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Binding structure of the leucine aminopeptidase inhibitor microginin FR1
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Abstract Natural bioactive compounds are of general interest
for pharmaceutical research because they may serve as leads in
drug development campaigns. Among them, microginins are lin-
ear peptides known to inhibit various exopeptidases. The crystal
structure of microginin FR1 from Microcystis sp. bound to
bovine lens leucine aminopeptidase was established at 1.73 Å
resolution. The observed binding structure could be beneficial
for the design of potent aminopeptidase inhibitors.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Water blooms in eutrophic lakes are often caused by cyano-

bacteria [1]. Field populations of the common bloom-forming

genus Microcystis can be toxic because some strains produce

microcystins, which are hepatotoxic, promote tumors and af-

fect the development of fish and amphibians [2–4]. In addition,

cyanobacteria produce non-toxic peptides, some of which

show remarkable bioactivities and have therefore attracted

the attention of the pharmaceutical industry [5,6]. Of particu-

lar interest are phosphatase inhibitors [7] and selective protease

inhibitors, as for example the elastase inhibitor scyptolin A [8].

Among these peptides are microginins (Fig. 1), the first of

which was isolated from Microcystis aeruginosa (NIES-100)

[9]. Microginins contain the lipidic b-amino acid Ahda (3-ami-

no-2-hydroxy-decanoic acid) and inhibit the angiotensin-con-

verting enzyme (ACE) [9] as well as aminopeptidases but do

not affect papain, trypsin, chymotrypsin or elastase [10]. Re-

lated to the microginins are the well-known inhibitors bestatin

[11] and amastatin [12] produced by Streptomyces. Both of

them inhibit aminopeptidases [13]; bestatin causes a reduction

of the HIV-infection rate [14]. Here we report the binding

structure of microginin FR1 that was extracted from a water

bloom in a local lake [15] to a leucine aminopeptidase (LAP).
Abbreviations: ACE, angiotensin-converting enzyme; Ahda, (2S, 3R)-
3-amino-2-hydroxy-decanoic-acid; LAP, leucine aminopeptidase
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2. Materials and methods

Microginin FR1 was isolated from water bloom material in Lake
Waltershofen near Freiburg and the IC50 value for bovine lens LAP
was determined as described [16]. The enzyme was isolated from calf
lenses as described [17]. The calf eyes were received 5 h after slaughter-
ing and stored on wet ice. The isolated enzyme ran through an addi-
tional gel permeation column (Superdex-200 26/60, Amersham)
equilibrated with buffer A (50 mM Tris–HCl pH 7.8, 50 lM ZnSO4

and 200 mM NaCl). LAP-containing fractions were pooled and con-
centrated to 7 mg/ml in buffer A. Microginin FR1 dissolved in DMSO
was added at a concentration of 5 mM to the enzyme solution, incu-
bated for 30 min at 37 �C and centrifuged. Using the hanging drop
set-up, 10 ll of the enzyme-plus-inhibitor solution was equilibrated
against buffer B (50 mM Tris–HCl pH 7.8, 50 lM ZnSO4, 50% (v/v)
2-methyl-2,4-pentanediol) [18]. The crystals were flash-frozen to
100 K without any further cryo-protectant.

X-ray diffraction data were collected at beamline BL14-1 of BESSY
(Berlin) and processed using the programs XDS and XSCALE [19].
The structure of bovine lens LAP (Protein Data Bank code 1BLL)
[18] was used as a starting model for structure determination. After ri-
gid body refinement with the program REFMAC5 [20], model bias was
removed by a simulated annealing run starting at a temperature of
2500 K with CNS [21]. An initial map was calculated using RESOLVE
[22]. After manual adjustments with the program COOT [23], the mod-
el was refined in REFMAC5 and the inhibitor was placed in the result-
ing (Fo–Fc) difference electron density map. An energy-minimized
conformation of the inhibitor and the corresponding dictionary files
were generated with PRODRG [24]. Water molecules were placed
using COOT and the refinement was finalized with REFMAC5. The
coordinates and structure factors are deposited in the Protein Data
Bank code 2J9A.
3. Results and discussion

Purified microginin FR1 was added in excess to a solution of

LAP from bovine lens, and cocrystals were obtained by the

hanging drop technique. X-ray diffraction data were collected

to 1.73 Å resolution and the structure was determined (Table

1). An initial (Fo–Fc)-electron density map showed the inhibi-

tor binding conformation of the first three residues unambigu-

ously. After refinement, the remaining two residues were also

placed unambiguously although with higher B-factors

(Fig. 2A).

Bovine lens LAP is a homohexamer with D3 symmetry

(Fig. 2B). Two large contacts around the twofold axes are

formed by the N- and C-terminal domains in different subunit

pairings, tightly interconnecting the hexamer. The C-terminal

domains form a further contact around the threefold axis.

The active centers are on the inside of the hexamer lining a large

central cavity. They are shielded by the N-terminal domains but

accessible through six channels with a width appropriate for an

extended peptide chain (Fig. 2C). With such a topology, the
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Covalent structure of the pentapeptide microginin FR1 with its
characteristic Ahda residue [15]. The related dipeptide bestatin [11] and
tetrapeptide amastatin [12] carry a modified Ahda as the first residue.
In bestatin and amastatin the atoms C5–C10 of Ahda are replaced by
phenyl and isopropyl, respectively. The other residues of bestatin and
amastatin are -Leu and -Val-Val-Asp, respectively. All amino acid
residues have the L-configuration. The position of the scissile bond of
processed peptides is indicated by the assigned subsites S1 and S1 0.
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enzyme can only cleave unfolded peptides, because folded pep-

tides or proteins cannot enter the central cavity.

The Ahda-Ala part of microginin FR1 fits snuggly into the

active center pocket (Fig. 3), binding with full occupancy as

indicated by the crystallographic B-factors matching those of

the environment. The decanoic acid moiety of Ahda is accom-

modated in a spacious pocket extension formed by Leu269,

Met270, Asp365, Ala451, Met454 and Thr455. This extension

is for the most part nonpolar but contains Asp365 at one side,

suggesting that a positive charge at this part of the inhibitor

would increase the binding strength. The amino group of Ahda

interacts with one of the two zinc ions at the active center

(Zn1) as well as with Thr359-O, while the hydroxyl group of

Ahda interacts with Zn2 and with a water molecule tightly

bound to the backbone amides of Glu334 and Gly335. The

1-carbonyl of Ahda forms a hydrogen bond to Lys262-Ne.
The alanine of microginin FR1 forms hydrogen bonds

with Leu360-O and Gly362-N reminiscent of a piece of parallel
Table 1
Structure determinationa

Data collection
Resolution (Å)
Unique reflections
Multiplicity
Completeness (%)
Rsym (%)
I/rI

Wilson B-factor (Å2)

Refinement
Protein atoms
Solvent atoms
Microginin FR1 atoms
Rcryst/Rfree (5% test set)
Average B-factor (Å2)
Rmsd bond lengths (Å)/bond angles (�)
Ramachandran:favored/allowed (%)

aThe data were collected at a wavelength of 0.9184 Å at BESSY (Berlin). T
c = 120.8 Å and one subunit in the asymmetric unit.
b-sheet. Ahda and alanine occupy subsites S1 and S1 0 (Fig. 1),

thus covering the active center of the LAP.

Instead of the carbonate or the three water molecules found

in other bovine lens LAP structures [25,26], we observed a

chloride ion bound to Arg366 close to the metal ion Zn2

(Fig. 3A). Since a water molecule placed at this position caused

positive difference electron density and since the observed den-

sity is at the level of several sulfur atoms, a chloride ion from

the crystallization buffer is the most likely interpretation.

The three C-terminal residues of the inhibitor are involved in

less clearly defined binding patterns. The third residue N-

methyl-leucine binds with its carbonyl oxygen through a water

network to Arg336 and Ala363-O. The remaining two tyro-

sines of microginin FR1 show rather high B-factors

(Fig. 3A). The first tyrosine binds with its hydroxyl through

Arg425 0 to Asp365. The hydroxyl of the second tyrosine forms

hydrogen bonds through water molecules and directly to the

backbone of residues 423 and 424. Despite their high B-fac-

tors, the removal of these tyrosines weaken the inhibitory

capacity appreciably [16]. Other inhibitor complexes with bo-

vine lens LAP are known [25].

The cyanobacterial peptide microginin FR1 represents a

large group of known microginins characterized by the N-ter-

minal residue Ahda [9,10,27,28]. The IC50 values of microginin

FR1 for bovine lens cytosolic LAP (EC 3.4.11.1) was deter-

mined as 1.3 lM, which is lower than the value 16 lM for

ACE [15]. The IC50 values of the other microginins for ACE

are in the range of 10 lM or above [9,16,28]. Stronger inhibi-

tion was observed for the microsomal LAP (EC 3.4.11.2).

Microginin FR1 shows an IC50 value of 6 nM with the porcine

kidney microsomal LAP, while other microginins range from

16 nM to around 10 lM [9,10,16,28]. The related inhibitors

bestatin and amastatin show IC50 values in the micromolar

range for cytosolic and microsomal LAP [13,29].

The inhibited enzymes cytosolic LAP, microsomal LAP and

ACE are all exopeptidases with one or two zinc ions in the ac-

tive center. However, their structures are completely different

[30–32]. All discussed inhibitors have Ahda-related first resi-

dues (Fig. 1), which bind to the metal centers of cytosolic

and microsomal LAP as shown in Fig. 3 and elsewhere

[18,30,32,33]. The reported binding structure to cytosolic
35 � 1.73 (1.80 � 1.73)
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he space group was P6322 with unit cell parameters a = b = 130.0 Å,



Fig. 2. Stereoview of microginin FR1 bound to bovine lens LAP. (A) The final model of one subunit of the enzyme represented as a ribbon plot with
the bound inhibitor shown in its (2Fo–Fc)-electron density at a contour level of 0.8 r. The two zinc ions of the active center are given for reference
(pink). The N-terminal (residues 1–158) and C-terminal (159–485) domains are in yellow and red colors, respectively. The threefold (green) and
twofold (black) axes of the hexamer are given. (B) Surface representation of the hexameric enzyme viewed along the threefold axis with colored
subunits and labeled domains. The twofold axes are black. The entrances to the active centers are marked by pink sticks. (C) Hexamer in the inflated-
stick-representation with the same colors, axes and sticks (pink) as in panel B. The hexamer is cut parallel but 6 Å above the plane of the twofold
axes. Microginin FR1 is pink and labeled (Inh).
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Fig. 3. Close-up stereoview of the active center of bovine lens LAP. (A) The binding structure of the inhibitor microginin FR1. Chain cuts are
marked by halos. The two zinc ions are gray, the water molecules are blue and the chloride ion is green. Residues of a neighboring subunit are
marked by a prime. Hydrogen bonds are black dashed lines. The zinc coordinations are red dashed lines (distances 2.0–2.3 Å). Van-der-Waals
contacts are green dotted lines (all unlabeled distances are between 3.6 Å and 4.6 Å). The B- factors of the inhibitor residues Ahda-Ala-mLeu-Tyr-
Tyr are 15, 13, 21, 51 and 81 Å2, respectively. (B) Bound microginin FR1 with zinc ions (pink) superimposed on the bound inhibitors amastatin (blue)
[18] and LL-leucinephosphonate (pink) [33]. A structure of bound bestatin was reported [30] but not deposited in the Protein Data Bank.
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LAP resembles the known binding structure of the microginin-

related bestatin to microsomal LAP [32] but differs in detail.

Among the wide variety of peptides produced by cyanobac-

teria, the microginins with their lipidic b-amino acid Ahda in-

hibit both types of leucine aminopeptidases, cytosolic (EC

3.4.11.1) and microsomal (EC 3.4.11.2), the structures of

which are quite different [30,32]. Since these aminopeptidases

are of medicinal relevance [13,14,34] and since the inhibition

occurs at nanomolar to micromolar concentrations, the

microginins constitute a welcome lead for the design of novel

drugs. The microginins may also be used as a starting point

for ACE inhibitor design.
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