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Abstract

In this article, we investigate the regularity for certain elliptic systems without an L2-antisymmetric structure. As applications,
we prove some regularity results for weakly harmonic maps from the unit ball B = B(m) ⊂ R

m (m � 2) into certain pseudo-
Riemannian manifolds.
© 2012 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article on étudie la régularité des solutions de quelques systèmes elliptiques non munis de structure antisymétrique L2.
On applique cette étude à la démonstration de résultats de régularitté d’applications harmoniques de la boule unité B = B(m) ⊂R

m

(m � 2), dans des variétés pseudo-riemanniennes.
© 2012 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In the recent papers by Rivière [36] and Rivière and Struwe [39], the following regularity results for elliptic systems
with an L2-antisymmetric structure are established:

Theorem 1.1. (See Rivière [36] for m = 2, Rivière and Struwe [39] for m � 3.) Let B = B(m) ⊂ R
m (m � 2)

be the unit ball. There exists εm > 0 such that for every Ω ∈ L2(B, so(n) ⊗ ∧1
R

m) and for every weak solution
u ∈ W 1,2(B,Rn) of the following elliptic system:

−div∇u = Ω · ∇u, (1.1)

satisfying
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sup
BR(x)⊂B

(
R2−m

∫
BR(x)

|∇u|2 + |Ω|2
) 1

2

< εm, (1.2)

we have that u is Hölder continuous in B .

One of the main applications of the above results is the regularity theory for harmonic map systems into closed
Riemannian manifolds, where the L2-antisymmetric property of the potential Ω in (1.1) relies on the fact that the
target manifolds are compact and Riemannian. For classical regularity results of weakly harmonic maps, see e.g. the
books by Hélein [22] and Lin and Wang [30] and references therein.

In this paper, we shall study the regularity for weakly harmonic maps from the unit ball B = B(m) ⊂ R
m (m � 2)

into certain pseudo-Riemannian manifolds from different points of view. Analytically, it is interesting to know how
the structure of the harmonic map system is affected when the target manifolds become pseudo-Riemannian. As we
will see later, in general, the L2-antisymmetric structure for harmonic map systems into closed Riemannian manifolds
may not be preserved any more when the target manifolds become non-compact or non-Riemannian. Therefore, we
would like to explore the extent to which the results developed by Rivière [36] and Rivière and Struwe [39] can be
generalized to elliptic systems without an L2-antisymmetric structure. Geometrically, considering the link between
harmonic maps into S

4
1 ⊂ R

5
1 and the conformal Gauss maps of Willmore surfaces in S

3 (see Bryant [6]; see also
[21,35,3,4]), and the regularity results for weak Willmore immersions established by Rivière [37], we are strongly
encouraged to find a method to study the regularity for weakly harmonic maps into S

4
1 and then extend it to the

cases of more general targets. Physically, it is known that harmonic maps play an important role in string theory
(see e.g. [11,27]). One of the most significant results in string theory is the AdS/CFT correspondence (anti-de-Sitter
space/conformal field theory correspondence) proposed in 1997 by Maldacena [31]. In view of the recent work on
minimal surfaces in anti-de-Sitter space and its applications in theoretical physics (see e.g. Alday and Maldacena [1]),
we are interested in extending the regularity theory for harmonic maps into closed Riemannian manifolds to the cases
that the targets are some model spacetimes (which are non-compact and Lorentzian) considered in general relativity
(see e.g. [28,34]), for instance, standard stationary Lorentzian manifolds, de-Sitter space Sn

1 (also denoted by dSn) and
anti-de-Sitter space H

n
1 (also denoted by AdSn).

In the present work, we solve these problems by using the theory of integrability by compensation developed in
[47,33,10,14,15] and some conservation laws, due to the symmetries of the target manifolds considered. We point out
that our results partially realize the perspectives (proposed by Rivière [37, pp. 3–4]) of the regularity theory for elliptic
systems. For some other generalizations of the methods of Rivière [36] and Rivière and Struwe [39], see Lamm and
Rivière [29], Struwe [44], Duzaar and Mingione [12] and Rivière [38]. For some other analytic aspects of harmonic
maps into pseudo-Riemannian manifolds, see e.g. Hélein [23].

First, we observe that, by slightly adapting the techniques used by Rivière and Struwe [39], similar regularity results
as in Theorem 1.1 extend to certain elliptic systems with a potential a priori in L2 but not necessary antisymmetric.
To see this, recall that for 1 � s < ∞, the Morrey norm ‖ · ‖Ms

s (B) of a function f ∈ Ls
loc(B) is

‖f ‖Ms
s (B) = sup

BR(x)⊂B

(
Rs−m

∫
BR(x)

|f |s
) 1

s

,

then we have the following:

Theorem 1.2. For m � 2 and for any Λ > 0, there exists εm,Λ > 0 such that for every Θ ∈ L2(B, so(n) ⊗ ∧1
R

m),
ζ ∈ W 1,2(B,M(n) ⊗ ∧2

R
m), F ∈ W 1,2 ∩ L∞(B,M(n)), G ∈ W 1,2 ∩ L∞(B,M(n)) and Q ∈ W 1,2 ∩ L∞(B,GL(n))

and for every weak solution u ∈ W 1,2(B,Rn) of the following elliptic system:

−div(Q∇u) = Θ · Q∇u + F curl ζ · G∇u (1.3)

satisfying

‖∇u‖M2
2 (B) + ‖Θ‖M2

2 (B) + ‖ curl ζ‖M2
2 (B) + ‖∇Q‖M2

2 (B) + ‖∇F‖M2
2 (B) + ‖∇G‖M2

2 (B) < εm,Λ, (1.4)

and
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|Q| + ∣∣Q−1
∣∣ + |F | + |G| � Λ, a.e. in B, (1.5)

we have that u is Hölder continuous in B .

The result in Theorem 1.2 was partially obtained by Hajlasz, Strzelecki and Zhong [18, Theorem 1.2] for the case
m = 2, Θ ≡ 0, Q ≡ In and by Schikorra [41, Remark 3.4] for the case m � 2, ζ ≡ 0.

Note that the elliptic system (1.3) can be written as

−div(Q∇u) = {
Θ + F curl ζ

(
GQ−1)} · (Q∇u) (1.6)

or equivalently as

−div∇u = {
Q−1∇Q + Q−1(Θ + F curl ζ

(
GQ−1))Q} · ∇u. (1.7)

Considering Q as a kind of gauge transformation, we interpret the elliptic system (1.7) as follows: its potential

Q−1∇Q + Q−1(Θ + F curl ζ
(
GQ−1))Q

is gauge equivalent to a new one

Θ + F curl ζ
(
GQ−1)

which can be decomposed into an antisymmetric part Θ and an almost divergence free part F curl ζ(GQ−1).
As an application of Theorem 1.2, we shall study the regularity for weakly harmonic maps into standard stationary

Lorentzian manifolds. A standard stationary Lorentzian manifold (see e.g. [28,34]) is a product manifold R × M

equipped with a metric

g = −(β ◦ πM)
(
π∗
R

dt + π∗
Mω

) ⊗ (
π∗
R

dt + π∗
Mω

) + π∗
MgM, (1.8)

where (R, dt2) is the 1-dimensional Euclidean space, (M,gM) is a closed Riemannian manifold of class C3, β is a
positive C2 function on M , ω is a C2 1-form on M , πR and πM are the natural projections on R and M , respectively.
For simplicity of notations, we shall write the metric (1.8) as

g = −β(dt + ω)2 + gM. (1.9)

By Nash’s embedding theorem, we embed (M,gM) isometrically into some Euclidean space R
n. Then, there exist a

tubular neighborhood VδM of radius δ > 0 of M in R
n and a C2 projection map Π from VδM to M (see Hélein’s

book [22, Chapter 1]). Moreover, we pull back β and ω via the projection Π and obtain Π∗β ∈ C2(VδM, (0,∞))

and Π∗ω ∈ C2(Ω1(VδM)), respectively. For simplicity, we shall still denote Π∗β and Π∗ω by β and ω, respectively.
Write ω = ∑n

i=1 ωi(y) dyi , y = (y1, . . . , yn) ∈ VδM ⊂R
n, where ωi ∈ C2(VδM).

To study the regularity for weakly harmonic maps into (R× M,g), we consider the space

W 1,2(B,R× M) := {
(t, u) ∈ W 1,2(B,R) × W 1,2(B,Rn

) ∣∣ u(x) ∈ M a.e. x ∈ B
}
. (1.10)

For a map (t, u) ∈ W 1,2(B,R× M), we define the following Lagrangian:

E(t,u) = −1

2

∫
B

β(u)
∣∣∇t + ωi(u)∇ui

∣∣2 + 1

2

∫
B

|∇u|2. (1.11)

Definition 1.1. A map (t, u) ∈ W 1,2(B,R × M) is called a weakly harmonic map from B into (R × M,g), if it is a
critical point of the Lagrangian functional (1.11).

The Euler–Lagrange equation (see Section 3) for a weakly harmonic map (t, u) ∈ W 1,2(B,R × M) from B into
(R×M,g) is an elliptic system of the form (1.3), which can be geometrically interpreted as follows: the antisymmetric
term Θ corresponds to the Riemannian structure of the closed spacelike hypersurfaces {t} × M and the divergence
free term curl ζ corresponds to the following conservation law

div
{
β(u)

(∇t + ωi(u)∇ui
)} = 0, in D′(B), (1.12)

due to the symmetry of the target generated by the timelike Killing vector field ∂t . Applying Theorem 1.2, we have
the following ε-regularity result:
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Theorem 1.3. For m � 2, there exists εm > 0 depending on (R × M,g) such that any weakly harmonic map
(t, u) ∈ W 1,2(B,R× M) from B into (R× M,g) satisfying

‖∇t‖M2
2 (B) + ‖∇u‖M2

2 (B) < εm, (1.13)

is Hölder continuous (and as smooth as the regularity of the target permits) in B .

In dimension m = 2, we notice that the Morrey norm ‖ · ‖M2
2

reduces to the norm ‖ · ‖L2 . Therefore, by conformal
invariance and rescaling in the domain, we obtain the following regularity result:

Theorem 1.4. For m = 2, any weakly harmonic map (t, u) ∈ W 1,2(B,R × M) from B into (R × M,g) is Hölder
continuous (and as smooth as the regularity of the target permits) in B .

In Theorem 1.4, if the target (R × M,g) is a standard static Lorentzian manifold (see e.g. [28,34]), namely, the
1-form ω in the metric g (see (1.9)) vanishes identically, then the corresponding regularity result was proved by Isobe
[24] (using Hélein’s method of moving frame [22]).

Next, we shall consider, in a certain sense, elliptic systems of the form (1.1) with the potential Ω a priori only
in Lp for some 1 < p < 2. Note that, if Ω is not in L2, then the right hand side of (1.1) is not in L1 and thus the
equation makes no sense any more (not even in the distribution sense!). However, we observe that, if in addition, Ω is
divergence free, namely,

divΩ = 0, in D′(B), (1.14)

then Eq. (1.1) can be written in the following form:

−div(∇u + Ωu) = 0, in D′(B). (1.15)

This new form (1.15) has the advantage that it is still meaningful in the distribution sense if Ω is a priori only in Lp

for some 1 < p < 2. Moreover, under the further assumption that the Morrey norms ‖∇u‖M
p
p (B) and ‖Ω‖M

p
p (B) are

sufficiently small, the Hölder continuity of the weak solution u holds.

Theorem 1.5. For m � 2 and for any 1 < p < m
m−1 , there exists εm,p > 0 such that for any Ω ∈ Lp(B,M(n)⊗∧1

R
m)

satisfying (1.14) and for any weak solution u ∈ W 1,2(B,Rn) of the elliptic system (1.15) satisfying

‖∇u‖M
p
p (B) + ‖Ω‖M

p
p (B) < εm,p, (1.16)

we have that u is Hölder continuous in B .

As applications of Theorem 1.5, we shall study the regularity for weakly harmonic maps into pseudospheres and
pseudohyperbolic spaces. For this purpose, we recall some facts about these target spaces and refer to O’Neill’s book
[34] for more details.

Let n ∈ N and let ν ∈ N satisfy 0 � ν � n. Denote

E = (εij ) :=
(−Iν 0

0 In+1−ν

)
. (1.17)

The pseudo-Euclidean space R
n+1
ν of signature (ν, n + 1 − ν) is the space R

n+1 equipped with a metric

〈v,w〉
R

n+1
ν

:= vT Ew = −(
v1w1 + · · · + vνwν

) + (
vν+1wν+1 + · · · + vn+1wn+1)

for all v = (v1, . . . , vn+1)T ∈R
n+1 and w = (w1, . . . ,wn+1)T ∈R

n+1. The pseudoshpere S
n
ν in R

n+1
ν is defined as

S
n
ν := {

y ∈R
n+1
ν

∣∣ 〈y, y〉
R

n+1
ν

= yT Ey = 1
}

(1.18)

with the induced metric. In particular, Sn
0 ⊂ R

n+1
0 is the standard sphere S

n ⊂ R
n+1 and S

n
1 ⊂ R

n+1
1 is the de-Sitter

space dSn in general relativity. The linear isometries of Rn+1
ν form the group
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O(ν, n + 1 − ν) = {
P ∈ GL(n + 1)

∣∣ P T = EP −1E
}
. (1.19)

Denote by SO+(ν, n + 1 − ν) the identity component of O(ν, n + 1 − ν). The lie algebra of SO+(ν, n + 1 − ν) is

so(ν, n + 1 − ν) = {
A ∈ GL(n + 1)

∣∣ AT = −EAE
}
. (1.20)

Using the isometric embedding S
n
ν ⊂R

n+1
ν , we set

W 1,2(B,Sn
ν

) := {
u = (

u1, u2, . . . , un+1)T ∈ W 1,2(B,Rn+1
ν

) ∣∣ uT Eu = 1 a.e. in B
}
. (1.21)

For a map u ∈ W 1,2(B,Sn
ν), we define the following Lagrangian:

E(u) := 1

2

∫
B

(∇u)T E∇u = −1

2

∫
B

(∣∣∇u1
∣∣2 + · · · + ∣∣∇uν

∣∣2) + 1

2

∫
B

(∣∣∇uν+1
∣∣2 + · · · + ∣∣∇un+1

∣∣2)
. (1.22)

Definition 1.2. A map u ∈ W 1,2(B,Sn
ν) is called a weakly harmonic map from B into S

n
ν , if it is a critical point of the

Lagrangian functional (1.22).

Denote

F = (ςij ) :=
(−Iν+1 0

0 In−ν

)
. (1.23)

The pseudohyperbolic space H
n
ν in R

n+1
ν+1 is defined as

H
n
ν := {

y ∈R
n+1
ν+1

∣∣ 〈y, y〉
R

n+1
ν+1

= yT Fy = −1
}

(1.24)

with the induced metric. In particular, Hn
0 ⊂ R

n+1
1 is a hyperboloid containing two copies of the hyperbolic space H

n

and H
n
1 ⊂R

n+1
2 is the anti-de-Sitter space AdSn in general relativity.

Using the isometric embedding H
n
ν ⊂R

n+1
ν+1, we set

W 1,2(B,Hn
ν

) := {
u = (

u1, u2, . . . , un+1)T ∈ W 1,2(B,Rn+1
ν+1

) ∣∣ uT Fu = −1 a.e. in B
}
. (1.25)

For a map u ∈ W 1,2(B,Hn
ν), we define the following Lagrangian:

E(u) := 1

2

∫
B

(∇u)T F∇u = −1

2

∫
B

(∣∣∇u1
∣∣2 + · · · + ∣∣∇uν+1

∣∣2) + 1

2

∫
B

(∣∣∇uν+2
∣∣2 + · · · + ∣∣∇un+1

∣∣2)
. (1.26)

Definition 1.3. A map u ∈ W 1,2(B,Hn
ν) is called a weakly harmonic map from B into H

n
ν , if it is a critical point of

the Lagrangian functional (1.26).

Notice that the following anti-isometry (see O’Neill’s book [34])

σ : R
n+1
ν →R

n+1
n−ν+1

(y1, . . . , yn+1) �→ (yν+1, . . . , yn+1, y1, . . . , yν)

induces an anti-isometry from S
n
ν to H

n
n−ν . In the sequel, we shall only consider the cases of Sn

ν (0 � ν � n).
To proceed, we recall that a weakly harmonic map u ∈ W 1,2(B,Sn) satisfies the following conservation laws (due

to Shatah [42] and Chen [9]. See also Rubinstein, Sternberg and Keller [40] and Hélein’s book [22]):

div
(
ui∇uj − uj∇ui

) = 0, in D′(B), ∀i, j = 1,2, . . . , n + 1, (1.27)

which can be interpreted by Noether theorem, using the symmetries of Sn. Note that the pseudospheres Sn
ν (1 � ν � n)

have isometry groups O(ν, n + 1 − ν) and hence they are all maximally symmetric. With the help of the symmetric
properties, we are able to extend the conservation laws (1.27) to weakly harmonic maps into these more general
targets.
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Proposition 1.1. Let m � 2. Let u ∈ W 1,2(B,Sn
ν) (1 � ν � n) be a weakly harmonic map. Then the conservation laws

(1.27) hold.

For a weakly harmonic map u ∈ W 1,2(B,Sn
ν) (0 � ν � n), we define the following matrix valued vector field

Θ = (
Θij

) := (
ui∇uj − uj∇ui

)
, i, j = 1,2, . . . , n + 1. (1.28)

In the case of a compact target Sn, Θ is in L2(B,M(n)⊗∧1
R

m) and u weakly solves the following elliptic system
(see Hélein [19,22])

−div∇u = Θ · ∇u.

Since Θ is divergence free (due to the conservation laws (1.27)), the continuity of u in dimension m = 2 follows
immediately from Wente’s lemma [47].

However, in the case of a non-compact target Sn
ν (1 � ν � n), Θ is only in Lp(B,M(n)⊗∧1

R
m) for any 1 < p < 2.

Proposition 1.1 indicates that Θ is still divergence free. In what follows, we show that u is a weak solution of an elliptic
system of the form (1.15) with its potential satisfying (1.14). Moreover, by making use of the conservation laws (1.27),
we are able to estimate ‖Θ‖M

p
p (B1/2)

by ‖∇u‖M
p
p (B), where B1/2 = B1/2(m) ⊂ R

m (m � 2) is the ball centered at 0
and of radius 1/2.

Proposition 1.2. Let m � 2. Let u ∈ W 1,2(B,Sn
ν) (1 � ν � n). Then

∇u + ΘEu = 0, a.e. in B, (1.29)

where Θ is defined as in (1.28). Consequently, we have

−div(∇u + ΘEu) = 0 in D′(B). (1.30)

Furthermore, suppose that u is weakly harmonic and for any fixed 1 < p < m
m−1 there holds ‖∇u‖M

p
p (B) < ∞, then

we have the following estimate:

‖Θ‖M
p
p (B1/2)

� C‖∇u‖2
M

p
p (B)

. (1.31)

Since E is a constant matrix, applying Theorem 1.5 with Ω = ΘE and using a rescaling of the domain gives the
following ε-regularity result:

Theorem 1.6. For m � 2 and for any 1 < p < m
m−1 , there exists εm,p > 0 such that any weakly harmonic map

u ∈ W 1,2(B,Sn
ν) (1 � ν � n) satisfying

‖∇u‖2
M

p
p (B)

< εm,p (1.32)

is Hölder continuous (and hence smooth) in B .

In dimension m = 2, a straightforward calculation gives that ‖∇u‖M
p
p (B) � ‖∇u‖L2(B) for any 1 < p < 2.

Therefore, by conformal invariance, we have

Theorem 1.7. For m = 2, any weakly harmonic map u ∈ W 1,2(B,Sn
ν) (1 � ν � n) is Hölder continuous (and hence

smooth) in B .

In particular, we prove that any weakly harmonic map from a disc into the de-Sitter space S
n
1 or the anti-de-Sitter

space H
n
1

∼= S
n
n−1 is smooth. Also, we give an alternative proof of the Hölder continuity of weakly harmonic maps

from a disc into the hyperbolic space H
n (one component of H

n
0

∼= S
n
n) without using the fact that the target has

non-positive sectional curvature (for a proof using the curvature property, we refer to Jost’s book [26]). We expect
that the results in Theorems 1.6 and 1.7 can be extended in the same spirit of Hélein’s setting in [20] to certain
homogeneous pseudo-Riemannian manifolds.
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Furthermore, we observe that the methods used in the proofs of Proposition 1.2 and Theorem 1.5 can be applied to
study the ε-regularity of maps in the spaces of distributions of lower regularity. This motivates us to extend the notion
of generalized (weakly) harmonic maps from a disc into the standard sphere S

n (introduced by Almeida [2]) to the
cases that the targets are pseudospheres Sn

ν (1 � ν � n) (see Section 5). To see this, we recall the notion of generalized
(weakly) harmonic maps into S

n.

Definition 1.4. (See Almeida [2].) For m = 2, a map u ∈ W 1,1(B,Sn) is called a generalized (weakly) harmonic map
if (1.27) hold.

Generalized (weakly) harmonic maps into S
n might be not continuous. However, there are some ε-regularity

results for such maps. Almeida [2] showed that any generalized harmonic map u ∈ W 1,1(B,Sn) with ‖∇u‖L(2,∞)

small is smooth (an alternative proof was given by Ge [16]). Moser [32] proved that any generalized harmonic map
u ∈ W

1,p

loc (B,Sn) with p ∈ (1,2) is smooth if p is sufficiently close to 2, and ‖u‖BMO is small. Strzelecki [46] showed

that any generalized harmonic map u ∈ W
1,p

loc (B,Sn) with p ∈ (1,2) is smooth provided that ‖u‖BMO is small.
To extend the notion of generalized (weakly) harmonic maps into the pseudospheres Sn

ν (1 � ν � n), we observe
that a W 1,1 map from a disc into any of these non-compact targets is not a priori in L∞ and hence the conservation
laws (1.27) make no sense for such a map. Therefore, we need to require that the map u belongs to the Sobolev space

W 1, 4
3 so that

ui∇uj − uj∇ui ∈ L1
loc(B), ∀i, j = 1,2, . . . , n + 1,

and hence the conservation laws (1.27) become meaningful.

Definition 1.5. For m = 2, a map u ∈ W 1, 4
3 (B,Sn

ν) (1 � ν � n) is called a generalized (weakly) harmonic map if
(1.27) hold.

Analogously to Theorem 1.6, we have the following ε-regularity result.

Theorem 1.8. For m = 2 and for any 4
3 < p < 2, there exists εp > 0 such that any generalized (weakly) harmonic

map u ∈ W 1, 4
3 (B,Sn

ν) (1 � ν � n) satisfying

‖∇u‖2
M

p
p (B)

< εp (1.33)

is Hölder continuous (and hence smooth) in B .

Finally, we study the regularity for an elliptic system of the form (1.1) with Ω ∈ L2(B, so(1,1)⊗∧1
R

2) in dimen-
sion m = 2 and show by constructing an example that weak solutions in W 1,2 to such an elliptic system might be not
in L∞.

The paper is organized as follows. In Section 2, we prove Theorems 1.2 and 1.5. In Section 3, we apply Theorem 1.2
to prove the ε-regularity (Theorem 1.3) of weakly harmonic maps into standard stationary Lorentzian manifolds.
In Section 4, we first show Propositions 1.1 and 1.2. Then we prove the regularity results (Theorems 1.6 and 1.7)
for weakly harmonic maps into pseudospheres. In Section 5, the ε-regularity result (Theorem 1.8) for generalized
(weakly) harmonic maps from a disc into pseudospheres is proved. In Section 6, we study an elliptic system with an
L2-so(1,1) structure in dimension m = 2.

Notation. For a 2-vector field ξ = ξij ∂xi
∧ ∂xj

, curl ξ denotes the vector field (
∑

i ∂xi
ξij )∂xj

and dξ denotes the
3-vector field (∂xk

ξij )∂xk
∧ ∂xi

∧ ∂xj
. A constant C may depend on m, n and p.

2. Proofs of Theorems 1.2 and 1.5

In this section, we will prove Theorems 1.2 and 1.5.
First, combining the div-curl inequality by Coifman, Lions, Meyer and Semmes [10] (see Müller [33] for an earlier

contribution), the Hardy-BMO duality by Fefferman [14] (see also Fefferman and Stein [15] and Stein [43]) and the
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observation that the Morrey spaces Ms
s (R

m) (1 � s < ∞) are contained in the space BMO(Rm) (due to Evans [13]),
we give the following lemma (see Proposition III.2 in Bethuel [5], Lemma 3.1 in Schikorra [41] and Strzelecki [45,
pp. 234–235]; see also Chanillo [7] and Chanillo and Li [8]).

Lemma 2.1. Let m � 2, 1 � s < ∞ and 1 < p < ∞. Let 1 < q < ∞ satisfy 1
p

+ 1
q

= 1. For any ball BR(x) ⊂ R
m,

f ∈ W 1,p(BR(x)), g ∈ W 1,q (BR(x),∧2
R

m) satisfying

f |∂BR(x) = 0 or g|∂BR(x) = 0, (2.1)

and h ∈ W 1,s(B2R(x)) satisfying

‖∇h‖Ms
s (B2R(x)) < ∞, (2.2)

there holds: ∫
BR(x)

(∇f · curlg)h � C‖∇f ‖Lp(BR(x))‖ curlg‖Lq(BR(x))‖∇h‖Ms
s (B2R(x)), (2.3)

where C = Cm,s,p > 0 is a uniform constant independent of R > 0.

Next, with the help of the above lemma, we follow the approach used by Rivière and Struwe [39] to prove
Theorems 1.2 and 1.5.

Proof of Theorem 1.2. Fix m � 2 and Λ > 0. Choose εm,Λ > 0 sufficiently small, then by assumption (1.4) and the
existence of Coulomb gauge (due to Rivière [36] for m = 2 and Rivière and Struwe [39] for m � 3), we conclude that
there are P ∈ W 1,2(B,SO(n)) and ξ ∈ W

1,2
0 (B, so(n) ⊗ ∧2

R
m) with dξ = 0 such that

P −1∇P + P −1ΘP = curl ξ in B, (2.4)

and the following estimate holds

‖∇P‖M2
2 (B) + ‖∇ξ‖M2

2 (B) � C‖Θ‖M2
2 (B) � Cεm,Λ. (2.5)

Using (2.4), we rewrite the system (1.3) as

−div
(
P −1Q∇u

) = (
P −1∇P + P −1ΘP

) · P −1Q∇u + P −1F curl ζG · ∇u

= curl ξ · P −1Q∇u + P −1F curl ζG · ∇u. (2.6)

Write P −1 = (Pij ), Θ = (Θij ), ζ = (ζ ij ), F = (F ij ), G = (Gij ) and Q = (Qij ). Then the above equation can be
written as

−div

(∑
j,k

PijQ
jk∇uk

)
=

∑
j,k,l

curl ξ ij · PjkQ
kl∇ul +

∑
j,k,l,r

PijF
jk curl ζ kl · Glr∇ur

=
∑
j,k,l

PjkQ
kl curl ξ ij · ∇ul +

∑
j,k,l,r

PijF
jkGlr curl ζ kl · ∇ur . (2.7)

Since P ∈ W 1,2(B,SO(n)), F ∈ W 1,2 ∩ L∞(B,M(n)), G ∈ W 1,2 ∩ L∞(B,M(n)) and Q ∈ W 1,2 ∩ L∞(B,GL(n)),
we have P −1Q ∈ W 1,2 ∩L∞(B,GL(n)), PijF

jkGlr ∈ W 1,2 ∩L∞(B). Using the assumption (1.5), one can verify that

∥∥∇(
P −1Q

)∥∥
M2

2 (B)
+

∑
i,k,l,r

∥∥∇(
PijF

jkGlr
)∥∥

M2
2 (B)

� C(Λ)
(‖∇P‖M2

2 (B) + ‖∇Q‖M2
2 (B) + ‖∇F‖M2

2 (B) + ‖∇G‖M2
2 (B)

)
. (2.8)

Here and in the sequel, C(Λ) > 0 is a constant also depending on Λ.
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Combining (2.5), (2.8) and assumption (1.4), we get

‖∇u‖M2
2 (B) + ∥∥∇(

P −1Q
)∥∥

M2
2 (B)

+
∑

i,j,k,l,r

∥∥∇(
PijF

jkGlr
)∥∥

M2
2 (B)

+ ‖∇ξ‖M2
2 (B) + ‖ curl ζ‖M2

2 (B)

� C(Λ)εm,Λ. (2.9)

On the other hand, since P −1 takes values in SO(n), it follows from assumption (1.5) that

C(Λ)−1|∇u| � ∣∣P −1Q∇u
∣∣ = |Q∇u| � C(Λ)|∇u|, a.e. in B. (2.10)

Similarly to the approach by Rivière and Struwe [39, Section 3, Proof of Theorem 1.1, pp. 459–460] (see also
Schikorra [41, pp. 510–511]), we apply Hodge decomposition (see [25]) to P −1Q∇u, use (2.7), (2.9), (2.10),
Lemma 2.1, and take εm,Λ > 0 sufficiently small to get the Morrey type estimates for ∇u. Finally, we apply an
iteration argument as in [17] to obtain the Hölder continuity of u in B . �
Proof of Theorem 1.5. Fix any 1 < p < m

m−1 . Since divΩ = 0, by Hodge decomposition, there exists
ξ ∈ W 1,p(B,M(n) ⊗ ∧2

R
m) such that

Ω = curl ξ. (2.11)

Let B2R(x0) ⊂ B and let w ∈ W 1,2(BR(x0),R
n) be solving{−div∇w = 0, in BR(x0),

w = u, on ∂BR(x0).
(2.12)

Then v := u − w ∈ W 1,2(BR(x0),R
n) solves{−div(∇v + Ωu) = 0, in BR(x0),

v = 0, on ∂BR(x0).
(2.13)

Let q = p
p−1 > m be the conjugate exponent of p. For any ϕ ∈ W

1,q

0 (BR(x0)) with ‖ϕ‖W 1,q (BR(x0))
� 1, using

assumption (1.16), Lemma 2.1, (2.11) and (2.13), we estimate for each i,∫
BR(x0)

∇vi · ∇ϕ = −
∫

BR(x0)

(
Ωijuj

) · ∇ϕ

= −
∫

BR(x0)

(
curl ξ ij · ∇ϕ

)
uj

� C
∥∥curl ξ ij

∥∥
Lp(BR(x0))

‖∇ϕ‖Lq(BR(x0))‖∇u‖M
p
p (B2R(x0))

� C
∥∥Ωij

∥∥
Lp(BR(x0))

‖∇u‖M
p
p (B2R(x0))

� CR
m
p

−1∥∥Ωij
∥∥

M
p
p (B)

‖∇u‖M
p
p (B2R(x0))

� CR
m
p

−1
εm,p‖∇u‖M

p
p (B2R(x0))

. (2.14)

Since v|∂BR(x0) = 0, by duality (similarly to Rivière and Struwe [39]) there holds:

‖∇v‖Lp(BR(x0)) � C sup
ϕ∈W

1,q
0 (BR(x0)),‖ϕ‖

W1,q �1

∫
BR(x0)

∇v · ∇ϕ. (2.15)

Combining (2.14) and (2.15) gives

‖∇v‖Lp(BR(x0)) � CR
m
p

−1
εm,p‖∇u‖M

p
p (B2R(x0))

. (2.16)

Next, we see from (2.12) that w is harmonic in BR(x0) and hence ∇w is also harmonic in BR(x0). By Campanato
estimates for harmonic functions (see [17]), we have that for any r < R the following holds:
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∫
Br(x0)

|∇w|p � C

(
r

R

)m ∫
BR(x0)

|∇w|p. (2.17)

Using that fact that u = v + w and combining (2.16), (2.17), we estimate∫
Br (x0)

|∇u|p � C

∫
Br(x0)

|∇w|p + C

∫
Br (x0)

|∇v|p

� C

(
r

R

)m ∫
BR(x0)

|∇w|p + C

∫
BR(x0)

|∇v|p

� C

(
r

R

)m ∫
BR(x0)

|∇u|p + C

∫
BR(x0)

|∇v|p

� C

(
r

R

)m ∫
BR(x0)

|∇u|p + CRm−p(εm,p)p‖∇u‖p

M
p
p (B2R(x0))

. (2.18)

For the rest of the proof, we can apply the same arguments as in Schikorra [41, pp. 510–511], similarly to Rivière
and Struwe [39, Proof of Theorem 1.1, pp. 459–460], to obtain the Morrey type estimates for ∇u. The Hölder
continuity of u in B follows immediately from an iteration argument as in [17]. �
Remark 2.1. By slightly modifying the proof, we will see that the regularity result in Theorem 1.5 still holds if the
elliptic system (1.15) is replaced by the following:

−div(Q∇u + Ωu) = 0, in D′(B) (2.19)

with Q ∈ W 1,2 ∩ L∞(B,GL(n)) satisfying |Q| + |Q−1| � Λ, a.e. in B , for some uniform constant Λ > 0. The proof
relies on applying Hodge decomposition to Q∇u to get the Morrey type estimates for ∇u as is done by Rivière and
Struwe in [39]. (See also Schikorra [41].)

3. Harmonic maps into standard stationary Lorentzian manifolds

In this section, we shall first show that the Euler–Lagrangian equations for weakly harmonic maps into standard
stationary Lorentzian manifolds are elliptic systems of the form (1.3) and then apply Theorem 1.2 to prove the
ε-regularity (Theorem 1.3) for such maps.

Proof of Theorem 1.3. Let (t, u) ∈ W 1,2(B,R× M) be a weakly harmonic map from B into (R× M,g), where the
metric g is defined as in (1.9). For any s ∈ W

1,2
0 ∩ L∞(B,R) and for any v ∈ W

1,2
0 ∩ L∞(B,Rn), we have that

tε = t + εs and uε = Π(u + εv) (3.1)

are well defined for sufficiently small ε > 0. Hence (tε, uε) ∈ W 1,2(B,R×M) gives an admissible variation for (t, u).
By Definition 1.1, there holds

d

dε
E(tε, uε)

∣∣∣∣
ε=0

= 0, ∀s ∈ W
1,2
0 ∩ L∞(B,R), ∀v ∈ W

1,2
0 ∩ L∞(

B,Rn
)
. (3.2)

A straightforward calculation gives∫
B

{
−1

2
(∇β · w)

∣∣∇t + ωi∇ui
∣∣2 − β

(∇t + ωi∇ui
) · (∇s + ωj∇wj + (∇ωk · w)∇uk

) + ∇u · ∇w

}
= 0, (3.3)

where w = dΠ(u)v, v ∈ W
1,2
0 ∩ L∞(B,Rn).

To deduce the Euler–Lagrangian equations, we shall choose appropriate admissible variations in (3.3).
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First, taking s ∈ W
1,2
0 ∩ L∞(B) and v ≡ 0 in (3.3), we obtain

0 =
∫
B

−β(u)
(∇t + ωi(u)∇vi

) · ∇s.

Since s ∈ W
1,2
0 ∩ L∞(B) is arbitrarily chosen, we get the following conservation law

−div
{
β(u)

(∇t + ωi(u)∇ui
)} = 0. (3.4)

Next, taking w = dΠ(u)v, v ∈ W
1,2
0 ∩ L∞(B,Rn) and s ≡ 0 in (3.3) gives

0 =
∫
B

{
−1

2
(∇β · w)

∣∣∇t + ωi∇ui
∣∣2 − β

(∇t + ωi∇ui
) · (ωj∇wj + (∇ωk · w)∇uk

) + ∇u · ∇w

}

=
∫
B

{
−1

2

(
∂β

∂yj
· wj

)∣∣∇t + ωi∇ui
∣∣2 − β

(∇t + ωi∇ui
) ·

(
ωj∇wj + ∇uk ∂ωk

∂yj
· wj

)
+ ∇u · ∇w

}

=
∫
B

{
−div

(∇uj
) · wj + β

(∇t + ωi∇ui
) · ∇uk

(
∂ωj

∂yk
− ∂ωk

∂yj

)
· wj − 1

2

∣∣∇t + ωi∇ui
∣∣2 ∂β

∂yj
· wj

}
. (3.5)

where in the last step we have used (3.4) and integration by parts. Denote H := (H 1, . . . ,Hn) with

Hj := β
(∇t + ωi∇ui

) · ∇uk

(
∂ωj

∂yk
− ∂ωk

∂yj

)
− 1

2

∂β

∂yj

∣∣∇t + ωi∇ui
∣∣2

. (3.6)

Then (3.5) becomes

0 =
∫
B

(−div∇u + H) · dΠ(u)v, ∀v ∈ W
1,2
0 ∩ L∞(

B,Rn
)
.

Since v ∈ W
1,2
0 ∩ L∞(B,Rn) is arbitrarily chosen, we have (similarly to the calculations in [20, Chapter 1])

−div∇u − A(u)(∇u,∇u) + dΠ(u)H = 0, (3.7)

where A is the second fundamental form of M in R
n. Let νl , l = d + 1, d + 2, . . . , n, be an orthonormal frame for the

normal bundle T ⊥M (and still denote by νl the corresponding normal frame along the map u), then we can rewrite
(3.7) as follows:

−div∇u = νl∇νl · ∇u − H + 〈H,νl〉νl, (3.8)

where 〈· , ·〉 denotes the Euclidean metric on R
n. We have thus obtained the Euler–Lagrangian equations:

−div
{
β(u)

(∇t + ωi(u)∇ui
)} = 0, (3.9)

−div∇u = νl∇νl · ∇u − H + 〈H,νl〉νl. (3.10)

To proceed, we write the system of equations (3.9) and (3.10) in the form of (1.3). By Hodge decomposition,
we conclude from the conservation law (3.4) that there exists η ∈ W 1,2(B,∧2Rm) such that

β(u)
(∇t + ωi(u)∇ui

) = curlη. (3.11)

Then, by (3.6), we can rewrite Eq. (3.10) as:

−div∇uj = Θjk · ∇uk + ajk curlη · ∇uk + bj curlη · β(u)
(∇t + ωi∇ui

)
, (3.12)

where
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Θjk := ν
j
l ∇νk

l − νk
l ∇ν

j
l , (3.13)

ajk := −
(

∂ωj

∂yk
− ∂ωk

∂yj

)
+

(
∂ωi

∂yk
− ∂ωk

∂yi

)
νi
l ν

j
l , (3.14)

bj := 1

2β2(u)

(
∂β

∂yj
− ∂β

∂yi
νi
l ν

j
l

)
. (3.15)

Now we can write the Euler–Lagrangian equations (3.9) and (3.10) as the following elliptic system:

−div

{
Q ·

( ∇t

∇u

)}
= Θ · Q

( ∇t

∇u

)
+ F curl ζ · Q

( ∇t

∇u

)
, (3.16)

where

Q = Q̃ ◦ u, Q̃ =
(

β βω

0 In

)
, ω = (ω1,ω2, . . . ,ωn), (3.17)

Θ =
(

0 0
0 (Θjk)

)
, (3.18)

F =

⎛
⎜⎜⎝

0 0 · · · 0
b1 a11 · · · a1n
...

. . .

bn an1 · · · ann

⎞
⎟⎟⎠ , (3.19)

ζ = diag(η, η, . . . , η). (3.20)

Since M is compact, β ∈ C2(M, (0,∞)) and ω ∈ C2(Ω1(M)), there exists λ > 0 depending only on the target
(R× M,g) such that for any y ∈ M there hold

0 < λ−1 � β(y),
∣∣β(y)

∣∣ + ∣∣∇β(y)
∣∣ + ∣∣∇2β(y)

∣∣ � λ < ∞,∣∣ω(y)
∣∣ + ∣∣∇ω(y)

∣∣ + ∣∣∇2ω(y)
∣∣ � λ < ∞. (3.21)

Using the notations (3.13)–(3.15), (3.17)–(3.20) and the above estimates (3.21), we can easily verify that
Θ ∈ L2(B, so(n + 1) ⊗ ∧1

R
m), F ∈ W 1,2 ∩ L∞(B,M(n + 1)), ζ ∈ W 1,2(B,M(n + 1) ⊗ ∧2

R
m),

Q ∈ W 1,2 ∩ L∞(B,GL(n + 1)) and the following estimates hold:

|Q| + |F | � C1(λ), a.e. in B, (3.22)

and

‖Θ‖M2
2 (B) + ‖∇F‖M2

2 (B) + ‖∇Q‖M2
2 (B) � C2(λ)‖∇u‖M2

2 (B), (3.23)

where C1(λ) > 0 and C2(λ) > 0 are constants also depending on λ.
To estimate |Q−1|, we note that

Q̃−1 =
(

β−1 −ω

0 In

)
.

Hence, by (3.21), there exists some constant C3(λ) > 0 such that
∣∣Q−1

∣∣ = ∣∣Q̃−1 ◦ u
∣∣ � C3(λ), a.e. in B. (3.24)

On the other hand, it follows from (3.11) and (3.21) that

| curlη| � C4(λ)
(|∇t | + |∇u|), a.e. in B.

By (3.20) and the above inequality, we verify that

‖ curl ζ‖M2
2 (B) � C5(λ)

(‖∇t‖M2
2 (B) + ‖∇u‖M2

2 (B)

)
. (3.25)
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Combining (3.22) and (3.24) gives

|Q| + ∣∣Q−1
∣∣ + |F | � C1(λ) + C3(λ), a.e. in B. (3.26)

Combining (3.23) and (3.25) gives

‖∇t‖M2
2 (B) + ‖∇u‖M2

2 (B) + ‖ curl ζ‖M2
2 (B) + ‖Θ‖M2

2 (B) + ‖∇F‖M2
2 (B) + ‖∇Q‖M2

2 (B)

�
(
1 + C2(λ) + C5(λ)

)(‖∇t‖M2
2 (B) + ‖∇u‖M2

2 (B)

)
. (3.27)

Take Λ := C1(λ)+C3(λ) > 0, then Λ depends only on (R×M,g). Let εm,Λ > 0 be the small constant (depending
on m and Λ) as in Theorem 1.2. Take

εm := εm,Λ

1 + C2(λ) + C5(λ)
,

then εm > 0 depends only on (R × M,g). Applying Theorem 1.2 to the elliptic system (3.16), we conclude from
(3.26) and (3.27) that (t, u) is Hölder continuous in B if ‖∇t‖M2

2 (B) +‖∇u‖M2
2 (B) < εm. By standard elliptic regularity

theory, (t, u) is as smooth as the regularity of the target (R× M,g) permits. �

4. Harmonic maps into pseudospheres SSSn
ν (1 ��� ν ��� n)

In this section, we shall first prove Propositions 1.1 and 1.2. Then, with the help of these two propositions, we apply
Theorem 1.5 to prove the regularity results (Theorems 1.6 and 1.7) for weakly harmonic maps into pseudospheres Sn

ν

(1 � ν � n).

Proof of Proposition 1.1. Fix i �= j ∈ {1,2, . . . , n + 1}. Let Eij ∈ so(n + 1) be the matrix whose (i, j)-component
is 1, (j, i)-component is −1 and all the other components are 0. Let E be the matrix defined as in (1.17). Then one
verifies that EijE ∈ so(ν, n + 1 − ν) and eEijE ∈ O(ν, n + 1 − ν) (see e.g. [34]). For any ϕ ∈ C∞

0 (B), define

Rt := etϕEijE ∈ C∞
0

(
B,O(ν, n + 1 − ν)

)
. (4.1)

Using the property of an element in the group O(ν, n + 1 − ν) (see (1.19)), we have

〈Rtu,Rtu〉
R

n+1
ν

= (Rtu)T ERtu = uT RT
t ERtu = uT Eu = 1, a.e. in B. (4.2)

It follows that Rtu ∈ W 1,2(B,Sn
ν). Since u is weakly harmonic, by Definition 1.2, we calculate

0 = d

dt

∣∣∣∣
t=0

E(Rtu) =
∫
B

(∇(R0u)
)T E d

dt

∣∣∣∣
t=0

(∇(Rtu)
)

=
∫
B

(∇u)T E
(∇(ϕEijEu)

)

=
∫
B

(∇u)T EEijEu∇ϕ + (∇u)T EEijE∇uϕ

=
∫
B

(∇u)T EEijEu∇ϕ

= (εiiεjj )

∫
B

(
ui∇uj − uj∇ui

)∇ϕ, (4.3)

where we have used the fact that EEijE ∈ so(n + 1) and hence

(∇u)T EEijE∇u = 0 a.e. in B.

Since ϕ ∈ C∞
0 (B) is arbitrary and εiiεjj is either 1 or −1 (see (1.17)), we conclude from (4.3) that the conservation

laws (1.27) hold for i �= j .
The case of i = j is trivial. This completes the proof. �
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Proof of Proposition 1.2. First, by definition of the space W 1,2(B,Sn
ν) (see (1.21)), we have

uj εjku
k = 1 a.e. in B. (4.4)

Taking ∇ on both sides of (4.4) gives

∇ujεjku
k = 0 a.e. in B. (4.5)

Recall that (see (1.28)) Θ = (Θij ) = (ui∇uj − uj∇ui). Combining (4.4) and (4.5), we calculate

∇ui + Θij εjku
k = ∇ui + (

ui∇uj − uj∇ui
)
εjku

k

= ∇ui
(
1 − uj εjku

k
) + ui

(∇ujεjku
k
)

= 0 a.e. in B. (4.6)

This proves (1.29).
Since u ∈ W 1,2(B,Rn+1), one verifies that ∇ui + Θij εjku

k ∈ L1(B) for each i. Taking −div on both sides of
(4.6) gives

−div(∇u + ΘEu) = 0, in D′(B).

Next, we assume that u is weakly harmonic and for any fixed 1 < p < m
m−1 there holds ‖∇u‖M

p
p (B) < ∞. We shall

derive the estimate (1.31).
Let q = p

p−1 > m be the conjugate exponent of p. Let BR(x0) ⊂ B1/2. For any Φ ∈ Lq(BR(x0),∧1
R

m) with
‖Φ‖Lq(BR(x0)) � 1 and for any 0 < ρ < R, let τ = τ(ρ) ∈ C∞

0 (BR(x0), [0,1]) be a cut-off function satisfying

τ ≡ 1, on Bρ(x0),

then τΦ is supported in BR(x0) and vanishes on ∂BR(x0). By Hodge decomposition, there exist α ∈ W
1,q

0 (BR(x0)),

β ∈ W
1,q

0 (BR(x0),∧2
R

m) and a harmonic h ∈ C∞(BR(x0),∧1
R

m) such that

τΦ = ∇α + curlβ + h. (4.7)

Moreover, we have

‖∇α‖Lq(BR(x0)) + ‖∇β‖Lq(BR(x0)) � C‖τΦ‖Lq(BR(x0)) � C‖Φ‖Lq(BR(x0)) � C, (4.8)

where C > 0 is a constant independent of ρ and R. Recall that τ ∈ C∞
0 (BR(x0)); we get h|∂BR(x0) = (τΦ)|∂BR(x0) = 0.

Since h is harmonic, it follows that h ≡ 0 in BR(x0).
Since u is weakly harmonic, by Proposition 1.1, Θ = (Θij ) = (ui∇uj − uj∇ui) is divergence free. Then, using

(4.7), (4.8) and the fact that h ≡ 0 in BR(x0), and applying Lemma 2.1, we estimate for fixed i, j ∈ {1,2, . . . , n + 1},∫
BR(x0)

(
τΘij

) · Φ =
∫

BR(x0)

Θij · (τΦ)

=
∫

BR(x0)

Θij · (∇α + curlβ)

=
∫

BR(x0)

Θij · curlβ

=
∫

BR(x0)

(
ui∇uj − uj∇ui

) · curlβ

=
∫

BR(x0)

{(∇uj · curlβ
)
ui − (∇ui · curlβ

)
uj

}

� C‖∇u‖Lp(BR(x0))‖ curlβ‖Lq(BR(x0))‖∇u‖M
p
p (B2R(x0))

� C‖∇u‖Lp(BR(x0))‖∇β‖Lq(BR(x0))‖∇u‖M
p
p (B2R(x0))

� C‖∇u‖Lp(BR(x0))‖∇u‖M
p
(B (x )). (4.9)
p 2R 0
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By duality characterization of Lp functions, we have∥∥(
τΘij

)∥∥
Lp(BR(x0))

� C‖∇u‖Lp(BR(x0))‖∇u‖M
p
p (B2R(x0))

. (4.10)

It follows that ∥∥Θij
∥∥

Lp(Bρ(x0))
�

∥∥(
τΘij

)∥∥
Lp(BR(x0))

� C‖∇u‖Lp(BR(x0))‖∇u‖M
p
p (B2R(x0))

. (4.11)

Since ρ ∈ (0,R) is arbitrary, let ρ ↗ R, then we get∥∥Θij
∥∥

Lp(BR(x0))
� C‖∇u‖Lp(BR(x0))‖∇u‖M

p
p (B2R(x0))

. (4.12)

Furthermore, using the definition of the Morrey norm ‖∇u‖M
p
p (B) and the fact that B2R(x0) ⊂ B , we estimate

‖Θ‖Lp(BR(x0)) =
∑
i,j

∥∥Θij
∥∥

Lp(BR(x0))
� C‖∇u‖Lp(BR(x0))‖∇u‖M

p
p (B2R(x0))

� CR
m
p

−1‖∇u‖M
p
p (B)‖∇u‖M

p
p (B)

= CR
m
p

−1‖∇u‖2
M

p
p (B)

.

Since the ball BR(x0) ⊂ B1/2 is arbitrary, it follows that

‖Θ‖M
p
p (B1/2)

= sup
BR(x0)⊂B1/2

(
Rp−m

∫
BR(x0)

|Θ|p
) 1

p

� C‖∇u‖2
M

p
p (B)

.

Thus, we have completed the proof. �
Proof of Theorem 1.6. Note that E is a constant matrix. Combining Propositions 1.1, 1.2, Theorem 1.5 and using a
rescaling of the domain gives that u is Hölder continuous in B . Moreover, since divΘ = 0, we can rewrite the equation
in (1.30) as

−div∇u = ΘE · ∇u.

By standard elliptic regularity theory, u is smooth in B . �
Proof of Theorem 1.7. Fix some 1 < p < m

m−1 = 2. By conformal invariance in dimension m = 2 and rescaling in
the domain, we assume w.l.o.g. that

‖∇u‖2
L2(B)

< ε2,p, (4.13)

where ε2,p is given in Theorem 1.6 with m = 2. By a straightforward calculation, it follows that

‖∇u‖2
M

p
p (B)

� ‖∇u‖2
L2(B)

< ε2,p. (4.14)

Applying Theorem 1.6 with m = 2 gives that u is Hölder continuous (and hence smooth) in B . �
5. Generalized (weakly) harmonic maps into SSS

n
ν (1 ��� ν ��� n)

In this section, we shall prove the ε-regularity result (Theorem 1.8) for generalized (weakly) harmonic maps into S
n
ν

(1 � ν � n). Throughout this section, B will denote the unit disc in R2.

Proof of Theorem 1.8. Slightly modifying some arguments in the proofs of Proposition 1.2 and Theorem 1.5 will be
sufficient to prove this theorem.

Fix any 4
3 < p < 2 and let u ∈ W 1, 4

3 (B,Sn
ν) (1 � ν � n) be a generalized (weakly) harmonic map satisfying

‖∇u‖2
p < εp (5.1)
Mp (B)
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with εp > 0 being determined later. Then u ∈ W 1,p(B) and hence Θ = (Θij ) := (ui∇uj − uj∇ui) ∈ Lp′
(B), where

p′ = 2p
4−p

∈ (1,p). By Definition 1.5, there holds

divΘ = 0, in D′(B). (5.2)

Applying similar arguments as in the proof of Proposition 1.2 (with m = 2) gives that

∇u + ΘEu = 0 a.e. in B, (5.3)

and

‖Θ‖
M

p′
p′ (B1/2)

� Cp′‖∇u‖2

M
p′
p′ (B)

� Cp′ ‖∇u‖2
M

p
p (B)

� Cp′εp. (5.4)

Let B2R(x0) ⊂ B1/2 and let w ∈ W 1,p′
(BR(x0),R

n+1) be solving
{−div∇w = 0, in BR(x0),

w = u, on ∂BR(x0),
(5.5)

and define v := u − w ∈ W
1,p′
0 (BR(x0),R

n+1).

Let q ′ = p′
p′−1 be the conjugate exponent of p′. Then for any ϕ ∈ W

1,q ′
0 (BR(x0)) with ‖ϕ‖

W 1,q′
(BR(x0))

� 1, using
(5.3) and (5.5), we get∫

BR(x0)

∇vi · ∇ϕ =
∫

BR(x0)

∇ui · ∇ϕ −
∫

BR(x0)

∇wi · ∇ϕ = −εjj

∫
BR(x0)

Θijuj · ∇ϕ.

Then using (5.1), (5.2), (5.4), Lemma 2.1 and taking εp > 0 sufficiently small, we can apply the same arguments as
in the proof of Theorem 1.5 (with m = 2) and use a rescaling of the domain to conclude that u is Hölder continuous
and hence smooth (by standard elliptic regularity) in B . �

Furthermore, we observe that the ε-regularity result in Theorem 1.8 still holds if the Morrey norm ‖∇u‖M
p
p (B) is

replaced with the Lorentz norm ‖∇u‖L(2,∞)(B) (which was used in Almeida [2]). To see this, we recall the following:

Lemma 5.1. (See Almeida [2, Lemma 9].) Suppose D has finite measure. Let 1 < p < p1 < ∞. Then, there is a
constant C such that, for all q, q1 ∈ [1,∞] and for any f ∈ L(p1,q1)(D),

‖f ‖L(p,q) � C
(
μ(D)

) p1−p

pp1 ‖f ‖L(p1,q1) . (5.6)

Recall that L(p,p) = Lp . Consequently, we have

Lemma 5.2. Let 1 < p < 2. Then, there is a constant C such that, for any f ∈ L(2,∞)(B),

‖f ‖M
p
p (B) � C‖f ‖L(2,∞)(B). (5.7)

Proof. Take p = q , p1 = 2, q1 = ∞ in Lemma 5.1 and let D run over all discs BR(x0) ⊂ B . �
Combining Theorem 1.8 and Lemma 5.2 gives the following ε-regularity result (using the Lorentz norm).

Theorem 5.1. There exists ε > 0 such that any generalized (weakly) harmonic map u ∈ W 1, 4
3 (B,Sn

ν) (1 � ν � n)

satisfying

‖∇u‖L(2,∞)(B) < ε (5.8)

is smooth in B .
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6. Regularity for an elliptic system with a potential in so(1,1)

Throughout this section, B will denote the unit disc in R
2. We consider the elliptic system (1.1) with a

potential Ω ∈ L2(B, so(1,1) ⊗ ∧1
R

2). By Hodge decomposition, there exist Ω1 ∈ W 1,2(B, so(1,1)) and
Ω2 ∈ W 1,2(B, so(1,1) ⊗ ∧2

R
2) such that

Ω = ∇Ω1 + curlΩ2. (6.1)

Theorem 6.1. Let u ∈ W 1,2(B,R2) be a weak solution of the elliptic system (1.1) with a potential
Ω ∈ L2(B, so(1,1) ⊗ ∧1

R
2). Decompose Ω as in (6.1). If Ω1 ∈ L∞(B, so(1,1)), then u is Hölder continuous in B .

Proof. Since Ω1 takes values in so(1,1), we can write (see O’Neill’s book [34])

Ω1 =
(

0 s

s 0

)
, for some s ∈ W 1,2(B). (6.2)

Consequently, we have ∇Ω1Ω1 = Ω1∇Ω1 and hence ∇(eΩ1) = eΩ1∇Ω1. Then we calculate

−div
(
eΩ1∇u

) = −eΩ1∇Ω1 · ∇u + eΩ1Ω · ∇u = eΩ1 curlΩ2 · ∇u. (6.3)

Using (6.2), we get

eΩ1 = (
eΩ1

)T =
(

cosh s sinh s

sinh s cosh s

)
, e−Ω1 = (

eΩ1
)−1 =

(
cosh s − sinh s

− sinh s cosh s

)
.

Since Ω1 ∈ L∞(B), there exists a constant λ ∈ (0,∞), such that |s| � λ, a.e. in B . Therefore, we have
∣∣eΩ1

∣∣ + ∣∣(eΩ1
)−1∣∣ � C(λ), a.e. in B

for some constant C(λ) > 0 depending on λ.
On the other hand, one verifies that eΩ1 ∈ W 1,2 ∩ L∞(B,M(2)). Recall that Ω2 ∈ W 1,2(B, so(1,1) ⊗ ∧2

R
2).

Applying Theorem 1.2 (with m = 2 and Λ = C(λ)) to the elliptic system (6.3), using the conformal invariance in
dimension m = 2 and rescaling in the domain, we get the Hölder continuity of u in B . �

Theorem 6.1 is optimal. To see this, we set

s(x) = log log
2

|x| , u1(x) = log log
2

|x| , u2(x) = log log
2

|x| , x ∈ B.

Then the map u = (u1, u2)
T ∈ W 1,2(B,R2) is a weak solution to the elliptic system (1.1) with a potential Ω satisfying

Ω =
(

0 ∇s

∇s 0

)
∈ L2(B, so(1,1) ⊗ ∧1

R
2) and s is not in L∞(B).

However, u is not in L∞(B).
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