(

2

3ε
− 2

9

)
�2(1 − ε)�(1 + ε)

�(2 − 2ε)
.

The complete result with the massive charmed quark can be 
obtained by computing either full integrals with massive lines or 
through an expansion in the mass ratio mc/mb . We checked that 
the technique of small mass expansion reproduces the known re-
sult at the leading order. This technique can be also used at the 
NLO level. In Fig. 1 we show the leading order diagrams.

When calculating the perturbative coefficients of matching ex-
pressions at the NLO level one needs to compute the three-loop 
on-shell integrals with massive lines. The problem is simplified 
partly because these are not integral of the most general topol-
ogy. Further simplification is that one needs only the imaginary 
parts of emerging integrals.

The computation has been performed within techniques of di-
mensional regularization used for both ultraviolet and infrared sin-
gularities that emerge in separate integrals because of the presence 
of massless particles and on-shell kinematics. In the actual cal-
culation we used the system of symbolic manipulations REDUCE 
[25] and the package FeynCalc of Mathematica [26] with original 
codes written for the present calculation. The general setup of the 
calculation is by now rather a standard one including first the re-
duction to a limited set of master integrals that has been done 
within the integration by parts technique [27]. The original codes 
have been used for most of the diagrams. The program LiteRed 
[28] has been used for the check of the results and further appli-
cation to complicated vertex diagrams. The master integrals have 
been computed directly. Two of them have a simple topology of 
sunsets and are almost trivial. The one master integral is nontriv-
ial and has been found with the help of direct integration through 
Feynman parameters and then checked with the program HypExp 
[29]. The renormalization is performed on-shell by the multipli-
cation of the bare (direct from diagrams) results by the on-shell 
renormalization constant Z OS

2

Z OS
2 = 1 − C F

αs

4π

(
3

ε
+ 3 ln

(
μ2

m2
b

)
+ 4

)
. (12)

The whole computation has been done in Feynman (diagonal) 
gauge for the virtual gluons.

In Fig. 2 we show some typical three loop diagrams of the next-
to-leading order. By using the described methods one reproduces 
the known result for the next-to-leading order expression of the 
semileptonic decay width of the quark

C0 = 1 + 	
(0)
0 (ρ) + C F

αs
{(

25 − π2 )
+ 	

(1)
0 (ρ)

}
(13)
π 8 2
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Fig. 2. Perturbation theory diagrams for the matching computation at NLO, left – 
width type, right – power correction type (in an external gluon field).

with C F = 4/3 and ρ = m2
c /m2

b . Here 	(0)
0 (ρ) and 	(1)

0 (ρ) are cor-
rections due to charmed quark mass at LO and NLO respectively. 
They are known analytically and normalized such that 	(0)

0 (0) =
	

(1)
0 (0) = 0. At the leading order the whole result is simply as in 

Eq. (2)

	
(0)
0 (ρ) = −8ρ − 12ρ2 lnρ + 8ρ3 − ρ4

while the NLO contribution 	(1)
0 (ρ) given in the original paper is 

rather lengthy for the general final quark mass dependence [30]. 
We give only few terms of the small ρ = m2

c /m2
b expansion

	
(1)
0 (ρ) = −ρ

[
50 + 12 ln

(
μ2

m2
b

)]
.

Note that in these expressions the definition of the final state 
quark mass mc is given in the MS scheme. In principle, for the 
charmed quark one could use the pole mass as it was in the orig-
inal paper [30] as well. We have checked the leading order mass 
correction within our computational techniques.

The coefficient Cv of the dimension-four operator Ov is singled 
out by taking the matrix element between quarks on shell and one 
gluon with vanishing momentum and longitudinal polarization, i.e. 
the gluon field is chosen to be of the form Aμ = vμ(v A). The co-
efficient Cv reads

C v = 5 + C F
αs

π

{
−25

24
− π2

2

}
. (14)

It has no μ dependence and no C A color contribution. It is μ in-
dependent because the operator Ov is RG invariant. The absence 
of C A color contribution is due to gauge invariance. Indeed, this 
matches also the possibility to compute this coefficient using small 
momentum expansion near the quark mass shell, p = mv + k. 
A powerful check of the result is an explicit cancellation of the 
contribution proportional to the color structure C A and the renor-
malization (cancellation of ε-poles) with the same renormalization 
constant Z OS

2 shown in (12).
The final coefficient of the chromo-magnetic operator multi-

plied by Cm (see Eq. (11)) reads

Cfin = −C v + (CG − C̃G C0)/Cm (15)

and

Cfin = −3 + 	
(0)
G (ρ) + αs

π
	

(1)
G (ρ)

+ αs

π

{
C A

(
31

18
− π2

9

)
+ C F

(
43

144
− 19π2

36

)}
. (16)

The function 	(0)
G (ρ) is known analytically (e.g., [8])

	
(0)

(ρ) = 8ρ − 24ρ2 + 24ρ3 − 5ρ4 − 12ρ2 ln(ρ)
G
The function 	(1)
G (ρ) emerges in the analysis of Ref. [16] where the 

analytical result for the coefficient of the chromo-magnetic opera-
tor at the level of hadronic structure functions has been obtained. 
Both functions are chosen such that they vanish at mc = 0. The fi-
nal integration over the phase space in Ref. [16] has been done 
numerically that prevents us from a direct comparison between 
the two results. Numerically we obtain at the limit mc = 0

Cfin = −3 + αs

π
(0.63C A − 4.91C F ) (17)

= −3 + αs

π
(−4.67) = −3

(
1 + 1.56

αs

π

)
.

The μ dependence of the prefactor of OG in (9) matches the lead-
ing order anomalous dimension of the chromo-magnetic operator 
[20], such that Cfin is μ independent. Furthermore, the mass pa-
rameter of the heavy quark mb is chosen to be the pole mass 
which is a proper formal parameter for perturbative computations 
in HQET (see discussion in [9]). After having obtained the results of 
perturbation theory computation for the coefficients of HQE, one is 
free to change this parameter to any other [31].

Our results (16), (17) still depend on μ through the strong cou-
pling αs defined in the MS-scheme; however, this remaining scale 
dependence can only be resolved at the next order in αs .

3. Discussion of the results

The radiative corrections are of reasonable magnitude and are 
well under control for the numerical values of the coupling con-
stant for μ ∼ 2–4 GeV. This provides a clean application of the 
results to the decays into final light quarks u for bottom mesons 
and s or d for charmed mesons.

For the applications to the b → c transitions an important ques-
tion is the magnitude of corrections due to non-vanishing charmed 
quark mass. It seems that mass corrections are important nu-
merically. The small ρ expansion reads 	(0)

G (ρ) = 8ρ + . . . , and 
	

(1)
G (ρ) = Aρ + . . . where the factor A is not known analytically. 

Assuming |A| ≤ 50 one sees that the massless approximation dom-
inates the radiative correction for typical values of ρ in the range 
ρ = 0.06 ± 0.02 [32],

Cfin = −3 + αs

π
(−4.67 + ρ A). (18)

While a literal comparison with the results of [16] is difficult, the 
phase space reduction factor of 1/3 suffices to reproduce the result 
of massive computation. Note that within our approach the analyt-
ical computation of mass corrections is possible in the form of a 
series expansion in ρ .

At present the value of |V ub| from inclusive decays is |V ub| =
(4.41 ±0.15 ±0.16) ×10−3 [33] while the extraction from exclusive 
B → π�ν̄ yields |V ub| = (3.23 ± 0.31) × 10−3. However, the exclu-
sive determination does not rely on the local OPE considered here, 
so from our results we cannot really draw a definite conclusion. 
Nevertheless, if our result indicates the size of the expected cor-
rections, it cannot resolve the tension between the inclusive and 
the exclusive value.

More important are the implications for inclusive semileptonic 
B meson decays to charm, since here the precision is high enough 
to worry about the correction computed above. Indeed, the in-
clusive determination has a precision at the level of roughly 2%, 
the value being |V cb| = (42.4 ± 0.9) × 10−3 [34,33]. Since we only 
have the analytical result in the limit mc → 0 at hand, we esti-
mate the impact of our correction in a simplified manner. Because 
it is a small correction, we only account for charmed quark mass 
at tree approximation, taking into account the kinematic function 
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(0)
0 (ρ) = −8ρ − 12ρ2 lnρ + 8ρ3 − ρ4. The determination of |V cb|

uses the total rate only, so we get for the shift in |V cb | through the 
αs correction in the coefficient of chromo-magnetic operator

	|V cb|
|V cb| = 4.67

αs

π

3	m2
B

8m2
b

1

2(1 + 	
(0)
0 (ρ))

(19)

which yields for ρ = 0.07 and αs/π = 0.1 a relative shift of +0.3%
in the value of |V cb|.

The shift in |V cb| has to be compared to the corrections of order 
(Λ/mb)

n , n = 3, 4, at tree level. The (Λ/mb)
3 contributions induce 

a relative shift in |V cb| of about −1.5% which is included in the 
current analysis. The terms of order (Λ/mb)

4 are not yet included 
and shift the value of |V cb| by about 0.3% [35], which is roughly of 
the same order as the corrections considered here.
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