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Abstract

A Cauchy problem for the Laplace equation in a rectangle is considered. Cauchy data are given for y = 0, and boundary data
are for x = 0 and x = π . The solution for 0 < y � 1 is sought. We propose two different regularization methods on the ill-posed
problem based on separation of variables. Both methods are applied to formulate regularized solutions which are stably convergent
to the exact one with explicit error estimates.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Consider the Cauchy problem for the Laplace equation in a rectangle: determine the solution u(x, y) for 0 < y � 1
from the input data ϕ(·) := u(·,0), when u(x, y) satisfies

uxx + uyy = 0, 0 < x < π, 0 < y < 1, (1)

u(x,0) = ϕ(x), 0 � x � π, (2)

uy(x,0) = 0, 0 � x � π, (3)

u(0, y) = u(π,y) = 0, 0 � y � 1. (4)

Physically, ϕ can only be measured, there will be measurement errors, and we would actually have as data some
function ϕδ ∈ L2(0,π), for which∥∥ϕδ − ϕ

∥∥ = ∥∥ϕδ(·) − u(·,0)
∥∥ � δ (5)

where the constant δ > 0 represents a bound on the measurement error, ‖ · ‖ denotes the L2-norm.
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Problem (1)–(4) is well known to be severely ill-posed: a small perturbation in the data ϕ may cause dramatically
large errors in the solution u(x, y) for 0 < y � 1. We give, however, here an explicit example to emphasize this
fact [12].

It is easy to verify that the function

um(x, y) = a

mj
sin(mx) cosh(my) (6)

is the exact solution of problem (1)–(4) with

um(x,0) = ϕm(x) = a

mj
sin(mx), (7)

where m,j are positive integers, and a ∈ R, a �= 0. Although supx∈(0,π) |ϕm(x)| tends to zero as m → ∞, we have
supx∈(0,π) |um(x, y)| → ∞ (m → ∞) for fixed y > 0. Thus system (1)–(4) is an ill-posed problem that is impossible
to solve using classical numerical methods and requires special techniques, i.e., regularizations [9,19], to be employed.

The stability and convergence analysis of regularization methods for above Cauchy problem can rarely be found
in the literature though a series of papers contains numerical examples (see, e.g., [2–5,10–14,18,20,21,24]). Among
these, the works of Falk [10], Falk and Monk [11] and Han [13] contain error estimates and convergence results of
discrete form. About some stability and convergence estimates of continuous form, one can also refer to the references
[15–17].

We shall use two different regularization methods to construct stable solution of the problem (1)–(4) and then obtain
error estimates for them. Both methods of proving stability estimates are constructive: we construct stable solutions
to the problem that can be numerically implemented. However, we do not pursue this aspect in this paper, as our aim
here is to obtain stability estimates only. The numerical computation will be considered in our future research.

The first is the perturbation method. That is to say, we do a modification of the equation, where a fourth-order
mixed derivative term is added,

uxx + uyy − μ2uxxyy = 0 (8)

which we learned from Eldén [6]. In [6], Eldén considered a standard inverse heat conduction problem and the idea
initially came from Weber [27]. In (8) the choice of μ is based on some a priori knowledge about the magnitude
of the errors in the data. We will study the properties of the system (8), (2)–(4), considered as a Cauchy problem
in the y variable and as an approximation to the system (1)–(4) in Section 2. The modified equation (8) is popular
and interesting. Weber [27] and Beck et al. [1] (P252) applied the perturbation method to compute the inverse heat
conduction problems (IHCP). Eldén [6,7] also applied this kind of method to analyze the IHCP and obtained some
stability and convergence estimates. The perturbation method can be also applied to problem with variable coefficients
[27] which is actually its main advantage over methods based on an integral equation formulation. In nature, the
perturbation method transfers an ill-posed problem to an approximate well-posed problem which can be discretized
using standard techniques, e.g., finite differences. For the numerical implementation of the perturbation method, one
can refer to the references [1,22]. Our aim here is to discuss the stability and convergence analysis of regularization
methods.

The second is the truncation method. Separation of variables leads to the solution of problem (1)–(4)

u(x, y) =
∞∑

n=1

cn sin(nx) cosh(ny) (9)

where

cn = 2

π

π∫
0

ϕ(t) sin(nt) dt. (10)

For guaranteeing the convergence of the series, the coefficient cn must decay rapidly since cosh(ny) tends to ∞ as
n → ∞ for fixed y > 0. Small errors in the components of large n can blow up and completely destroy the solution
for y > 0. A natural way to stabilize the problem is to eliminate all the components of large n from the solution and
instead consider (9) only for n � N . Then we get a regularized solution
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w(x,y) =
N∑

n=1

cn sin(nx) cosh(ny). (11)

The positive integer N plays the role of regularization parameter. We will study the properties of (11) as an approxi-
mation to (9) in Section 3. Here we want to point out that the idea of truncation was applied to analyze and compute
a one-dimensional (1D) IHCP by Eldén et al. [8] in which they called it Fourier method. Trong et al. also applied
the idea of truncation to the 1D and 2D source identification problems [25,26]. Regińska et al. applied the idea of
truncation to a Cauchy problem for the Helmholtz equation [23]. It is interesting that, for a problem whose solution
has the explicit expression, three kinds of methods: truncated singular value decomposition [9], truncated method in
the present paper and Hào’s mollification method [15] have the similar idea. The difference is that: truncated singular
value decomposition studies the general theory of ill-posed operator equation in abstract spaces from the viewpoint
of operator theory. Truncated method in the present paper is usually used to consider a concrete problem using the
needed tools, e.g., [8,23] using the Fourier transform techniques, the present paper using the separation of variables.
Hào’s mollification method is also used to consider the concrete problem but through mollifying the input data. The
idea of the truncated method in the present paper seems to be more direct and simple when considering a concrete
problem. Moreover, using the truncated method one can easily obtain the error estimate which has a good convergence
rate. This fact has been confirmed in [8,23] (see also Section 3).

2. The perturbation method

In this section we consider the system

vδ
xx + vδ

yy − μ2vδ
xxyy = 0, 0 < x < π, 0 < y < 1, (12)

vδ(x,0) = ϕδ(x), 0 � x � π, (13)

vδ
y(x,0) = 0, 0 � x � π, (14)

vδ(0, y) = vδ(π, y) = 0, 0 � y � 1. (15)

From the following discussions we could find that this system is well posed, i.e., its solution vδ(x, y) for any fixed
y > 0 is dependent continuously on the data ϕδ . Moreover, it is an approximation of the exact solution u(x, y). The
approximation error depends continuously on the measurement error for fixed 0 < y � 1.

Separation of variables leads to the solution

vδ(x, y) =
∞∑

n=1

cδ
n sin(nx) cosh

(
ny√

1 + μ2n2

)
(16)

where

cδ
n = 2

π

π∫
0

ϕδ(t) sin(nt) dt. (17)

We will derive a bound on the difference between the solutions (9) and (16). However, before doing that, we need to
assume that ‖u(·,1)‖ is bounded, i.e.,∥∥u(·,1)

∥∥ � E (18)

where E > 0 is a constant. This is essentially necessary in order to obtain any meaning error estimates for approxi-
mating the exact solution. If we make no assumptions about the solution of (1)–(4), then we can only bound the error
between the regularized solution and the approximation. The relation between any two regularized solutions (16) is
given by the following lemma.

Lemma 2.1. Suppose that we have two regularized solutions v1 and v2 defined by (16) with data ϕ1 and ϕ2, satisfying
‖ϕ1 − ϕ2‖ � δ. If we select μ = 1/ ln(2E/δ), then for fixed 0 < y < 1 we get the error bound∥∥v1(·, y) − v2(·, y)

∥∥ � (2E)yδ1−y. (19)
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Proof. From (16) we have

ϕ1(x) = v1(x,0) =
∞∑

n=1

c1
n sin(nx), ϕ2(x) =

∞∑
n=1

c2
n sin(nx) (20)

where

c1
n = 2

π

π∫
0

ϕ1(t) sin(nt) dt, c2
n = 2

π

π∫
0

ϕ2(t) sin(nt) dt. (21)

Thus the condition ‖ϕ1 − ϕ2‖ � δ is equivalent to

π

2

∞∑
n=1

(
c1
n − c2

n

)2 � δ2. (22)

Consequently∥∥v1(·, y) − v2(·, y)
∥∥2 = π

2

∞∑
n=1

(
c1
n − c2

n

)2 cosh2
(

ny√
1 + μ2n2

)
� cosh2(y/μ)δ2 � e2y/μδ2.

The choice of parameter μ = 1/ ln(2E/δ) leads to∥∥v1 − v2
∥∥ � (2E)yδ1−y. �

From Lemma 2.1 we see that the solution defined by (16) depends continuously on the input data ϕδ . Next we will
investigate the difference between the solutions (9) and (16) with the same exact data ϕ.

Lemma 2.2. Let u and v be the solutions (9) and (16) with the same exact data ϕ, and let μ = 1/ ln(2E/δ). Suppose
that ‖u(·,1)‖ � E. Then for fixed 0 < y < 1, we have∥∥u(·, y) − v(·, y)

∥∥ � C
E

ln2(2E/δ)
, (23)

where C = 1
2 ( 3

(1−y)e
)3.

Proof. From (9) the assumption ‖u(·,1)‖ � E is equivalent to

∥∥u(·,1)
∥∥2 = π

2

∞∑
n=1

(cn)
2 cosh2(n) � E2. (24)

Consequently,

∥∥u(·, y) − v(·, y)
∥∥ =

√√√√π

2

∞∑
n=1

(cn)2

(
cosh(ny) − cosh

(
ny√

1 + μ2n2

))2

� sup
n�1

A(n)E (25)

where

A(n) =
∣∣∣∣cosh(ny) − cosh(τy)

cosh(n)

∣∣∣∣, τ = n/

√
1 + μ2n2. (26)

We now estimate A(n). Note that n � τ = n/
√

1 + μ2n2,

A(n) =
∣∣∣∣cosh(ny) − cosh(τy)

cosh(n)

∣∣∣∣ = (eny + e−ny)/2 − (eτy + e−τy)/2

(en + e−n)/2
= (eny − eτy) − (eny − eτy)/e(n+τ)y

en + e−n

� eny − eτy

= e−n(1−y)
(
1 − e−(n−τ)y

)
. (27)
en
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Using the inequality 1 − e−r � r (r � 0), note that 0 < y < 1, we have

A(n) � e−n(1−y)(n − τ)y � e−n(1−y)(n − τ). (28)

Now, since
√

1 + μ2n2 � 1 + 1
2μ2n2, we get

n − τ = n − n/

√
1 + μ2n2 = n ·

√
1 + μ2n2 − 1√

1 + μ2n2
� 1

2
μ2n3, (29)

so (28) becomes

A(n) � 1

2
μ2n3e−n(1−y).

The function h(s) := s3e−s(1−y) attains its maximum

hmax = h

(
3

1 − y

)
=

(
3

(1 − y)e

)3

at s = 3
1−y

, and then

A(n) � 1

2
μ2hmax = 1

2

(
3

(1 − y)e

)3 1

ln2(2E/δ)
. (30)

The lemma now follows by combining (25) and (30). �
Now we are ready to formulate the main result of this section:

Theorem 2.3. Suppose that u is given by (9) with exact data ϕ and that vδ is given by (16) with measured data ϕδ . If we
have a bound ‖u(·,1)‖ � E, and the measured function ϕδ satisfies ‖ϕ − ϕδ‖ � δ and if we choose μ = 1/ ln(2E/δ),
then for fixed 0 < y < 1, we get the error bound∥∥u(·, y) − vδ(·, y)

∥∥ � (2E)yδ1−y + C
E

ln2(2E/δ)
. (31)

Proof. Let v be the solution defined by (16) with exact data ϕ. Then the theorem is straightforward by using the
triangle inequality ‖u − vδ‖ � ‖u − v‖ + ‖v − vδ‖ and the two previous lemmas. �

From Theorem 2.3 we find that (16) is an approximation of the exact solution u(x, y). The approximation error
depends continuously on the measurement error for fixed 0 < y < 1. However, as y → 1, the accuracy of the regu-
larized solution becomes progressively lower. This is common in the theory of ill-posed problems, if we do not have
additional conditions on the smoothness of the solution.

To retain the continuous dependence of the solution at y = 1, instead of (18), we introduce a stronger a priori
assumption,∥∥∥∥∂pu(·, y)

∂yp

∣∣∣∣
y=1

∥∥∥∥ � E (32)

where p > 0 is an integer.

Theorem 2.4. Suppose that u is given by (9) with exact data ϕ and that vδ is given by (16) with measured data ϕδ .
If we have an a priori bound (32), and the measured function ϕδ satisfies ‖ϕ − ϕδ‖ � δ. The parameter μ ∈ (0,1) is
chosen as

μ = 1

ln( 2E
δ

(ln 2E
δ

)−p)
. (33)

Then for p > 0, we get the error bound∥∥u(·,1) − vδ(·,1)
∥∥ � 2E

(ln 2E
δ

)p
+ ε (34)

where ε := max{μ2p/3, 1μ2}E.
2
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Proof. From (9) and (32), we have∥∥∥∥∂pu(·, y)

∂yp

∣∣∣∣
y=1

∥∥∥∥2

=
{

π
2

∑∞
n=1(cn)

2n2p cosh2(n), p is even,

π
2

∑∞
n=1(cn)

2n2p sinh2(n), p is odd
� E2.

In the following, we only discuss the case that p is even, i.e.,

π

2

∞∑
n=1

(cn)
2n2p cosh2(n) � E2, (35)

since the procedure of the proof is completely similar when p is odd.
Note that u is defined by (9) and vδ is defined by (16), we have∥∥u(·,1) − vδ(·,1)

∥∥ �
∥∥u(·,1) − v(·,1)

∥∥ + ∥∥v(·,1) − vδ(·,1)
∥∥

=
√√√√π

2

∞∑
n=1

(cn)2

(
cosh(n) − cosh

(
n√

1 + μ2n2

))2

+
√√√√π

2

∞∑
n=1

(
cn − cδ

n

)2 cosh2
(

n√
1 + μ2n2

)
.

Now the conditions (35) and ‖ϕδ − ϕ‖ � δ (see also (22)) lead to∥∥u(·,1) − vδ(·,1)
∥∥ � sup

n�1
Ã(n)E + sup

n�1
B̃(n)δ (36)

where

Ã(n) =
∣∣∣∣cosh(n) − cosh(τ )

np cosh(n)

∣∣∣∣, B̃(n) = cosh(τ ), τ = n√
1 + μ2n2

.

We start by estimating the second term on the right-hand side of (36). Since cosh(·) is a monotone increasing
function in the interval [0,∞) and μ is chosen in (33), we have

B̃(n)δ = cosh
(
n/

√
1 + μ2n2

)
δ � cosh(1/μ)δ � e1/μδ = 2E

(
ln

2E

δ

)−p

. (37)

We now consider the first term on the right-hand side of (36). Taking the similar procedure of (27), then∣∣∣∣cosh(n) − cosh(τ )

cosh(n)

∣∣∣∣ � 1 − e−(n−τ).

So

Ã(n) �
(
1 − e−(n−τ)

)
/np. (38)

For estimating (38), we now distinguish between two cases.
Case I: for large values of n, i.e., for n � 1

μ2/3 , note that n � τ = n/
√

1 + μ2n2, we have

Ã(n) � 1

np
� μ

2p
3 . (39)

Case II: for n < 1
μ2/3 , using the inequalities 1 − e−r � r (r � 0) and (29), we have from (38) that

Ã(n) � 1

2
μ2n3−p. (40)

If 0 < p < 3, from (40), we have

Ã(n) � 1
μ2

(
1
2/3

)3−p

= 1
μ

2p
3 . (41)
2 μ 2
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If p � 3, note that n � 1, from (40), we have

Ã(n) � 1

2
μ2. (42)

Summarizing (39), (41) and (42), we complete the estimate of the first term on the right-hand side of (36), i.e.,

Ã(n)E � max

{
μ2p/3,

1

2
μ2

}
E =: ε, p > 0. (43)

The theorem now follows from (36), (37) and (43). �
Remark 2.5. Since the regularization parameter μ → 0 as the measured error δ → 0, we can easily find that, for
p > 0, ε → 0 (δ → 0). Thus

lim
δ→0

∥∥u(·,1) − vδ(·,1)
∥∥ = 0, p > 0.

Remark 2.6. We separately consider the case 0 < y < 1 (Theorem 2.3) and the case y = 1 (Theorem 2.4), in order to
emphasize the following facts. For the case 0 < y < 1, the a priori bound for ‖u(·,1)‖ is sufficient. However, for the
case y = 1, the stronger a priori bound for ‖ ∂pu(·,y)

∂yp |y=1‖ where p > 0 must be imposed. In the next section we unite
both cases using the truncation method.

3. The truncation method

In this section we study the properties of the regularized solution

wδ(x, y) =
N∑

n=1

cδ
n sin(nx) cosh(ny) (44)

where

cδ
n = 2

π

π∫
0

ϕδ(t) sin(nt) dt. (45)

From the following discussions we could find that wδ(x, y) is also an approximation of the exact solution u(x, y).
The approximation error depends continuously on the measurement error for fixed 0 < y � 1.

We also assume that the a priori bound on the solution∥∥∥∥∂pu(·, y)

∂yp

∣∣∣∣
y=1

∥∥∥∥ � E (46)

holds. As in the proof of Theorem 2.4, we only discuss the case that p is even. Consequently, (46) is equivalent to

π

2

∞∑
n=1

(cn)
2n2p cosh2(n) � E2. (47)

The following theorem shows that the regularized solution wδ(x, y) is a good approximation to the exact solution
u(x, y).

Theorem 3.1. Suppose that u is given by (9) with exact data ϕ and that wδ is given by (44) with measured data ϕδ . If
the a priori bound (47) holds, and the measured data ϕδ satisfies ‖ϕδ − ϕ‖ � δ, and if we choose N = [a] where [a]
with square bracket denotes the largest integer less than or equal to a,

a = ln

(
2E

δ

(
ln

2E

δ

)−p)
, (48)

then for 0 < y � 1, p > 0, we get the error bound
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∥∥u(·, y) − wδ(·, y)
∥∥ �

(
1 +

(
ln 2E

δ

ln 2E
δ

+ ln(ln 2E
δ

)−p

)p)
(2E)yδ1−y

(
ln

2E

δ

)−py

. (49)

Proof. Subtracting and adding w which is defined by (44) with the exact data ϕ, and using the triangle inequality, (9)
and (44), we get∥∥u(·, y) − wδ(·, y)

∥∥ �
∥∥u(·, y) − w(·, y)

∥∥ + ∥∥w(·, y) − wδ(·, y)
∥∥

=
√√√√π

2

∞∑
n=N+1

(cn)2 cosh2(ny) +
√√√√π

2

N∑
n=1

(
cn − cδ

n

)2 cosh2(ny)

=
√√√√π

2

∞∑
n=N+1

(cn)2n2p cosh2(n)
cosh2(ny)

n2p cosh2(n)
+

√√√√π

2

N∑
n=1

(
cn − cδ

n

)2 cosh2(ny). (50)

Note that

cosh(ny) � eny,
cosh(ny)

cosh(n)
� 2e−n(1−y). (51)

Combining the conditions ‖ϕδ − ϕ‖ � δ (see also (22)) and (47), we have∥∥u(·, y) − wδ(·, y)
∥∥ � 2e−(N+1)(1−y)(N + 1)−pE + eNyδ. (52)

Since N = [a], i.e., N � a < N + 1, we can estimate∥∥u(·, y) − wδ(·, y)
∥∥ � 2e−a(1−y)a−pE + eayδ. (53)

Now using (48), we arrive at the statement of the theorem. �
Remark 3.2. In Theorem 3.1, if we are only interested in y = 1, then, for p > 0, we have∥∥u(·,1) − wδ(·,1)

∥∥ � 2E
(
1 + o(1)

)(
ln

2E

δ

)−p

for δ → 0. (54)

We now want to compare the regularized solutions (16) and (44) with the exact solution (9) and find an interesting
relation for these regularized solutions. From the simple analysis about the exact solution (9) in last paragraph of
Section 1, we know that the data error can be arbitrarily amplified by the “kernel” cosh(ny). That is the reason
why the Cauchy problem of Laplace equation is ill-posed. The proposed regularized solutions (16) and (44) can be
interpreted as replacing the arbitrarily large kernel cosh(ny) by the regularized kernels

cosh(ny)χN, where χN =
{

1, n � N,

0, n > N,

and

cosh

(
ny

1 + μ2n2

)
.

Both above kernels have the following two common properties:

(a) If the parameter N is large or the parameter μ is small, then for small n, both kernels are close to the exact kernel
cosh(ny).

(b) If N or μ is fixed, both kernels are bounded.

Property (a) describes that, for the appropriately chose parameter N or μ, the regularized kernel reserves the
information of the exact kernel in the components of small n. These reserved information guarantee the possibility
of the regularized solution approximating the exact one. Property (b) describes the degree of continuous dependence,
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i.e., when the regularized kernel is bounded, the regularized solution will depend continuously on the data. Both
properties (a) and (b) guarantee that the regularized solution (16) or (44) is dependent continuously on the data and is
the approximation of the exact solution.

Combining the general regularization theory [9,19] and properties (a) and (b), we now give a more general prin-
ciple of regularization methods for the Cauchy problem of Laplace equation. We suggest that, in order to obtain a
regularization method one can construct a new kernel k(y,n,α) and replace cosh(ny) by k(y,n,α) where the new
kernel should satisfy:

(A) If the parameter α is appropriately chosen, then for small n, the kernel k(y,n,α) is close to the exact kernel
cosh(ny);

(B) If α is fixed, k(y,n,α) is bounded.

Following properties (A) and (B), one can construct other kernels. Furthermore, the idea of properties (A) and
(B) can be applied to other ill-posed problems when the solution has the similar form of (9), e.g., the inverse heat
conduction problem [28]. In this sense, we say that the properties (A) and (B) are useful and interesting.

4. Generalizations

In problem (1)–(4), although we seek to recover u only for 0 < x < π , 0 < y < 1, the problem specification
includes the Laplace equation for 0 < x̄ < l (l > 0), 0 < ȳ < H (H > 0). Actually, through a change of variables,
x = πx̄/ l, y = ȳ/H , the region 0 < x < π , 0 < y < 1 is equivalent to 0 < x̄ < l, 0 < ȳ < H .

Consider the Cauchy problem with non-homogeneous Cauchy and boundary data,

uxx + uyy = f (x, y), 0 < x < π, 0 < y < 1, (55)

u(x,0) = ϕ0(x), uy(x,0) = ϕ1(x), 0 � x � π, (56)

u(0, y) = g0(y), u(π, y) = g1(y), 0 � y � 1, (57)

where f , ϕ0, ϕ1, g0, g1 are known, the solution u(x, y) for 0 < y � 1 is sought. We cannot immediately use the
same techniques for deriving a convergence estimate, since separation of variables will give extra terms that make the
estimation more complicated. However, we can define u = u1 + u2, where u1 satisfies (1)–(4) with modified Cauchy
data,

u(x,0) = ϕ0(x) − u2(x,0), uy(x,0) = 0. (58)

The second component u2 satisfies

uxx + uyy = f (x, y), 0 < x < π, 0 < y < 1, (59)

uy(x,0) = ϕ1(x), 0 � x � π, (60)

u(x,1) = (π − x)g0(1) + xg1(1)

π
, 0 � x � π, (61)

u(0, y) = g0(y), u(π, y) = g1(y), 0 � y � 1. (62)

From the linearity of the Cauchy problem, it follows that u satisfies (55)–(57). The boundary value problem (59)–(62)
is well-posed, and small perturbations in the data functions only lead to small changes in the solution u2. Thus the
general Cauchy problem is separated into a well-posed problem for u2 and an ill-posed problem for u1. Note that
errors in the boundary values (60)–(62) lead to an error in the solution u2(x,0), and hence indirectly influence the
error level in the data for the ill-posed problem.

It is also of interest to consider problems with Neumann data on the boundaries. Assume that we replace the
boundary data (4) by

ux(0, y) = ux(π, y) = 0, 0 � y � 1, (63)

a careful examination of the proofs of Sections 2 and 3 shows that we obtain exactly the same stability results.
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5. Conclusions and discussion

We have proved the convergence results for a Cauchy problem for the Laplace equation in a rectangle using two
different regularization methods. For the perturbation method, the equation is modified by adding a fourth order
mixed derivative, with a coefficient that serves as a regularization parameter. It is shown that with a certain choice of
the parameter, an explicit error estimate of logarithmic type is obtained. With a stronger assumption on the regularity
of the solution, the convergence estimate on the data is obtained for the whole domain (i.e., including y = 1). For the
truncation method, an explicit convergence estimate of Hölder type is obtained. We also discussed the relation of both
methods and gave an interesting result which may be helpful when one consider a similar problem.

From Sections 2 and 3, we could find that the results of the truncation method is better and the procedure of the
proof is easier than that of the perturbation method. However, the perturbation method also has its advantage. Actually,
from Section 2 we know that the problem (12)–(15) is well posed. That is to say, we can discretize it using standard
techniques, e.g., finite differences. For this reason, we can also expect to use the perturbation method to solve some
nonconstant coefficient problems (e.g., [27]).
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