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In this paper a new receptor modelling method is developed to identify and characterise emission
sources. The method is an extension of the commonly used conditional probability function (CPF). The
CPF approach is extended to the bivariate case to produce a conditional bivariate probability function
(CBPF) plot using wind speed as a third variable plotted on the radial axis. The bivariate case provides
more information on the type of sources being identified by providing important dispersion character-
istic information. By considering intervals of concentration, considerably more source information can be
revealed that is absent in the basic CPF or CBPF. We demonstrate the application of the approach by
considering an area of high source complexity, where many new sources can be identified and charac-
terised compared with currently used techniques. Dispersion model simulations are undertaken to verify
the approach. The technique has been made available through the openair R package.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).
Software availability

The methods described in this work are available as part of
software called openair. The openair software is freely available as
an R package. Details on installing R and optional packages
including openair can be found at R Core Team (2014) and http://
www.r-project.org. R will run on Microsoft Windows, linux and
Apple Mac computers. No special hardware is required to run
openair other than a standard desktop computer. Some large data
sets or complex analyses may require a 64-bit platform. Ref: R Core
Team (2014). R: A language and environment for statistical
computing. RFoundation for Statistical Computing, Vienna, Austria.
URL http://www.R-project.org/.
1. Introduction

1.1. Background

Identifying local and distant emission sources through receptor
modelling is an important area in the management of air pollution.
Receptor modelling techniques are diverse and have been applied
to a very wide range of situations. Among the more important
law).

r Ltd. This is an open access article
aspects of receptor modelling is the ability to identify and charac-
terise emission sources, which would perhaps be difficult or
impossible by other means. While air quality models can be used
together with emission inventories to provide such information, in
practice this is difficult. It is difficult for many reasons including
incomplete information of the sources and the difficulty in
modelling boundary layer processes. For this reason the analysis of
ambient air quality data remains a central approach used for un-
derstanding emission sources.

A commonly used method for identifying sources is the Condi-
tional Probability Function (CPF). The CPF is a simple but effective
technique for providing directional information concerning major
sources (Ashbaugh et al., 1985; Vedantham et al., 2013). The CPF
calculates the probability that in a particular wind sector the
concentration of a species is greater than some specified value.
The value specified is usually expressed as a high percentile of the
species of interest e.g. the 75th or 90th percentile. It is also possible
to extract and filter source information data through conditional
analysis as described by Malby et al. (2013). As Malby et al. (2013)
show filtering air pollution data by wind speed, direction and
time of day can help isolate specific source types for further analysis
e.g. the calculation of long term trends.

Bae et al. (2011) used a CPF technique to help identify the
directionality of sources contributing to observed pollutant con-
centrations at a rural site in New York State. The species consid-
ered included hourly averaged PM2.5 mass, Organic Mass (OM)
under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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from Organic Carbon (OC), optical Elemental Carbon (optical EC),
SO2, CO, NOy and O3 for the period of December 2004 to
December 2008. In addition, Bae et al. (2011) also considered
seasonal variations of these species. Bae et al. (2011) enhanced the
basic CPF technique by coupling the method with back trajectory
calculations to provide more information on mid to long distance
sources.

More sophisticated approaches have also been used to identify
dominant sources using non-parametric statistical analysis. Henry
et al. (2009) developed a non-parametric wind regression
approach to identify and quantify the impact of possible source
regions of pollutants as defined by wind direction sectors. Using
this approach Henry et al. (2009) were able to quantify the source
contribution of different emission sources and demonstrate that
some large sources such as a steel mill made only minor contri-
butions to concentrations of SO2.

Kim and Hopke (2004) compared the CPF approach with the
non-parametric regression approach for fine particle concentra-
tions (PM2.5) in the USA. They found that CPF and non-parametric
regression methods both worked well in identifying known local
point sources. However, the CPF approach was easier to calculate
compared with the non-parametric regression approach. The re-
sults from Kim and Hopke (2004) in both cases provided broad,
dominant source directions such as the Port of Seattle or in the case
of sea salt, the Atlantic Ocean. An advantage of the non-parametric
regression approach is that it is also able to provide uncertainties in
the source direction for major sources.

Most of the techniques previously described are focused on
identifying and may be quantifying dominant sources affecting a
receptor. However, many or most receptors are affected by a much
larger number of sources d but they can be difficult to identify.
These other sources could include major point sources that are too
far from the receptor to be detected clearly or local minor sources
that are similarly difficult to detect. There are however compelling
reasons why it is useful to detect such sources at a receptor. While
there may only be aminor contribution at a specific receptor, it may
well be the case that at other locations (perhaps where no mea-
surements are made), the contribution could be much larger and
should therefore be investigated. It is also useful to know the extent
to which sources have an influence, as this can provide a more
complete picture of how sites are affected by a wide range of
sources. For example, if it can be shown that a major point source
can be detected much further from its location than previously
thought, such information is helpful for demonstrating this to be
the case. There may also be occasions where isolating particular
source types is useful e.g. thermal power plants. Furthermore, there
may also be opportunities for enhanced model evaluation by being
able to evaluate models over a much larger spatial area.

In this paper a new technique is developed that increases the
potential to both detect and characterise source contributions at
receptor locations. The new method combines a conditional proba-
bility function with bivariate polar plots. The former is useful for
source detection and the latter for additional source characterisation.
The approach is further enhanced by considering the full distribution
of concentrations rather than concentrations exceeding a particular
threshold. The method is described and then applied to an area of
high source complexity that is affected by both near-field and distant
sources. Model simulations are performed to show that similar
findings can be gained through the analysis of model predictions.

2. Method

2.1. Bivariate CPF methodology

The ordinary CPF (Ashbaugh et al., 1985) estimates the probability that the
measured concentration exceeds a set threshold criterion for a given wind sector.
CPF is mathematically defined as:
CPFDq ¼ mDqjC�x

nDq
(1)
Where mDq is the number of samples in the wind sector q having concentration C is
greater than or equal to a threshold value x, and nDq is the total number of samples
from wind sector Dq. Thus, CPF indicates the potential for a source region to
contribute to high air pollution concentrations. Conventionally, x represents a high
percentile of concentration e.g. the 75th or 90th.

The conditional bivariate probability function (CBPF) couples ordinary CPF with
wind speed as a third variable, allocating the observed pollutant concentration to
cells defined by ranges of wind direction and wind speed rather than to only wind
direction sectors. It can be defined as:

CBPFDq;Du ¼
mDq;Du

���
C�x

nDq;Du
(2)

Where mDq,Du is the number of samples in the wind sector Dq with wind speed
interval Du having concentration C greater than a threshold value x, nDq,Du is the
total number of samples in that wind direction-speed interval. The extension to the
bivariate case provides more information on the nature of the sources because
different source types can have different wind speed dependencies. The use of a
third variable can therefore provide more information on the type of source in
question. It should be noted that the third variable plotted on the radial axis does
not need to be wind speed. The key issue is that the third variable allows some sort
of discrimination between sources types due to the way they disperse. For
example, Carslaw and Beevers (2013) show that temperature can be a useful radial
variable.

Bivariate polar plots show how a concentration of a species varies jointly with
wind speed and wind direction in polar coordinates. The plots have proved to be
useful in a range of settings e.g. to characterise airport sources and dispersion
characteristics street canyons (Carslaw et al., 2006; Tomlin et al., 2009; Carslaw and
Ropkins, 2012). Wind direction together with wind speed can be highly effective at
discriminating different emission sources. By using polar coordinates the plots
provide a useful graphical technique which can provide directional information on
sources as well as the wind speed dependence of concentrations.

Briefly, bivariate polar plots are constructed in the following way. First, wind
speed, wind direction and concentration data are partitioned into wind speed-
direction bins and the mean concentration calculated for each bin. The wind com-
ponents u ¼ u:sinð2p=qÞ, v ¼ u:cosð2p=qÞ, where u is the meanwind speed and q is
the mean wind direction in degrees with 90� as being from the east, and concen-
tration (C) provide a surface. The concentration surface produced by u, v and C is
modelled using a Generalized Additive Model (GAM) (Wood, 2006). GAMs are a
useful modelling framework with respect to air pollution prediction because often
the relationships between variables are non-linear and variable interactions are
important, both of which issues can be addressed in a GAM framework. The surface
is fitted according to Equation 3:

ffiffiffiffiffi
Ci

p
¼ b0 þ sðui; viÞ þ εi (3)

where Ci is the ith pollutant concentration, b0 is the overall mean of the response,
s(ui,vi) is the isotropic smooth function of ith value of covariate u and v, and εi is the
ith residual. A penalized regression spline is used to model the surface as described
by Wood (2003). Note that Ci is square-root transformed as the transformation
generally produces better model diagnostics e.g. normally distributed residuals.
Moreover the smooth function used is isotropic because u and v are on the same
scales. The isotropic smooth avoids the potential difficulty of smoothing two vari-
ables on different scales e.g. wind speed and direction, which introduces further
complexities. When fitting the GAM, wind speed-direction bins with few data points
are down-weighted such that those with 1, 2 and 3 points have weights 0.25, 0.50
and 0.75, respectively, whereas for sample sizes >3 are given a weighting of one.
This approach therefore gives less weighting to wind speed-direction intervals (and
therefore conditional probability estimates) that contain very few data points.

The CBPF can be extended further to consider intervals of concentration rather
than only values greater than some threshold. In this case the CBPF for concentration
intervals is defined as:

CBPFDq;DuðiÞ ¼
mDq;Du

���
y�C�x

nDq;Du
(4)

Where mDq,Du is the number of samples in the wind sector Dq with wind speed
interval Du having a concentration C between the intervals x and y, nDq,Du is the total
number of samples in that wind direction-speed interval. The extension to consid-
ering intervals of concentration is important because it extends the basic CPF
methodology (that only considers concentrations greater than a specified value) to
provide much more comprehensive information for source identification. The basic
CPF method focuses on identifying the most important dominant sources i.e. the
ones thatmake the greatest contribution to high concentration conditions. However,
as it will be shown, the basic CPF method discards a large amount of useful



Fig. 1. Map showing the location of the monitoring site (shown by the filled triangle) and emission sources (filled circles). The emission source ids can be linked with the data
shown in Table 1. The horizontal extent of the regional map is z70 km and the small scale map is z4.3 km. �OpenStreetMap contributors.

Table 1
Emissions data for major point sources from UK National Atmospheric Emissions
Inventory (NAEI) 2009.

ID activity Distance
(km)a

Emission (t yr�1)

NOx SO2 PM10

1 Coal-fired power station 35 9444 7527 300
2 Coal-fired power station 28 38,422 27,846 362
3 Integrated steelworks <0.5 3073 3442 2349
4 Gas-fired power station 31 2012 121 57b

5 Gas-fired power station 27 1872 2 21b

6 Gas-fired power station 26 2983 6 34
7 Oil refinery 26 1362 6458 2b

8 Gas-fired power station 27 1322 3 47b

9 Oil refinery 27 2549 5004 164
10 Solid fuel production 29 7b 1465b 10
11 Gas-fired power station 33 2520 0 55b

12 Coal-fired power station 28 18,700 7530 183
13 Coal-fired power station 32 28,300 6040 312

a From Scunthorpe Town monitoring site.
b Modelled value.
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information that can be used to identify far more sources. In essence, the enhanced
CBPF can reveal ‘hidden’ contributions from different sources.

Bennett et al. (2013) provide a comprehensive framework for the evaluation of
environmental models where they propose a 5-step procedure for evaluating the
performance of models. The CBPF approach is a receptor modelling approach and
cannot be compared with measured values in the same way as a deterministic
modelling approach. However, the framework of Bennett et al. (2013) is useful in
ensuring that the approach, data used and performance evaluation metrics follow a
consistent approach and the approach itself is fit for purpose.

2.2. Description of study area and data used

Scunthorpe is the administrative centre of the North Lincolnshire Unitary Area,
located on the southern side of the Humber estuary, England. It is characterised by
rather flat landscapes and a low population density, being a mainly agricultural area
withmarket towns surroundedbymanysmall villages, as shownin Fig.1. In this study,
it has been possible to identify distant sources because the terrain is very flat and its
roughness is very lowover the studyarea and thereforewindflows are not affectedby
issues related to terrain. However, it shelters several facilities under the Integrated
Pollution Prevention and Control directive (IPPC 2008/1/EC), as well as significant
road, rail and naval traffic sources. Several routine air quality monitoring stations are
also located within North Lincolnshire, as part of the Council’s monitoring network.

Surrounding Scunthorpe and up to 35 km, the most relevant IPPC pollutant
sources are related to intensive livestock production, waste management, energy,
mineral industry, chemical industry, surface treatment, food and beverage sector
and production of processing metals. Among these numerous IPPC facilities, those
emitting amounts >1000 t yr�1 of any monitored pollutants are listed in Table 1. In
terms of NOx and SO2 emissions there are a few dominant major sources. For
example, source 2 is Drax power station, 28 km from the Scunthorpe Town moni-
toring site; one of the largest in Europe and an important source of both NOx and SO2

(despite using flue gas desulphurisation). The integrated steelworks (source 3) is a
complex and significant local source of PM10, SO2 and NOx. Further to the east there
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are many relatively large sources of NOx and SO2 from power stations and an oil
refinery. These sources are typically 25e30 km from the Scunthorpe Town moni-
toring site. The extent to which these sources affect the concentrations of the
different species in Scunthorpe will of course depend on the emissions source
characteristics, as well as the prevailing meteorology. While a source such as Drax is
the most important source of SO2 and NOx in terms of absolute emissions, the stack
is 259 m tall. In addition, emissions from sources such as Drax will be released at
high temperature and therefore plume buoyancy effects will be important in con-
trolling how the plume disperses and where it impacts ground-level receptors.

The Scunthorpe Town monitoring site is housed within an enclosed air-
conditioned unit located as shown in Fig. 1. Scunthorpe Town is an urban-
industrial station located in a flat open field within the urban area itself, less than
500 m away from the west boundaries of the integrated steelworks and approxi-
mately 10m to the north of aminor urban road. To thewest of the site lies the bulk of
the urban area of Scunthorpe. The nearest busy road is the A1029, which at its
closest point is 124 m to the northeast of the station. The monitoring equipment
consists of a fluorescent SO2 analyser, a NOx chemiluminescence analyser and a
TEOM PM10 monitor. Wind speed and direction are also measured at the Scunthorpe
Town site at a height of ca. 5 m. The meteorological data from the Scunthorpe Town
site were used throughout this study. In this study, 15-min SO2, PM10, NOx, wind
speed and direction data measurements from 1st January 2009 to 31st December
2009 at Scunthorpe Town were analysed.

As shown in the map (Fig. 1), all main industrial sources are located further than
20 km away from both monitoring sites, except the steelworks, which is situated
very close to both stations. In addition, Scunthorpe Town will also be affected by
domestic heating emissions, which are dominated by NOx emissions from natural
gas-fired boilers. For 2009, Scunthorpe Town had a 92.5% data capture for the year.
The mean concentration of SO2 was 5.1 mg m�3 and the maximum 15-min value
194 mg m�3. Wind speed and direction measurements had a data capture of 99.2%.
The mean wind speed at the site was 2.7 m s�1 and the wind directions predomi-
nately from the south-western quadrant.

Integrated steelworks such as that at Scunthorpe consist of all necessary in-
stallations for from rawmaterial processing to steelmaking, rolling and shaping. The
main point sources of pollutants in Scunthorpe works are: two coking plants, a
power plant, four blast furnaces, a sinter plant and a (basic oxygen and electric arc)
steel making and concasting plant. With respect to emissions of SO2 (the focus of the
current study) the most significant sources are the sinter plant, the coke ovens, blast
furnaces and power plants Environment Agency (2004). These principal sources are
shown on Fig. 1.

The meteorological conditions for 2009 are summarised in the wind rose shown
in Fig. 2. This Figure shows the prevalence of winds from the south and southewest.

3. Results and discussion

3.1. CPF and bivariate polar plots

The results in this section first consider concentrations of NOx at
the Scunthorpe Town site. Fig. 3a shows a conventional CPF plot for
Fig. 2. Wind rose showing the wind speed and direction frequencies at the Scunthorpe
Town site for 2009 based on 15-min data.
NOx, highlighting sources where the concentration is >75th
percentile NOx concentration d equivalent to a NOx concentration
of 36.3 mg m�3. In this Figure there is a clear indication of higher
probabilities for these concentrations from the south-east i.e. in the
direction of many steelworks activities. By contrast, Fig. 3b shows a
bivariate polar plot for the same NOx data. In this plot several
additional and interesting features can be seen. First, the highest
concentrations occur under very low wind speed conditions from
all wind directions, but particularly the west; corresponding to the
direction where most of the urban area of Scunthorpe lies. These
high concentrations occur under stable atmospheric conditions
when non-buoyant ground-level sources are important such as
road transport emissions and domestic heating. The bivariate polar
plot also shows are area of high concentration to the southeeast,
corresponding to activities on the steelworks.

In the case of SO2 (Fig. 3c and d) both plots indicate the presence
of a major source to the east. However, in Fig. 3c it is not clear
whether there is one or several sources. By contrast 3d indicates
that there could be two major sources of SO2d one to the east and
one to the southeeast. Furthermore, the high concentrations pre-
sent at high wind speeds are indicative of emissions from stacks
rather than non-buoyant ground-level sources as in the case of NOx.
Since December 2007 UK petrol and diesel have been sulphur-free
(10 ppm or less) and consequently road transport is no longer a
significant source of SO2. The effects of using sulphur-free fuels can
be seen be comparing the NOx and SO2 bivariate polar plots where
low wind speeds are clearly associated with high NOx but not high
SO2. The interpretation of SO2 concentrations has therefore become
more straightforward because road vehicle sources can be ruled out
as a contributory factor in these types of analysis.

Fig. 3b and d therefore provides useful additional information
beyond that shown in Fig. 3a or Fig. 3c. Of particular use is not only
an indication of the direction in which important sources lie, but
also their dispersion characteristics. From Fig. 3b and d it is possible
to identify at least two source types with different dispersion
characteristics. Both the CPF and bivariate polar plots tend to
highlight the dominant source types affecting a monitoring site.
While such information is useful, it is known from Table 1 and Fig. 1
that there are many major source types in the area, some with high
emissions d albeit located up to 25e35 km distant. Fig. 3 reveals
very little information about these other sources.

3.2. Selection of intervals

An important characteristic that is revealed when considering
CBPF intervals is that sources tend to occupy clear concentration
intervals. Indeed, it is this characteristic that is exploited in the
method to reveal many more sources. Data are clearly already
effectively filtered by considering wind speed and wind direction
intervals, as shown by the presence of distinct source features in
the basic bivariate polar plot. In many cases it may be that a plume
is only mixed down to ground level within a particular wind speed
range d at a particular receptor location. However, it is also found
that sources are only detectable within often narrow ranges in
concentration also. This characteristic of the sources is likely due to
most sources having a relatively invariant emissions rate. There-
fore, the data filtering comprises of three components: wind speed,
wind direction and a concentration interval, which together pro-
vide a very fine-controlled method for source identification.

The question arises as to how to identify concentration or
percentile intervals that best highlight a particular source. We have
found that producing a large series of CBPF plots across a range of
percentile intervals works well. For example, a large series of plots
can be generated by considering percentile intervals from P0 to P10,
P1 to P11, ., P90 to P100. Considering a series of plots in this way



Fig. 3. (a) CPF plot of NOx concentrations at the Scunthorpe Town site for concentrations >75th percentile (36.3 mg m�3), (b) Bivariate polar plot of NOx concentrations at
Scunthorpe Town (c) CPF plot of SO2 concentrations at the Scunthorpe Town site for concentrations >75th percentile (5.3 mg m�3), (d) Bivariate polar plot of SO2 concentrations at
Scunthorpe Town. The radial axis is wind speed in m s�1 and the colour scale is the concentration of NOx or SO2 in mg m�3. Both plots are for 15-min data in 2009. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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provides an effective means of determining where particular
sources have their greatest impact. This approach could show for
example that a particular source is most apparent between certain
percentile intervals e.g. from the 17th to the 31st. Furthermore,
producing an animation of these plots further enhances the inter-
pretation potential. In this case, sources can be seen to ‘emerge’ and
then ‘disappear’ when traversing the full range of percentiles.

Themost appropriate sequence of intervals to usewill depend on
the data in question and it may not always be best to consider se-
quences such as P0 to P10, P1 to P11,., P90 to P100. For example, for
some species such as SO2 there may be a large number of zero value
concentrations. In this casemanypercentile levelscanbezero.A strict
sequenceofP0 toP10,P1 toP11,., P90 toP100will therefore result in
some repetitionof potentiallymanyof the intervals resulting in some
redundancy. In this case it can make sense to take the sequence of
percentile intervals for values greater than zero. Similarly if any
percentile concentrations are repeated it makes sense to use the
series of unique percentile values as the basis of selecting intervals.

3.3. Exploration of SO2 sources

As an example of CBPF, concentrations of SO2 at Scunthorpe
Town have been considered in more detail. Ranges of percentile
intervals were selected as described in Subsection 3.2 and a
sequence of CBPF plots produced. From these plots potential
sources were identified that covered discrete concentration ranges.
These ranges span a wide range of concentrations from 2.7 to 11 to
58e194 mg m�3 SO2. The most likely sources detected in each
concentration range from low to high are discussed in turn.

The twomost likely sources shown in Fig. 4a aremajor coal-fired
power stations. To the northewest the only major SO2 source is
Drax power station (see Table 1, ID ¼ 2) but is 28 km from the
monitoring site. The directions of the power stations are indicated
by the dashed lines. Similarly, the source to the SSW is most likely
theWest Burton power station, also 28 km from themonitoring site
and also a significant emitter of SO2 (ID ¼ 12). Note that Drax has
taller chimneys than West Burton (269 versus 200 m), which will
influence the way in which the plumes disperse from each power
station. These sources also have their maximum influence at very
low concentrations of SO2 from 2.7 to 11 mg m�3 and are not
apparent in Fig. 3. Despite these lowconcentrations and only 1-year
of data these sources are clearly visible when analysed using the
CBPF approach.

The ability to detect sources at specific receptor locations will
depend on the prevailing meteorology. In the current case, even
thoughthesteelworks is located to theeastof themonitoringsite and



Fig. 4. CBPF plots for different concentration intervals of SO2 concentration at the Scunthorpe Town site for 2009. (a) Plot highlighting sources of SO2 to the SE and NW from 2.7 to
11 mg m�3, (b) SO2 sources in the range 21e29 mg m�3 (c) sources to the east in the range 37e48 mg m�3, (d) source highlighted to the SE in the range 58e194 mg m�3. The dashed
lines show the direction of potential known sources (see text for details).
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there are fewerwindconditions fromtheeast (as shown inFig.2), it is
clear that specific sources can be detected. One of the reasons is that
these steelworks sources of SO2 are comparatively large and nearby.
In other situations such as where the sources are of a more inter-
mittent nature, more data may be required to characterise them e.g.
by considering more than one year of monitoring data.

The analysis of data in the Scunthorpe area has benefitted from
flat terrain that would help ensure that plumes would tend to
disperse in straight lines unaffected by hills and other features. For
this reason, even though some of the sources are up to 28 kmdistant,
the dispersion of these plumes will be unaffected by topography. For
locations with hilly terrain it would be more challenging to link
identified source features to specific source locations.

The sources located on the integrated steelworks are both
numerous and complex. For this reason it would not be expected
that it would be possible to resolve individual sources in any detail.
As discussed previously, the CPF plot for SO2 (Fig. 3c) only shows
that concentrations are high from the east and provides no further
detail. The bivariate polar plot perhaps reveals two sources (or
groups of sources), shown in Fig. 4. Nevertheless, by considering
intervals of CBPF more detail can be resolved.

To the ENE there are coke ovens about 2000 m from the Scun-
thorpeTownsite, shown inFig. 4band labelledas ‘Cokeovens [1]’. The
sources in this direction are dominant between 21 and 29 mg m�3.
There are several potentially important SO2 sources to an easterly
direction, including a coke oven and a power plant, shown in Fig. 4c.
The cokeovens in thisdirectionare closer to the ScunthorpeTownsite
(about 1200 m), which might account for the higher concentration
intervals seen for these sources compared with the coke ovens to the
ENE. It is not possible to resolve these sources in more detail but
sources in that direction have their clearest impact when SO2 con-
centrations are from 37 to 48 mg m�3, as shown in Fig. 4c. There are
also more distant sources close to the east coast about 30 km from
Scunthorpe Town, including an oil refinery and power stations. These
sources will be masked by the integrated steelworks but could in
principle be detected in the absence of the steelworks or if the
monitoring site was located to the east of the steelworks.

The source identified to the SE shown in Fig. 4d is most likely the
sinter plant. There are several features of the results that lead to this
conclusion. First, there is very good alignment between the feature
shown in Fig. 4d. Second, it can be shown that this feature also
clearly appears on plots of NOx and PM10, which is consistent with
sinter plan operations where high emissions of all three species can
be expected (Environment Agency, 2004). In addition, the high NO
concentrations and narrow plume points to a local emission source.
These characteristics are consistent with the sinter stack, as it is
very close to the Scunthorpe monitoring site (z2 km) and is a
single stack source 107 m in height.



Fig. 5. CBPF plots of an isolated source to the SE for different concentration intervals of a) SO2, b) PM10 and c) NOx measured at the Scunthorpe Town site for 2009. The direction of
the sinter plant is indicated by the dashed line.
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Evidence of the co-emission of SO2, NOx and PM10 is better seen
in Fig. 5. The source to the SE is a major source of SO2, PM10 and NOx

and appears when concentrations are between: 30.0e194.2 mg m�3

for SO2 (Figure 5a), 55e150 mg m�3 for PM10 (Fig. 5b), and 48.0e
387.7 mg m�3 for NOx (Fig. 5c). For all species the concentration
range where they are prominent is high, suggesting that the source
is an important emitter of all species. Another aspect of the NOx plot
that can be observed in Fig. 5c is the feature seen at very low wind
speeds, which is most apparent for westerly winds. This source
corresponds to diffuse emissions of NOx from the Scunthorpe urban
conurbation, which will be dominated by ground-level road traffic
and domestic gas boiler emissions. There are several characteristics
that lead to this conclusion. First, the wind direction where the
source is dominant corresponds to the Scunthorpe Town urban
area. Second, high NOx concentrations under low wind speeds are
indicative of surface emissions released with little or no buoyancy.

The CBPF probability values in a particular wind speed-direction
interval can vary widely as shown in Fig. 4. The actual probabilities
will be very data and emission source dependent. For example, a
single continuous dominant source in one direction that mostly ac-
counts for concentrations in a particular range can have high prob-
abilities. This is the situation for the two power station sources
shown in Fig. 4a where the probabilities are high (up to around 0.8).
On the other hand, if there is a mixture of sources that affect a
particular direction (such as the steelworks) then there will tend to
be some influence of these sources across different concentration
intervals, which has the effect of reducing the probability value.
Steelworks sources tend to operate in a more discontinuous mode
compared with large power stations and this behaviour would
tend to result in lower probabilities. This behaviour is also seen in
Fig. 4bed where the probabilities are lower (in the range 0.2e0.35)
for the steelworks sources comparedwith the power station sources.

In principle, the CBPF approach can help distinguish between
two sources from the same wind direction. The ability of the
technique to distinguish between sources in this way depends on
their type and characteristics. If two sources have very different
wind speed dependencies (e.g. one prominent at low wind speeds,
the other at highwind speeds) then thesewill be shown in different
wind speed intervals in the CBPF plot. For example, Fig. 5c (for NOx)
shows that at low wind speeds there is evidence of a source to the
west (likely Scunthorpe Town road traffic and domestic gas com-
bustion sources) and to a lesser extent to the east where there is
less of the urban area of Scunthorpe. However, in Fig. 5c it is also
clear that a different source to the southeeast can also be detected
(thought to be the sinter plant) and which is clearly separate from
the urban source seen at lower wind speeds.

These results provide considerably more information on the
different sources affecting the Scunthorpe Townmonitor compared
with the basic CPF or bivariate polar plot approach. It has been
possible to resolve distant but major point sources which only
make contributions at low concentrations of SO2 and which are
therefore easily missed. The complexity of the integrated steel-
works itself does however limit the extent to which a single mea-
surement site can resolve multiple nearby sources. An obvious
extension to this work would be the use of another site to the east
of the steelworks that would help triangulate and resolve the
sources in more detail.

Knowledge of the concentration ranges where different sources
have their influence is useful for several purposes. First, the con-
centration ranges provide the conditions where a source has most



Table 2
Source details used for ADMSmodelling. The receptor is assumed to be located at (0,
0).

Source Location Source details

x (m) y (m) SO2

(g s�1)
Stack
height (m)

Exit
temp. �C

Efflux
velocity
(m s�1)

P1 �20000 �20000 750 260 200 20
P2 1500 1500 0.2 30 50 15
P3 300 0 1 60 350 15
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influence. Therefore it would be possible to subset the original data
and extract those conditions; perhaps also with ranges of wind
speed andwind direction to analyse the data in other ways knowing
that a particular source has most influence. Second, the concen-
tration intervals may be helpful for model evaluation purposes. In
this case the ability to quantify the concentration range an emission
source has most influence in could allow a comparison with
equivalent results from a dispersion model. In the context of the
current work, the enhanced detection of distant sources at low
Fig. 6. Bivariate polar plot of three point sources modelled using the ADMS model
based on the source assumptions shown in Table 2. The model used hourly meteo-
rological data from the London Heathrow site for 2005. The units are mg m�3.

Fig. 7. CBPF plot of SO2 concentrations extracted from the ADMS modelling simulation of th
Subsection 3.2. (a) The lowest emitting source P2, shown for the concentration interval 0.11
source P1 shown for the concentration interval 2.2e37 mg m�3.
concentrations would allow models to be evaluated at distances
further than is currently possible.

The analysis in this study has used wind speed for the radial axis
of the CBPF plots. As discussed in Subsection 2.1 other variables
could be used such as ambient temperature. In addition, it could
also be useful to use variables derived from an air quality model or a
numerical weather prediction (NWP) model. Many such models
can provide estimates of boundary layer stability or other variables
representing vertical mixing e.g. as in the UK Met Office Unified
Model Cullen (1993). The effectiveness of these other variables for
use in CBPF plots depends on the extent to which sources can be
discriminated. For example, stack emission sources would be
expected to respond very differently to changes in atmospheric
stability compared with ground-level sources. To date there is little
or no work in using outputs from NWP models as a means of
enhancing receptor models. However, as advances in the spatial
resolution of NWP models develop, there should be increased op-
portunities to use model-derived variables to support receptor
modelling. In addition to the use of NWP models it would also be
useful to consider the use of more detailed meteorological mea-
surements e.g. several meteorological sites over the domain of in-
terest to help understand the source origins of more distant sources
more fully.

3.4. Simulations using the ADMS model

The earlier discussion focused on the analysis of ambient mea-
surements. It is also useful to consider whether similar findings
would be attained using atmospheric dispersion models. The
model chosen for the simulations was the Atmospheric Dispersion
Modelling System (ADMS) developed by Cambridge Environmental
Research Consultants (McHugh et al., 1997). The ADMS model is an
advanced Gaussian model based on boundary layer properties
characterised by the boundary layer depth and theMonin-Obukhov
length. For these simulations version 4.1 of ADMS was used.

Three different stack sources were modelled based on the as-
sumptions shown in Table 2. The first source (P1) represents the
emissions typical of those expected from a large power station such
as Drax with a similar annual emission of SO2 of 750 g s�1

(23.7 kt yr�1) and a stack height of 260 m ca. 28 km from the re-
ceptor. The other two sources (P2 and P3) represent smaller stacks
with lower emission rates located much closer to the receptor 2.1
and 0.3 km, respectively). Hourly meteorological data were used
from the UK Met Office London Heathrow site for the purposes of
the simulations. The simulations were carried out assuming flat
terrain i.e. similar to the situation in North Lincolnshire.
ree different point sources described in Table 2. The data were analysed as described in
e0.26 mg m�3, (b) source P3 shown for the concentration interval 0.35e1.6 mg m�3, (c)
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The bivariate polar plot for the model-simulated concentrations
in shown in Fig. 6. There is limited evidence of stack P3 to the east
and no evidence of stack P2. The results in Fig. 6 also show that it is
reasonable to expect to detect a large power station source such as
Drax at a distance of z28 km where concentrations of up to
6 mg m�3 can be expected. Using the same methods as described in
Subsection 3.2 the hourly ADMS model results were analysed for
the presence of separate sources across the full concentration
range. The result of this analysis is shown in Fig. 7, showing three
clearly distinguishable sources that are not apparent when
considering only the bivariate polar plot (Fig. 6). These results
support the validity of the method as a way in which to extract
information on sources that have a relatively minor impact on
concentrations at a receptor. The most obvious feature of Fig. 6 is
the P1 stack to the south-west.

4. Conclusions

This study has combined two approaches commonly used for
source identification in receptor modelling. The Conditional Prob-
ability Function provides a simple but effective way in identifying
major source directions and the bivariate polar plot provides
additional information on how sources disperse. The latter can
therefore help to discriminate different source types through their
wind speed dependence. Combining these two techniques provides
a new method termed the Conditional Bivariate Probability Func-
tion (CBPF).

The CBPF has been developed further to consider intervals in the
concentration of a species. It is found that sources tend to occupy
clear concentration intervals, which allows many more sources to
be identified than was previously possible. For example, a distant
but large point source might not be identified using a basic CPF or
bivariate plot but can be identified in a lower discrete concentration
range of the CBPF. The approach can therefore provide a more
comprehensive understanding of a very wide range of sources
affecting a particular monitoring site. In the application used in this
study, distant point sources of SO2 could be identified which were
not apparent previously; and nearby sources from an integrated
steelworks could be better disaggregated. The identification of an
increased number of sources was also shown using an advanced
Gaussian plume model.
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