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Abstract

Saint-Venant’s Problem, Almansi–Michell Problems, Meshfree Methods, Piezoelectricity. We present a semi-analytical
method for analyzing prismatic nonhomogeneous piezoelectric cylinders with arbitrary cross-sectional geometry. The pre-
scribed loads considered in this study include axial forces, torques, moments, and voltage resultants prescribed at the cyl-
inder’s ends, as well as body forces, lateral surface shears, voltages, and pressures as long as they can be represented by a
power series in the axial coordinate. This problem can be considered as an extension of Saint-Venant and Almansi–Michell
problems for elastic bodies to piezoelectric bodies. In this computationally efficient method, the cross-sectional plane is
discretized with a meshfree approach, and the solution is obtained analytically with respect to the axial coordinate. A num-
ber of examples are provided to demonstrate the veracity and utility of the proposed method.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials are being utilized in a broad variety of active material systems due to the precision
they afford, and their simultaneous sensing and actuation capabilities. Recent developments in this area indi-
cate that significant gains in sensing and actuation capacities can be achieved with distributed and continuous
(as opposed to discrete) placement of active materials within the host structure (see, for example, Cesnik and
Shin, 2001). A significant portion of such ‘smart’ structures with integrated active materials possess prismatic
(beam/plate-like) geometries; yet, by default, they have nonhomogeneous and highly anisotropic cross-
sections.

The methods of analysis for the aforementioned type of smart structures can be classified into (I) analytical
methods, which yield exact (or classical) solutions, (II) methods based on structural theories, (III) fully dis-
crete (e.g., three-dimensional finite element) methods, and (IV) semi-analytical methods. These approaches
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vary in attributes such as computational efficiency and accuracy. Classical solutions are the most accurate, and
yet scarce, for obvious reasons. Fully discrete solutions are almost always possible to obtain, but also invari-
ably are the most expensive. It is therefore natural that, in the area of smart structures and materials, the most
popular methods belong to category II. This is mainly due to the efficiency these methods provide without
sacrificing too much in accuracy. However, their range of applicability is limited by the constraining (e.g.,
kinematic) hypotheses with which they are generated. The method proposed in this study belong the last
and the least explored category (IV), and it strikes a favorable balance between computational efficiency
and accuracy. In what follows, we hope to illuminate the case in point by providing an overview of the said
categories of methods. This overview is not meant to be comprehensive and is included to bring the present
effort into perspective.

1.1. Classical solutions: a discussion of Saint-Venant’s problem and its derivatives in relation to smart structures

Saint-Venant’s problem (1855, 1856) is one of the most celebrated problems of three-dimensional elasticity.
It is a boundary value problem involving a prismatic body (henceforth referred to as a cylinder) subject to
surface tractions over its ends and with no body forces. As per this layout, many of the actuator/sensor devices
with beam/plate geometries can be considered within the Saint-Venant paradigm.

The so-called ‘relaxed formulation’ of Saint-Venant’s problem is the version where stress resultants (i.e.,
bending moments, torque, normal, and shear forces) rather than pointwise tractions are prescribed at the ends
of the cylinder. On the other hand, the ‘extended’ Saint-Venant’s problem, or the Almansi–Michell problem,
deals with body forces and lateral tractions in addition to the end tractions. The particular naming is due to
Almansi (1901) who considered lateral surface tractions that are linearly varying in the axial coordinate of the
cylinder, and to Michell (1901) who treated uniform surface tractions only. Classical solutions to the relaxed
formulation have been obtained through the ‘semi-inverse’ and ‘generalized plane-strain’ approaches in the
past. The latter is the more powerful of the two, and is primarily due to Ies�an (1986, 1987). Pertinent to
the proposed study, Ies�an’s approach can be systematically extended to obtain solutions for arbitrary lateral
surface tractions; and it can be used to formulate a semi-analytical method to handle nonhomogeneous cross-
sections comprising materials with the most general form of anisotropy (see, for example, Dong et al., 2001).
As might be expected of both of the said approaches in their purely analytical form, classical solutions are
typically restricted to simple geometry and loading conditions such as circular tubes (Tarn, 2002), monoclinic
crystals (Davı́, 1996; Bisegna, 1998), etc. These solutions are extremely valuable however, as they constitute
useful benchmarks for validating finite element and various beam and plate theory-based solutions.

1.2. Finite element methods and structural theories applied to smart structures

Perhaps the earliest work on continuum finite elements incorporating coupled electromechanical response is
by Allik and Hughes (1970). Since then, numerous innovations taking place in finite element methods have been
put to use in research on smart structures (for a recent survey see Benjeddou, 2000). Due to the high cost of three-
dimensional numerical methods and the scarcity of classical solutions, beam, plate, and shell theories – referred
herein as structural theories – are arguably the most commonly used tools for analysis, design and control of
smart structures at present (see, for example, Saravanos and Heyliger, 1995; or see Saravanos and Heyliger,
1999; for a survey). A beam, plate or shell problem may be viewed as a constrained three-dimensional elasticity
problem whereby the solutions are restricted usually by a hypothesis on deformations and by the simplification of
boundary conditions as in the case of the relaxed Saint-Venant problem (Popescu and Hodges, 1999). Like any
other constrained problem, determination of the range of validity of solutions based on structural theories is very
important, as any subsequent analysis and design that falls outside this range is dubious.

1.3. Semi-analytic methods applied to smart structures and the present effort

The final, and presently the least explored, category is that of the semi-analytical methods for analysis of
smart structures and heterogeneous material systems. We reserve the term ‘semi-analytic’ for methods in which
the total solution is obtained by the simultaneous and consistent use of a numerical (e.g., finite element, mesh-
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free, etc.) and an analytical method. Ideally, this is achieved in a modular fashion such that an analytical solution
is obtained entirely in one or more dimensions thereby allowing that part of the solution to be built (or con-
densed) into the overall solution procedure. It should be noted that the ordinary plane-strain and axisymmetric
finite element analyses belong to this category, as part of the solution is analytic in each case – albeit trivially via
symmetry arguments. The advantages of semi-analytic methods are mainly twofold: (i) computational effort is
reduced by one or more orders of magnitude; (ii) part of the behavior is obtained analytically and thus it is inher-
ently more accurate than any numerical approximation. These advantages are attractive for smart structures –
especially those with distributed sensor/actuator systems – enabling computation-intensive investigations such
as design sensitivity analyses, topology optimization, or development of active control algorithms. Further-
more, semi-analytic solutions can be used to investigate the range of validity of ad hoc structural theories for
heterogeneous material systems, and as a basis for the development of new ones.

The basis of the present work is due to Huang and Dong (2001) and Dong et al. (2001) who proposed a
semi-analytical finite element method for obtaining the mechanical behavior of anisotropic cylinders due to
end loads (i.e., Saint-Venant solutions). This approach was extended to the analysis of laminated piezoelec-

tric circular cylinders subject to electromechanical end loadings by Taciroglu et al. (2004), Taciroglu and Liu
(2005), and Liu and Taciroglu (2007). Building on this earlier work, herein we develop a semi-analytical
method to obtain solutions for nonhomogeneous prismatic piezoelectric cylinders with arbitrary cross-sec-

tional geometry under mechanical and electrical loads applied at the cylinder’s ends and/or its lateral sur-
faces. The problem investigated here involves complex deformations due to bending and flexure which are
absent in previous work; and determining the exact form of the displacement and electric potential fields
for the anisotropic, nonhomogeneous beam is a non-trivial task. This problem can be considered as exten-
sions of the Saint-Venant (1855, 1856) and, the more general, Almansi–Michell (1901) problems for elastic
bodies to piezoelectric bodies. The solution methodology calls for the displacement and electric potential
fields to be set forth at the outset. Ies�an’s (1986) rational scheme is used to generate the functional forms
of these fields, which has the advantage of being systematic (i.e., displacement and electric potential fields
for higher-order problems can be generated from those of lower-order ones sequentially) and free of any
a priori assumptions, such as those used in semi-inverse methods. For each of these sequential problems,
the displacement and electric potential fields can be decomposed into primal, and cross-sectional fields.
The primal field can be obtained from the kinematic hypotheses of elementary bar and beam theories.
The cross-sectional field is independent of the axial coordinate and is determined by substituting the dis-
placement and electric potential fields into the variational form of governing equations, which are discretized
only in the cross-sectional plane using a meshfree method.

Work related to this type of theory has also been proposed by Yu et al. (2002) and Yu and Hodges (2004),
who decompose the three-dimensional elasticity problem into a 2-D cross-sectional analysis, and a 1-D beam
problem via the so-called ‘‘variational asymptotic method.’’ Another group of researchers (Giavotto et al.,
1983; Borri and Merlini, 1986; Ghiringhelli et al., 1997) presented a similar semi-analytical approach compris-
ing, yet again, two main stages, which are the determination of the cross-sectional properties, and the evalu-
ation of the structural response based on the computed properties. In this approach, the 6 · 6 cross-sectional
flexibility matrix is computed by solving six canonical problems in Giavotto et al. (1983), or by introducing the
concept of ‘‘intrinsic warping’’ in Borri and Merlini (1986). The Saint-Venant’s solution is then obtained based
on the calculated cross-sectional properties. This approach has also been extended to piezoelectric beams by
Ghiringhelli et al. (1997). It is useful to point out the main differences between these works and our present
approach. First, our approach is a method of undetermined coefficients whereby the solution vector satisfies
the governing semi-analytical equations exactly (i.e., no a priori assumptions are made on stress distributions
or cross-sectional deformations). Second, we can deal with lateral surface loads, while previous work only
treats resultant end loads (i.e., Saint-Venant problems).

The proposed semi-analytical meshfree method is ideal for analysis and optimal design of prismatic struc-
tures containing distributed piezoelectric sensor/actuator devices because (i) the semi-analytical method allows
a dimensional reduction without any loss of accuracy and thus, it provides significant savings in computation
compared to three-dimensional numerical methods; and (ii) the sensitivities of externally defined design objec-
tive functions with respect to changes in structural topology or material attributes can be easily obtained
through the meshfree approach (Bobaru and Mukherjee, 2001).
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In what follows, we present the governing equations and general solution strategy in Sections 2 and 3. Rigid
body modes, uniform and linear states are considered in Sections 4–6, respectively. A set of verification prob-
lems and an application example are provided in Section 7.
2. Governing equations

2.1. Problem statement

Consider a prismatic piezoelectric cylinder of length L with an arbitrary cross-sectional geometry as illus-
trated in Fig. 1a. The cylinder comprises an arbitrary number of materials – each of which may possess the
most general form of anisotropy – and the material interfaces have arbitrary shapes. We adopt a Cartesian
coordinate system ðx; y; zÞ with its origin located at the centroid of the cross-section – a choice for which there
is no restriction. The cylinder is mechanically restrained at the root-end (z ¼ L), and free of mechanical dis-
placement boundary conditions at the tip-end (z ¼ 0). Extensions to other mechanical displacement boundary
conditions, such as simple supports, and statically indeterminate problems can also be considered in the solu-
tion procedures that follow, and we shall omit the details of such cases for brevity.

The cylinder can be subjected to mechanical loads at its tip-end and on its lateral surface, and to electrical
loads at its either end, its lateral surface, and throughout the material interfaces (via electrodes). Herein, we
only consider the resultants of the electromechanical loads applied at the ends of the cylinder (i.e., the relaxed
formulation of Saint-Venant’s problem), and only such electromechanical loads – applied along the lateral
surface of the cylinder – that have a polynomial variation in their magnitude along the z-axis (i.e., extensions

of Almansi–Michell problems).
The linear constitutive equations of a piezoelectric material are given by
T ¼ CES� eE; D ¼ eT Sþ jSE ð1Þ
where the vectors denote the stresses T ¼ ½T xx; T yy ; T zz; T yz; T xz; T xy �T, electric displacements D ¼ ½Dx;Dy ;Dz�T,
strains S ¼ ½Sxx; Syy ; Szz; Syz; Sxz; Sxy �T, and electric field variables E ¼ ½Ex;Ey ;Ez�T; while the matrices CE, jS ,
and e denote the elastic stiffness values measured at constant electric field, the dielectric permittivities at con-
stant strain, and the electromechanical (piezoelectric) coupling constants, respectively. We choose the primary
field variables as the mechanical displacements u ¼ ½u; v;w�T and the electric potential (voltage) /. As such, it is
convenient to group the dependent and independent variables as
q ¼
S

E

� �
9�1

; Q ¼
T

D

� �
9�1

; v ¼
u

/

� �
4�1

: ð2Þ
Then, the constitutive relationships in Eq. (1) may be restated compactly as
Fig. 1. Problem geometry and the coordinate system.
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Q ¼ C�q where C� ¼ CE �e

eT jS

" #
: ð3Þ
Moreover, the strain–displacement and electric field–potential relationships are given by
q ¼ Lfvg ¼ 1

2
ruþrTu
� �

; �r/

� �T

: ð4Þ
2.2. Enriched reproducing kernel particle method

For the present study, we shall adopt a meshfree method to model the cross-sectional behavior. Meshfree
methods – such as Element-Free Galerkin (Belytschko et al., 1994) and Reproducing Kernel Particle Methods
(Liu et al., 1995) – have gained mainstream recognition within the last decade, and have been applied to
numerous problems in continuum mechanics. These methods are ideal for adaptive computations and opti-
mum design problems as because, in either of the aforementioned cases, nodes of the discrete model must
be relocated, added or eliminated. With meshfree methods, these operations can be performed with ease in
contrast to, for example, finite element methods which require remeshing.

Since basic meshfree methods employ smooth shape functions with overlapping supports, discontinuities in
solution fields across material interfaces can not be interpolated properly. Several approaches have recently
been developed to overcome this difficulty for purely mechanical problems (see, for example, Krongauz
and Belytschko, 1998; Wang et al., 2003). Liu and Taciroglu (2006) have extended these approaches to elec-
tromechanical (plane-strain, plane-stress) problems involving arbitrarily shaped material interfaces, and pro-
posed an enriched Reproducing Kernel Particle Method (eRKPM). In this study, we shall adopt this latter
method to model the cross-sectional behavior. For the convenience of the reader, we provide the interpolation
scheme (involving regular and enrichment functions) used in eRKPM here, and further details (such as inter-
face curve representation, construction of enrichment functions, quadrature, assembly, etc.) may be found in
Liu and Taciroglu (2006). For brevity, we present this interpolation scheme for a nonhomogeneous problem
involving only two materials. The generalization of eRKPM to configurations with a larger number of distinct
materials is straightforward; and should be apparent to the reader from the following discourse.

Consider a nonhomogeneous cylinder possessing two distinct piezoelectric materials within its cross-section
as illustrated in Fig. 1b. The discretization consists two sets of particles: Sp ¼ fx1; x2; � � � ; xLg (circles and dots
in the figure), and Sc ¼ fxLþ1; xLþ2; � � � ; xLþMg (squares in the figure), which are the particles within the piezo-
electric/elastic domains, and those on the material interface, respectively. Identical shape functions are used to
approximate the displacements and the electric potential as follows
uiðx; y; zÞ ¼
XL

I¼1

WIðx; yÞ~diIðzÞ þ
XLþM

I¼Lþ1

ŴIðx; yÞd̂ iIðzÞ,
XN

I¼1

UIðx; yÞdiIðzÞ ð5Þ
where i 2 f1; 2; 3; 4g. Here u1, u2, and u3 are the three approximated displacement components; u4 is the
approximated electric potential field; WI , ŴI , and UI are the conventional RKPM shape functions, the inter-
face enrichment functions (used for capturing discontinuities across the interface), and the overall (composite)
enriched RKPM shape functions, respectively; ~diI , d̂ iI , and diI are the associated nodal coefficients of these
shape functions; and, N ¼ LþM is the total number of discretized particles. Further details of this interpo-
lation scheme may be found in Liu and Taciroglu (2006).

2.3. Governing equations stated in a semi-analytical form

In the present study, we shall seek the solution in a semi-analytical form. To wit, we shall obtain the solu-
tion field using a combination of eRKPM in the cross-sectional coordinates, and an analytical method along
the axial coordinate. To facilitate this approach, we decompose the linear differential operator L in Eq. (4) into
two parts as in



2384 C.W. Liu, E. Taciroglu / International Journal of Solids and Structures 45 (2008) 2379–2398
Lfvg ¼ ½Lxy þ Lz�fvg ð6Þ
where Lxy and Lz are given by (where a symbol ‘�’ simply denotes a zero term)
Lxy ¼

o
ox � � �
� o

oy � �
� � � �
� � o

oy �
� � o

ox �
o
oy

o
ox � �

� � � � o
ox

� � � � o
oy

� � � �

2
666666666666666664

3
777777777777777775

; Lz ¼

� � � �
� � � �
� � o

oz �
� o

oz � �
o
oz � � �
� � � �
� � � �
� � � �
� � � � o

oz

2
66666666666666664

3
77777777777777775

: ð7Þ
Substitution of Eq. (5) into Eq. (6) gives
q ¼
XN

I¼1

BI
1dI þ

XN

I¼1

BI
2dI ;z ð8Þ
where
BI
1 ¼

UI ;x � � �
� UI ;y � �
� � � �
� � UI ;y �
� � UI ;x �

UI ;y UI ;x � �
� � � �UI ;x

� � � �UI ;y

� � � �

2
66666666666666664

3
77777777777777775

; BI
2 ¼

� � � �
� � � �
� � UI �
� UI � �

UI � � �
� � � �
� � � �
� � � �
� � � �UI

2
66666666666666664

3
77777777777777775

: ð9Þ
The governing equilibrium equations may be variationally derived from the theorem of minimum potential
energy, as in
dfH þ W g ¼ 0 ð10Þ
where H is the electric enthalpy (see, for example, Tiersten, 1969) given by
H ¼
Z L

0

Z
X

1

2
qTC�q� ETD

� �
dXdz; ð11Þ
and W is the potential energy of mechanical and electrical loads. By inserting the expression of q in Eq. (8) into
Eq. (11), and by carrying out the variation, we obtain the governing equilibrium equations in semi-analytic
form as
K̂1V̂ðzÞ þ K̂2V̂ðzÞ;z � K̂3V̂ðzÞ;zz ¼ F̂ðzÞ ð12Þ
where V̂ is the assembled array of nodal coefficients associated with displacements and electric potentials, and
K̂1, K̂2, and K̂3 are system matrices given by
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K̂IJ
1 ¼

R
X BI

1

T
ĈBJ

1 dX; K̂IJ
2 ¼

R
X BI

1

T
ĈBJ

2 � BI
2

T
ĈBJ

1

h i
dX;

K̂IJ
3 ¼

R
X BI

2

T
ĈBJ

2 dX; Ĉ ¼ CE �e

�eT �jS

" #
:

ð13Þ
The relationships between the nodal values and nodal coefficients can be obtained through Eq. (5), i.e.,
uiðxJ ; yJ ; zÞ ¼
XN

I¼1

UIðxJ ; yJ ÞdiIðzÞ ) V̂ðzÞ ¼ K�TVðzÞ ð14Þ
where V is the assembled array of nodal displacements and electric potential; and K is the transformation ma-
trix given by KIJ ¼ UIðxJ ; yJ Þ I. Through a coordinate transformation, Eq. (12) can be restated as
K1VðzÞ þ K2VðzÞ;z � K3VðzÞ;zz ¼ FðzÞ ð15Þ
where the electromechanical ‘stiffness’ matrices and ‘force’ vector are given by
Ki ¼ K�1K̂iK
�T i 2 f1; 2; 3g; F ¼ K�1F̂: ð16Þ
3. General solution strategy

We shall use a method of undetermined coefficients for solving the system of ordinary differential equations
in Eq. (15). The analytical form of the solution field will be obtained via Ies�an’s (1986) hierarchical approach.
As such, the electromechanical load vector FðzÞ needs to be expressed as polynomials of z, that is
FðzÞ ¼ ðF0ma þ F0eÞ þ ðF0mb þ zF1ma þ zF1eÞ þ � � � þ ðzk�1Fðk�1Þmb þ zkFkma þ zkFkeÞ
k 2 f0; 1; 2; � � �g: ð17Þ
Here, the subscripts m and e denote the mechanical and electric loads, respectively; Fkma denotes the loads that
are devoid of any resultant force or moment in the z-direction, such as uniform pressure ðk ¼ 0Þ, linear pres-
sure ðk ¼ 1Þ, etc.; Fkmb denotes the loads that have such resultants, such as axial surface shear tractions; and
finally Fke denotes the electric loads, such as uniform voltage ðk ¼ 0Þ, linear voltage ðk ¼ 1Þ applied along the
z-direction. Correspondingly, the solution field to Eq. (15) due to loads given in the form of Eq. (17) can be
stated as
VðzÞ ¼ V0ðzÞ þ V1ðzÞ þ � � � þ VkðzÞ þ � � � ð18Þ
where each component VkðzÞ represents a particular axial variation of the solution fields; i.e., V0ðzÞ represents
a uniform state, V1ðzÞ a linear state, and so forth. Here, we use the term ‘‘uniform state’’ to mean a uniform

stress and electric displacement state for brevity (and the same terminology applies to linear state, quadratic
state, and so forth).

Upon substituting Eqs. (17) and (18) into Eq. (15), we may decompose the governing equations as
K1V0 þ K2V0;z � K3V0;zz ¼ F0ma þ F0e; ð0Þ
K1V1 þ K2V1;z � K3V1;zz ¼ F0mb þ zF1ma þ zF1e; ð1Þ

..

.

K1Vk þ K2Vk;z � K3Vk;zz ¼ zk�1Fðk�1Þmb þ zkFkma þ zkFke: ðkÞ

ð19Þ
The solution of these equations can be obtained by sequentially solving for V0, V1, and so on, up to the k-th
order depending on the loads. Prescribed end conditions must be well-defined and global equilibrium must be
satisfied for every equation in Eq. (19). As mentioned perviously, we shall seek a relaxed solution whereby the
resultants of electric displacement and tractions, rather than their pointwise values, at the cylinder’s ends are
accounted for. These resultants over a cross-section at any station z along the length of this cylinder are given
by the integrals
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P xðzÞ ¼
Z

X
T xzðzÞdxdy; DxðzÞ ¼

Z
X

DxðzÞdxdy;

P yðzÞ ¼
Z

X
T yzðzÞdxdy; DyðzÞ ¼

Z
X

DyðzÞdxdy;

P zðzÞ ¼
Z

X
T zzðzÞdxdy; DzðzÞ ¼

Z
X

DzðzÞdxdy;

MxðzÞ ¼
Z

X
T zzðzÞy dxdy; MyðzÞ ¼ �

Z
X

T zzðzÞxdxdy;

MzðzÞ ¼
Z

X
ðT yzðzÞx� T xzðzÞyÞdxdy:

ð20Þ
In Sections 4–6, we present solutions to the first two stages (i.e., k ¼ 0, and k ¼ 1) of Eq. (19) to demonstrate
the proposed method. Determination of the solutions for k P 2 should be apparent from this discourse.
4. Rigid body motions

Following Ies�an (1986), the form of the solution vector Vk for any given stage can be obtained by integrat-
ing the previous stage’s solution vector once with respect to z (i.e., Vk ¼

R
Vk�1 dz); and the form of the solu-

tion vector for the first stage (V0) is computed by integrating the rigid body modes (V�1 � VRB) once with
respect to z. It should be noted here that the aforementioned integrals are indefinite and merely yield the func-

tional form of Vk with its unknown coefficients to be determined from the global equilibrium equations and the
given boundary conditions.

For the present problem, there are seven rigid body modes (i.e., six stress-free kinematic modes, and one
electric displacement-free voltage mode), and they may be formed (up to an arbitrary constant) as in
VRB ¼ a01R1 þ a02R2 þ a03R3 þ a04R4 þ a05R5 þ a06R6 þ a07R7 � ða04R2 þ a05R1Þz ð21Þ
where a0i (i 2 f1; 2; 3g), a0j (j 2 f4; 5; 6g), and a07 are the translational, rotational, and electric potential (volt-
age) amplitudes, respectively. The vectors of rigid body modes are given by
RT
1 ¼ ½I; 0; 0; 0�;RT

2 ¼ ½0; I; 0; 0�;RT
3 ¼ ½0; 0; I; 0�;RT

7 ¼ ½0; 0; 0; I�;
RT

4 ¼ ½0; 0; y; 0�;RT
5 ¼ ½0; 0; x; 0�;RT

6 ¼ ½�y; x; 0; 0�
ð22Þ
with row vectors I, x, and y containing N unit entries, the x and the it y-coordinates of the N meshfree par-
ticles, respectively. Here, we note that the ‘rigid’ electrical mode (R7) is given simply in the form of a constant
potential throughout the whole cylinder; and it induces zero stresses and electric displacements. Substituting
Eq. (21) into the homogeneous form of the governing Eq. (15) yields the following useful identities
K1Ri ¼ 0 ði 2 f1; 2; 3; 6; 7gÞ; K1R4 ¼ K2R2; K1R5 ¼ K2R1: ð23Þ
5. Uniform state

The uniform state (k ¼ 0) is governed by the first equation in Eq. (19), which is reproduced here by
K1V0 þ K2V0;z � K3V0;zz ¼ F0ma þ F0e: ð24Þ
The mechanical load vector F0ma represents a uniform pressure and exhibits no resultant axial force or torque.
The electrical loads, F0e, may be decomposed into K load vectors as in
F0e ¼
XK

i¼1

c1if0ei ð25Þ
where K is the number of the meshfree particles where electrical loads are applied; and the vector f0ei contains
only a unit charge in the appropriate degree-of-freedom with the unknown coefficients c1i to be determined
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later. At this stage, axial force P z, torque Mz, bending moments Mx and My , as well as voltage may be applied
at the tip-end z ¼ 0.
5.1. Analysis

The form of the most general solution vector to Eq. (24) can be obtained by integrating Eq. (21) once with
respect to z
V0 ¼
X

j

a1jðzRj þW1jÞ þ a14 �
z2

2
R2 þ zR4 þW14

� �
þ a15 �

z2

2
R1 þ zR5 þW15

� �
þU1m

þ
XK

i¼1

c1iW1ei þ VRB ð26Þ
where j 2 f1; 2; 3; 6; 7g. The generalized deformation coordinates a11 and a12 are associated with longitudinal
shear, a13 with extension, a14 and a15 with bending, a16 with torsion, and a17 with primary potential field. W1i

(i 2 f1; . . . ; 7g) and U1m represent cross-sectional warpages and the particular solution for mechanical loads
F0ma, respectively. The vectors W1ei along with amplitudes c1i represent the response to electric loading F0e. Lastly,
VRB is a rigid body displacement whose coefficients, a0i (i 2 f1; . . . ; 6g), depend on the restraint conditions at the
root-end of the cylinder. Substituting Eq. (26) into Eq. (24) and applying the identities in Eq. (23) yield
X

j

a1jðK1W1j þ K2RjÞ þ a14ðK1W14 þ K2R4 þ K3R2Þ þ a15ðK1W15 þ K2R5 þ K3R1Þ þ ðK1U1m � F0maÞ

þ
XK

i¼1

c1iðK1W1ei � f0eiÞ ¼ 0; j 2 f1; 2; 3; 6; 7g: ð27Þ
In order to satisfy Eq. (27), the bracketed terms must vanish. The warpages W1i, the particular solution U1m,
and the electric response W1ei can then be determined by solving
K1W1i ¼ �K2Ri; i 2 f1; 2; 3; 6; 7g;
K1W14 ¼ �K2R4 � K3R2; K1W15 ¼ �K2R5 � K3R1;

K1U1m ¼ F0ma; K1W1ei ¼ f0ei; i 2 f1; . . . ;Kg:
ð28Þ
Noting that W11 and W12 in Eq. (28) satisfy the last two rigid body identities in Eq. (23), we obtain
W11 ¼ �R5; W12 ¼ �R4: ð29Þ
This result suggests that the first two terms in Eq. (26) can be classified as rigid body motions and added to the
term VRB. In other words, the two longitudinal shear fields, T xz and T yz, which are associated with a11 and a12,
vanish and are not involved in this (k ¼ 0) problem.

After determining these distributions, the combined vector of nodal stresses and the electric displacements
(Q) can be constructed through Eq. (8)
Q ¼ C�
XN

I¼1

X7

i¼3

a1iðBI
1w1iI þ BI

2riIÞ þ BI
1u1mI þ

XK

i¼1

c1iB
I
1w1eiI

" #
ð30Þ
where, w1iI , riI , u1mI , and w1eiI are the I-th nodal components extracted from those distributions denoted by
their corresponding upper case symbols, respectively. Here, we note that the following identities have been
applied
PN
I¼1

BI
1riI ¼ 0; i 2 f1; 2; 3; 6; 7g;

PN
I¼1

BI
1r4I ¼

PN
I¼1

BI
2r2I ;

PN
I¼1

BI
1r5I ¼

PN
I¼1

BI
2r1I

ð31Þ
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in the construction of Eq. (30). Using the expression of Q and Eq. (20), the mechanical and the electric dis-
placement resultants in the z-direction (the latter denoted by D), over any generic cross-section may be deter-
mined from
P ¼ jI aI þ PIm þ PIecI ð32Þ

where the cross-sectional stiffness influence coefficients (jIij) are given by
jI3j ¼
Z

X
C�½LxyðW1jÞ þ LzðzRjÞ�ð3Þ dxdy;

jI4j ¼
Z

X
C� LxyðW1jÞ þ LzðzRjÞ
� 	

ð3Þy dxdy;

jI5j ¼
Z

X
C�½LxyðW1jÞ þ LzðzRjÞ�ð3Þxdxdy;

jI6j ¼
Z

X
C�f½LxyðW1jÞ þ LzðzRjÞ�ð4Þx� ½LxyðW1jÞ þ LzðzRjÞ�ð5Þygdxdy;

jI7j ¼
Z

X
C�½LxyðW1jÞ þ LzðzRjÞ�ð9Þ dxdy;

ð33Þ
with i; j 2 f3; . . . ; 7g. The unknown coefficient vectors aI ¼ ½a13; . . . ; a17�T and cI ¼ ½c11; . . . ; c1K �T have the
dimensions of 5 and K, respectively. The resultants of the responses to the mechanical and electrical loads,
PIm and PIe, are given by
PImð1Þ ¼
Z

X
C�½LxyðU1mÞ�ð3Þ dxdy;

PImð2Þ ¼
Z

X
C�½LxyðU1mÞ�ð3Þy dxdy;

PImð3Þ ¼
Z

X
C�½LxyðU1mÞ�ð3Þxdxdy;

PImð4Þ ¼
Z

X
C�f½LxyðU1mÞ�ð4Þx� ½LxyðU1mÞ�ð5Þygdxdy;

PImð5Þ ¼
Z

X
C�½LxyðU1mÞ�ð9Þ dxdy;

ð34Þ
and
PIeð1; iÞ ¼
Z

X
C�½LxyðW1eiÞ�ð3Þ dxdy;

PIeð2; iÞ ¼
Z

X
C�½LxyðW1eiÞ�ð3Þy dxdy;

PIeð3; iÞ ¼
Z

X
C�½LxyðW1eiÞ�ð3Þxdxdy;

PIeð4; iÞ ¼
Z

X
C�f½LxyðW1eiÞ�ð4Þx� ½LxyðW1eiÞ�ð5Þygdxdy;

PIeð5; iÞ ¼
Z

X
C�½LxyðW1eiÞ�ð9Þ dxdy:

ð35Þ
Here we note that the subscript (i) in Eqs. (33)–(35) indicates the i-th component of vector q. All of the terms
in Eq. (26) are known except the coefficients, which can be determined through the global equilibrium and the
prescribed electrical conditions. We illustrate this procedure, in the absence and the presence of electric inputs
respectively, in the following two subsections.
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5.2. No electric inputs

In this case, the electric terms associated with c1i (i 2 f1; . . . ;Kg) in Eq. (26) will vanish. Thus, the coeffi-
cients aI in Eq. (32) can be obtained through the global equilibrium
jIaI ¼ P̂I � PIm ð36Þ

where P̂I ¼ ½P̂ z; M̂x; M̂y ; M̂z; 0�T involve the applied axial end force and three end moments.

5.3. With electric inputs

Suppose that voltages are applied uniformly along the cylinder, which brings forth the K discretized con-
ditions via Eq. (26) as
/̂k ¼ a13w13ðxkÞ þ a14w14ðxkÞ þ a15w15ðxkÞ þ a16w16ðxkÞ þ w1mðxkÞ þ
XK

i¼1

c1iw1eiðxkÞ; k 2 f1; 2; . . . ;Kg

ð37Þ

where w1iðxkÞ (i 2 f3; . . . ; 6g), w1mðxkÞ, and w1eiðxkÞ (i 2 f1; . . . ;Kg) are the potential values at point xk ex-
tracted from the corresponding warpage vectors W1i (i 2 f3; . . . ; 6g), from the particular solution vector
U1m and from the electric response vectors W1ei (i 2 f1; . . . ;Kg), respectively; /̂k is the applied voltage condi-
tion at k-th particle. Noting that, for the present case, the terms associated with c1i (i 2 f1; . . . Kg) in Eq. (26)
account for the electric response, and thus, the term associated with a17 will vanish. Combining Eq. (37) with
Eq. (32) yields K þ 4 equations for determining the K þ 4 coefficients, which are expressed here explicitly as
jIð3 : 6; 3 : 6Þ PIeð1 : 4; 1 : KÞ
WIð3 : 6; 1 : KÞT WIeð1 : K; 1 : KÞ

� �
aIð1 : 4Þ
cIð1 : KÞ

� �
¼ P̂ð1 : 4Þ � PImð1 : 4Þ

/̂ð1 : KÞ � wImð1 : KÞ

" #
ð38Þ
where
WIði; kÞ ¼ w1iðxkÞ; WIeði; kÞ ¼ w1eiðxkÞ; /̂ðkÞ ¼ /̂k; wImðkÞ ¼ w1mðxkÞ: ð39Þ
6. Linear state

The linear state (k ¼ 1) is governed by the second equation in Eq. (19), which is reproduced here by
K1V1 þ K2V1;z � K3V1;zz ¼ F0mb þ zF1ma þ zF1e ð40Þ

where F1ma, F0mb, and F1e are the linear pressure, uniform axial and torsional shears, and linear voltage load,
respectively.

6.1. Analysis

The form of most general solution vector to Eq. (40) can be obtained by integrating Eq. (26) once with
respect to z
V1 ¼
X

j

a1j
z2

2
Rj þ zW1j þW2j

� �
þ a14 �

z3

6
R2 þ

z2

2
R4 þ zW14 þW24

� �

þ a15 �
z3

6
R1 þ

z2

2
R5 þ zW15 þW25

� �
þ
X

j

a2j zRj þW1j

� �

þ a24 �
z2

2
R2 þ zR4 þW14

� �
þ a25 �

z2

2
R1 þ zR5 þW15

� �

þ zU2m1 þU2m2 þ
XK

i¼1

c1iðzW1ei þW2eiÞ þ
XK

i¼1

c2iW1ei þ VRB

ð41Þ
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where j 2 f1; 2; 3; 6; 7g. In this expression, a1i and a2i (i 2 f1; . . . ; 7g) as well as c1i and c2i (i 2 f1; . . . ;Kg) are
the new generalized unknown coefficients (they are completely unrelated to the values of uniform state); W2i

(i 2 f1; . . . ; 7g) and W2ei (i 2 f1; . . . ;Kg) are the new introduced warpages and electric responses, respectively;
and, finally, U2m1 and U2m2 are particular solutions for the mechanical loads. All other vectors appearing in Eq.
(41) are identical to their counterparts in the uniform-state problem. Substituting Eq. (41) into Eq. (40) yields
the following equations, from which the new warpages, electric responses, and particular solutions can be
determined,
K1W2i ¼ �K2W1i þ K3Ri i 2 f1; . . . ; 7g;
K1W2ei ¼ �K2W1ei i 2 f1; . . . ;Kg;
K1U2m1 ¼ F1ma; K1U2m2 þ K2U2m1 ¼ F0mb:

ð42Þ
Similarly, the vector of nodal stresses and electric displacements can be formed as
Q ¼ C�
XN

I¼1

fzBI
1u2m1I þ BI

1u2m2I þ BI
2u2m1I

þ
X7

i¼3

½ðza1i þ a2iÞðBI
1w1iI þ BI

2riIÞ þ a1iðBI
1w2iI þ BI

2w1iIÞ�

þ
XK

i¼1

½ðzc1i þ c2iÞBI
1w1eiI þ c1iðBI

1w2eiI þ BI
2w1eiIÞ�g:

ð43Þ
where we note that the terms related to a11, a12, a21, and a22 have vanished in the expression of Q. The linearly
varying resultants can be obtained through Eq. (20), which yields
P ¼ zðjIaI þ PIIm1Þ þ jII aI þ jI aII þ PIIm2 þ zPIecI þ PIIecI þ PIecII : ð44Þ
In this expression, the symbols that appeared in Eq. (32) have the same values as they did in Eq. (32), except
the generalized coefficients. The new cross-sectional stiffness influence coefficients jIIij (fi; jg � f3; . . . ; 7g), the
resultants of the responses to the mechanical loads, and the new resultants corresponding to electrical loads
can be determined in a similar fashion employed in the uniform-state problem. Here, we only list a few expres-
sions for brevity
jII3i ¼
Z

X
C�½LxyðW2iÞ þ LzðzW1iÞ�ð3Þ dxdy; i 2 f3; . . . ; 7g; ð45Þ

PIIm1ð2Þ ¼
Z

X
C�½LxyðU2m1Þ�ð3Þ y dxdy ð46Þ

PIIm2ð3Þ ¼
Z

X
C�½LxyðU2m2Þ þ LzðzU2m1Þ�ð3Þ xdxdy ð47Þ

PIIeð3; iÞ ¼
Z

X
C�½LxyðW2eiÞ þ LzðzW1eiÞ�ð3Þ xdxdy: ð48Þ
In this linear-state problem, the global equilibrium must be evaluated in three stages: First, the rate of change
of resultants P z, Mx, My , Mz, and D in Eq. (44) should be equated to the resultant of externally applied axial
shear P̂ z per unit length, to applied end forces F̂ y and F̂ x, and to the resultants of applied torsional shear M̂z

and the electric displacement per unit length, respectively. To wit,
oP zðzÞ
oz

¼ P̂ z;
oMxðzÞ

oz
¼ F̂ y ;

oMyðzÞ
oz

¼ F̂ x;
oMzðzÞ

oz
¼ M̂z;

oDðzÞ
oz
¼ D̂: ð49Þ
Second, setting z ¼ 0 yields the resultants at the tip-end, and they should be equal to the applied tip-end loads
(since such loads were already considered in the uniform-state problem, they can be set to zero here). Finally,
electric loading conditions must be considered; and as before, we illustrate this procedure, in the absence and
the presence of electric inputs, respectively, in the following two subsections.
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6.2. No electric inputs

Without electric loads, only the first two stages of global equilibrium are needed to determine the solution.
To wit,
jIaI ¼ P̂II � PIIm1 ð50Þ

with P̂II ¼ ½P̂ z; F̂ y ; F̂ x; M̂z; 0�T,
jIIaI þ jIaII ¼ �PIIm2: ð51Þ
6.3. With electric inputs

Suppose that linear voltages with gradients D/k have been applied along the cylinder. These conditions can
be expressed via Eq. (41) as follows
D/k ¼
X6

i¼3

a1iw1iðxkÞ þ w2m1ðxkÞ þ
XK

i¼1

c1iw1eiðxkÞ; k 2 f1; . . . ;Kg: ð52Þ
Note that, the terms associated with a17 and a27 in Eq. (41) will vanish for the present problem. Thus, by com-
bining Eq. (52) with Eq. (50), we get K þ 4 equations for determining the first set of K þ 4 coefficients – a1i

(i 2 f3; 4; 5; 6g) and c1i (i 2 f1; . . . ;Kg) – denoted by b1 here, as in
KI b1 ¼ f1 ð53Þ

where KI is identical to the matrix defined in the left-hand side of Eq. (38). The new load vector f1 is given by
f1 ¼ P̂IIð1Þ; . . . ; P̂IIð4Þ; D/1; . . . ;D/K

h iT

� ½PIIm1ð1Þ; . . . ;PIIm1ð4Þ; w2m1ðx1Þ; . . . ;w2m1ðxKÞ�T:
ð54Þ
After determining b1, Eq. (51) along with potential conditions evaluated at z ¼ 0 via Eq. (41) provides the
means for determining the second set of coefficients, a2i (i 2 f3; . . . ; 6g) and c2i (i 2 f1; . . . ;Kg), denoted by
b2 here, as in
KII b1 þ KI b2 ¼ f2 ð55Þ
where
KII ¼
jIIð3 : 6; 3 : 6Þ PIIeð1 : 4; 1 : KÞ

WIIð3 : 6; 1 : KÞT WIIeð1 : K; 1 : KÞ

� �
; f2 ¼ �½PIIm2ð1 : 4Þ;wIIm2ð1 : KÞ�T ð56Þ
with WIIði; kÞ ¼ w2iðxkÞ (i 2 f3; . . . ; 6g), wIIm2ðkÞ ¼ w2m2ðxkÞ, and WIIeði; kÞ ¼ w2eiðxkÞ (i 2 f1; . . . ;Kg) are the
electric potential values at point xk extracted from the corresponding warpage W2i (i 2 f3; . . . ; 6g), particular
solution U2m2, and electric response W2ei (i 2 f1; . . . ;Kg) vectors, respectively.

Remark 1. The solution procedures for higher-order (i.e., k P 2) problems have identical steps with those for
uniform- and linear-state problems. First, the functional form of the solution field Vk is obtained by integrating
that for Vk�1 (see, for example Eq. (41)). Second, the warpage functions of Vk are obtained by solving a
sequence of linear problems that involves the warpage functions of Vk�1 (see, for example, Eq. (42)). Finally,
the unknown coefficients of Vk are obtained via global equilibrium equations, and the prescribed
electromechanical loads appropriate for the k-th order problem (see, for example, Eq. (55)).

Remark 2. It also appears possible to obtain approximate solutions for loads with non-polynomial axial vari-
ations through a least-squares based superposition of polynomial loads. However, the polynomial states may
have to be made orthogonal first (for example, via the Gram–Schmidt procedure) in order to obtain efficient
and accurate approximations.
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7. Verification problems and an application example

7.1. Verification problems for the uniform- and linear-state problems

In order to verify the semi-analytic meshfree method and its implementation, we compare its results with
those obtained via three-dimensional finite element analyses (using ANSYS, 1998) for a set of basic problems.
We consider a piezoelectric ‘bimorph’ with a length-to-thickness ratio L=t ¼ 10, and width-to-thickness ratio
w=t ¼ 2, as shown in Fig. 2a. Both layers of the bimorph are made of PZT4 (Lead–Zirconium–Titanate) and
its material properties may be found in Ikeda (1996). Two typical layer arrangements are shown in Fig. 2b –
which is a serial (anti-parallel) bimorph that has positive and negative y-direction polarizations for its top and
bottom layers, respectively – and in Fig. 2c – which is a parallel bimorph that has a grounded electrode at the
layer interface and both of its layers are polarized in the positive y-direction. Fig. 2d displays the cross-sec-
tional configuration and its meshfree discretization. In the semi-analytical method, 99 meshfree particles were
used, while in ANSYS the domain was discretized with 4000 (10� 10� 40) finite elements. For problems pre-
sented here, we adopt the normalization procedure outlined in Bai et al. (2004) so that the material properties,
applied loads, and the solution fields are dimensionless.

For the uniform-state problem, we considered the complete set of mechanical loads – i.e., axial end force
ðF z ¼ 1:0Þ, end moments ðMx ¼ 1:0;My ¼ 1:0Þ, end torque ðT z ¼ 1:0Þ, and uniform pressure ðP ¼ 1:0Þ. Addi-
tionally, we analyzed the serial bimorph’s response under a uniform voltage ðV ¼ 1:0Þ applied on its top sur-
face with its bottom surface grounded, and the parallel bimorph’s response under uniform voltages ðV ¼ 1:0Þ
applied on its top and bottom surfaces with its interface grounded. The solutions obtained at z ¼ 5:0 are pre-
sented in Figs. 3 and 4. In each of these figures, columns 1 and 2 comprise semi-analytic and ANSYS solu-
tions, respectively, where the deformed shapes of the cross-section, and the variations of electric potential
(indicated by color) are presented; column 3 contains variations of normalized displacements and potential
within the cross-section – sampled along the diagonal (dashed) line shown in Fig. 2b. As these results indicate
there is excellent agreement between semi-analytic and three-dimensional finite element solutions for all load-
ing cases of the uniform-state problem.

For the linear-state problem, we analyzed the serial bimorph (parallel bimorph results are omitted for brev-
ity) and considered the complete set of mechanical loads – i.e., end forces ðF x ¼ 1:0; F y ¼ 1:0Þ, axial uniform
shear along the lateral surfaces ðSz ¼ 1:0Þ, and linear pressure ðDP ¼ 1:0Þ. Additionally, we considered a lin-
early varying voltage ðDV ¼ 1:0Þ applied along the bimorph’s top and bottom surfaces. The solutions
obtained at z ¼ 5:0 are presented in Fig. 5; and again, the agreement between semi-analytic and finite element
solutions is excellent.
a d

b c

Fig. 2. Two-layer bimorph cantilever. (a) Geometry, (b) series arrangement, (c) parallel arrangement, and (d) cross-sectional
discretization.
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Fig. 3. Verification results (semi-analytic in column 1; ANSYS in column 2) for uniform-state problems due to prescribed axial end force
F z (a), end moments Mx (b), and My (c), end torque T z (d), and uniform pressure (e). In column 3, the symbols (	, u; M, v; }, w; �, /) and
the lines denote semi-analytic and ANSYS solutions, respectively.
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7.2. Verification problem: flexure of a homogeneous beam with rectangular cross-section

Exact solutions for Saint-Venant problems involving non-circular cross-sections or high-orders of anisot-
ropy are quite rare. One such solution that exists is for the flexure of a cylinder which is homogeneous but
with a rectangular cross-section. Before we present an application example in the subsequent section, we
would like to investigate the said problem.

Consider a homogeneous rectangular beam, with its axes labeled as in Fig. 2a. The beam is with length
L ¼ 10, width w ¼ 2, and thickness t ¼ 1. It is made of an elastic material with E ¼ 1 and m ¼ 0:3. It is fixed
at z ¼ 0, and subjected to a resultant end force at z ¼ 10 with magnitude F y ¼ �1. The three-dimensional
stress field of this problem is given by Sokolnikoff (1956), as follows:
r11 ¼ r22 ¼ r12 ¼ 0;

r33 ¼ � p
Ix
ðL� zÞy;

r23 ¼ � p
2ð1þmÞIx

1
2
mðy2 � x2Þ þ oU

oy þ x2 � z2 þ 2Lz
h i

;

r13 ¼ � p
2ð1þmÞIx

ð2þ mÞxy þ oU
ox

� 	
ð57Þ
where the area moment of inertia is Ix ¼ wt3=12, and the flexure function Uðx; yÞ has the form
Uðx; yÞ ¼ � 1

4
ð1þ mÞt2 þ 1

12
mw2

� �
y þ mw3

2p3

X1
n¼1

ð�1Þn

n3

sinh 2npy
w

cosh npt
w

cos
2npx

w
þ 1

6
ð2þ mÞðy3 � 3x2yÞ: ð58Þ
Fig. 6 displays the stresses within the cross-section at midspan (i.e., z ¼ 5) – sampled along the diagonal
(dashed) line shown in Fig. 2b. These results are obtained through the present semi-analytic method and
Eq. (57) and good agreement between the two is evident.

7.3. An application example

In order to demonstrate the utility of the proposed semi-analytical method, we analyze a piezoelectric sen-
sor/actuator device. As shown in Fig. 7, the simple device has the dimensions L ¼ 5 cm and w ¼ 1 cm, and
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comprises a cylindrical piezoelectric fiber embedded in a soft elastic medium. The axially polarized piezoelec-
tric fiber is made of PZT5 (for material properties, see Ikeda, 1996), and the elastic medium has a Young’s
modulus of E ¼ 7:0� 109 Pa, and a Poisson’s ratio of m ¼ 0:35. When an axial force is applied at the end,
a potential gradient will be generated in which case the resulting the voltage difference between the two ends
can be measured. On the other hand, an axial displacement/force will be generated when a voltage is applied at
one end and while the other end is grounded. Thus, the device is both a sensor and an actuator.

Here, we simply define device ‘sensing ability’ as the generated voltage difference when a unit force is
applied, and ‘actuation ability’ as the generated displacement when unit voltage is prescribed at one end.
Fig. 7 displays the sensing and actuation abilities of the device for different piezoelectric fiber volume fractions,
V p=V ¼ ½0:15; 0:20; 0:35; 0:45; 0:60� (in all cases, the fiber is circular and located at the center). Several cases are
also analyzed via ANSYS in order to verify the semi-analytic solutions (these results are shown in figure as
square symbols). We note that, in semi-analytic meshfree calculations, discretization of successive problem
geometries were achieved by simply relocating the bi-material interface curve. In contrast, all three-dimen-
sional finite element geometries had to be generated from scratch. Moreover, the proposed approach 7–8 times
faster than ANSYS for this particular problem, while noting that our computer code used in these calculations
was not optimized.
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From these results, we can conclude that the ‘optimized’ fiber volume fraction is near 30%, which brings
about relatively large simultaneous sensing and actuation abilities. A more difficult, and compelling, optimi-
zation problem would have been to allow topology changes in both the piezo-fiber and the cover material.
While it is possible to tackle such a problem with the proposed semi-analytic meshfree method, it is beyond
the scope of the present study; and we defer the treatment of such problems to a subsequent publication.

8. Conclusions

A semi-analytical meshfree method is developed for analyzing the behavior of prismatic piezoelectric cyl-
inder with general cross-sectional geometry under polynomially varying lateral surface, and resultant-based
end loads. The method is based on a meshfree discretization of the cylinder’s cross-section, and the analytical
determination of the electromechanical fields along the axial direction. The provided verification problems
affirm the validity of this approach. The utility of the method is demonstrated in a problem whereby the opti-
mum fiber volume fraction that maximizes the simultaneously sensing and actuation abilities of a device is
obtained. The proposed semi-analytical method provides significant computational savings in comparison
to fully discrete methods, and is more general than structural theory-based methods. It is also ideal for formal
optimum problems of prismatic smart structures, as the sensitivity computations of externally defined design
objective functions, and successive topology changes can be performed in a straightforward fashion.
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