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Abstract

The Linear Programming Technique for Multidimensional Analysis of Preference (LINMAP) de-
veloped by Srinivasan and Shocker [V. Srinivasan, A.D. Shocker, Linear programming techniques for
multidimensional analysis of preference, Psychometrika 38 (1973) 337–342] is one of the existing
well-known methods for multiattribute decision making (MADM) problems. However, the LINMAP
only can deal with MADM problems in crisp environments. Fuzziness is inherent in decision data
and decision making processes, and linguistic variables are well suited to assessing an alternative
on qualitative attributes using fuzzy ratings. The aim of this paper is further extending the LINMAP
method to develop a new methodology for solving MADM problems under fuzzy environments. In
this methodology, linguistic variables are used to capture fuzziness in decision information and de-
cision making processes by means of a fuzzy decision matrix. A new vertex method is proposed to
calculate the distance between trapezium fuzzy number scores. Consistency and inconsistency in-
dices are defined on the basis of preferences between alternatives given by the decision maker. Each
alternative is assessed on the basis of its distance to a fuzzy positive ideal solution (FPIS) which is
unknown. The FPIS and the weights of attributes are then estimated using a new linear programming
model based upon the consistency and inconsistency indices defined. Finally, the distance of each
alternative to the FPIS can be calculated to determine the ranking order of all alternatives. A numeri-
cal example is examined to demonstrate the implementation process of this methodology. Also it has

* Corresponding author. Address for correspondence: Department Five, Dalian Naval Academy, No. 1,
Xiaolong Street, Dalian 116018, Liaoning, China. Fax: +86 0411 85856357.

E-mail addresses: lidengfeng65@hotmail.com, dengfengli@sina.com (D.-F. Li).
0022-0000/$ – see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2005.11.001

https://core.ac.uk/display/82760331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


742 H.-C. Xia et al. / Journal of Computer and System Sciences 72 (2006) 741–759
been proved that the methodology proposed in this paper can deal with MADM problems under not
only fuzzy environments but also crisp environments.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Multiattribute decision making (MADM) problems are an important type of multicri-
teria decision making (MCDM) problems [3,14–17,25,26] and are wide spread in real
life decision situations [1,2,5,6,8–13,18–22]. Recently, lots of literatures [1,2,4,5,7,9,11–
13,16–23,25–28] investigate on MADM problems using fuzzy sets and achieved a great
progress.

A MADM problem is to find a best compromise solution from all feasible alternatives
assessed on multiple attributes, both quantitative and qualitative [8,16–18]. Suppose the
decision maker has to choose one of or rank n alternatives xj (j = 1,2, . . . , n) based on
m attributes fi (i = 1,2, . . . ,m). Denote an alternative set by X = {x1, x2, . . . , xn} and an
attribute set by F = {f1, f2, . . . , fm}. In general, attributes can be classified into two types:
benefit attributes and cost attributes. In other words, the attribute set F can be divided into
two subsets: F 1 and F 2, where Fk (k = 1,2) is the subset of benefit attributes and cost
attributes, respectively. Furthermore, F = F 1 ∪ F 2 and F 1 ∩ F 2 = ∅, where ∅ is empty
set. Then the MADM model can be built as follows

max
{
fi(xj ) | i ∈ F 1},

min
{
fi(xj ) | i ∈ F 2},

s.t. xj ∈ X.

The alternative set X and the attribute set F are finite, so it is very convenient to denote
the score of alternative xj (j = 1,2, . . . , n) on attribute fi (i = 1,2, . . . ,m) by fij , i.e.,
fij = fi(xj ). Then a MADM problem can be concisely expressed as the following decision
matrix:

Y = (fij )m×n =

x1 x2 · · · xn

f1

f2

...

fm

⎛
⎜⎜⎜⎜⎝

f11 f12 · · · f1n

f21 f22 · · · f2n

...
...

. . .
...

fm1 fm2 · · · fmn

⎞
⎟⎟⎟⎟⎠

.

In decision making process, different attributes have different importance. Suppose ωi

(i = 1,2, . . . ,m) is the relative weight of attribute fi , where ωi � 0 (i = 1,2, . . . ,m) and∑m
ωi = 1. Denote a weight vector by ω = (ω1,ω2, . . . ,ωm)T .
i=1
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The above MADM problem can be dealt with using several existing methods such
as the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) devel-
oped by Huang and Yoon [14], the Linear Programming Technique for Multidimensional
Analysis of Preference (LINMAP) developed by Srinivasan and Shocker [24] and the non-
metric Multidimensional Scaling (MDS). The TOPSIS and LINMAP methods are two
well-known MADM methods, though they require different types of information [4]. In
the TOPSIS method, the decision matrix Y and the weight vector ω are given as crisp
values a priori; a positive ideal solution (PIS) and a negative ideal solution (NIS) are gen-
erated from Y directly; the best compromise alternative is then defined as the one that has
the shortest distance to the PIS and the farthest from the NIS. However, in the LINMAP
method, the weight vector ω and the PIS are unknown a priori. The LINMAP method is
based on pairwise comparisons of alternatives given by the decision maker and generates
the best compromise alternative as the solution that has the shortest distance to the PIS.

In the LINMAP method, all the decision data are known precisely or given as crisp val-
ues. However, under many conditions, crisp data are inadequate or insufficient to model
real-life decision problems [3,4,7,16,19,23,27,28]. Indeed, human judgments including
preference information are vague or fuzzy in nature and as such it may not be appropriate
to represent them by accurate numerical values. A more realistic approach could be to use
linguistic variables to model human judgments [3,7,16,23,27,28]. In this paper, we fur-
ther extend the LINMAP method to develop a new methodology for solving multiattribute
decision making problems in a fuzzy environment [1,2,4]. In this methodology, linguis-
tic variables are used to capture fuzziness in decision information and decision making
processes by means of a fuzzy decision matrix. A new vertex method is proposed to calcu-
late the distance between trapezium fuzzy scores. Consistency and inconsistency indices
are defined on the basis of preferences between alternatives given by the decision maker.
Each alternative is assessed on the basis of its distance to a fuzzy positive ideal solution
(FPIS) which is unknown. The FPIS and the weights of attributes are then estimated using
a new linear programming model based upon the consistency and inconsistency indices
defined. Finally, the distance of each alternative to the FPIS can be calculated to deter-
mine the ranking order of all alternatives. The lower value of the distance for an alternative
indicates that the alternative is closer to the FPIS.

The paper is organized as follows. In next Section, the basic definitions and notations of
trapezium fuzzy numbers and linguistic variables are defined as well as the fuzzy distance
formula and the normalization method. Section 3 defines consistency and inconsistency
indices between preferences of alternatives given by the decision maker and the results of
the decision making model, and presents a new linear programming model to solve such
multiattribute decision making problems. The developed methodology is also illustrated
with a real life example in Section 4. A short concluding remark is given in Section 5.

2. Basic concepts and definitions

2.1. Concepts and notations of trapezium fuzzy numbers

A fuzzy number m̃ is a special fuzzy subset on the set R of real numbers which satisfy
the following conditions [4,9,16]:
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(1) There exists a x0 ∈ R so that the degree of its membership μm̃(x0) = 1;
(2) Membership function μm̃(x) is left and right continuous.

Generally, a fuzzy number m̃ can be written as

μm̃(x) =
{

L(x) (l � x � m),

R(x) (m � x � r),

where L(x) is an increasing function of x ∈ [l,m] and right continuous, 0 � L(x) � 1;
R(x) is a decreasing function of x ∈ [m,r] and left continuous, 0 � R(x) � 1. m is called
a mode of m̃, and l and r are called the low and upper limits of m̃, respectively, depicted
as in Fig. 1. This kind of fuzzy numbers is often called L–R fuzzy numbers [16].

Let m̃ = (l,m1,m2, r) be a trapezium fuzzy number, where the membership function
μm̃ of m̃ is

μm̃(x) =

⎧⎪⎨
⎪⎩

x−l
m1−l

(l � x < m1),

1 (m1 � x � m2),
r−x

r−m2
(m2 < x � r).

The closed interval [m1,m2] is the mode of m̃. l and r are the low and upper limits of m̃,
respectively, depicted as in Fig. 2.

It is easy to see that a trapezium fuzzy number m̃ = (l,m1,m2, r) is reduced to a real
number m if l = m1 = m2 = r . Conversely, a real number m can be written as a trapezium
fuzzy number m̃ = (m,m,m,m).

If m1 = m2 then m̃ = (l,m, r) is called a triangular fuzzy number, where m = m1 = m2.
In other words, a triangular fuzzy number has the following membership function

μm̃(x) =
{

x−l
m−l

(l � x < m),

r−x
r−m

(m � x � r),

depicted as in Fig. 3. So a triangular fuzzy number is a special case of a trapezium fuzzy
number.

Fig. 1. A fuzzy number.
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Fig. 2. A trapezium fuzzy number.

Fig. 3. A triangular fuzzy number.

Similarly, it is easy to see that a triangular fuzzy number m̃ = (l,m, r) is reduced to a
real number m if l = m = r . Conversely, a real number m can be written as a triangular
fuzzy number m̃ = (m,m,m).

m̃ = (l,m1,m2, r) is called a positive trapezium fuzzy number if l � 0 and one of l,
m1, m2 and r is nonzero. Furthermore, m̃ = (l,m1,m2, r) is called a normalized positive
trapezium fuzzy number if it is a positive trapezium fuzzy number and l � 0, r � 1.

For the sake of simplicity and without loss of generality, assume that all fuzzy numbers
are trapezium fuzzy numbers throughout the paper unless otherwise stated.

2.2. Linguistic variable

A linguistic variable is a variable whose values are linguistic terms.
The concept of linguistic variable is very useful in dealing with situations which are

too complex or too ill-defined to be reasonably described in conventional quantitative
expressions. For example, the ratings of alternatives on qualitative attribute “reliability”
could be expressed using linguistic variables such as “very low,” “low,” “medium,” “high,”



746 H.-C. Xia et al. / Journal of Computer and System Sciences 72 (2006) 741–759
“very high,” etc. Such linguistic values can also be represented using positive trapezium
fuzzy numbers. For example, “very low,” “low,” “medium,” “high” and “very high” can
be represented by positive trapezium fuzzy numbers (0,0.1,0.2,0.3), (0.1,0.2,0.3,0.4),
(0.3,0.4,0.5,0.6), (0.5,0.6,0.7,0.8) and (0.7,0.8,0.9,1), respectively.

2.3. Distance between two trapezium fuzzy numbers

Let m̃ = (m1,m2,m3,m4) and ñ = (n1, n2, n3, n4) be two trapezium fuzzy numbers.
Then the vertex method is defined to calculate the distance between them as follows:

d(m̃, ñ) =
√

1

6

[
(m1 − n1)2 + 2(m2 − n2)2 + 2(m3 − n3)2 + (m4 − n4)2

]
, (1)

which is easily proved to be metric (omitted).
Equation (1) is an effective and simple method to calculate the distance between two

trapezium fuzzy numbers.
Note that if both m̃ and ñ are real numbers then the distance measurement d(m̃, ñ) is

identical to the Euclidean distance. In fact, suppose that both m̃ = (m1,m2,m3,m4) and
ñ = (n1, n2, n3, n4) are two real numbers and let m1 = m2 = m3 = m4 = m and n1 = n2 =
n3 = n4 = n. The distance measurement d(m̃, ñ) can be calculated as

d(m̃, ñ) =
√

1

6

[
(m1 − n1)2 + 2(m2 − n2)2 + 2(m3 − n3)2 + (m4 − n4)2

]

=
√

1

6

[
(m − n)2 + 2(m − n)2 + 2(m − n)2 + (m − n)2

]
=

√
(m − n)2 = |m − n|.

Furthermore, it is easily seen that two trapezium fuzzy numbers m̃ and ñ are identical
if and only if the distance measurement d(m̃, ñ) = 0.

If m̃ = (m1,m2,m3) and ñ = (n1, n2, n3) be two triangular fuzzy numbers then Eq. (1)
can be rewritten as follows:

d(m̃, ñ) =
√

1

6

[
(m1 − n1)2 + 4(m2 − n2)2 + (m3 − n3)2

]
. (2)

2.4. The normalization method

In this paper, we discuss the following fuzzy multiattribute decision making (FMADM)
problem.

Suppose there exist n possible alternatives x1, x2, . . . , xn from which the decision
maker has to choose on the basis of m attributes f1, f2, . . . , fm, both quantitative and
qualitative [8,16,23]. Suppose that the rating of alternative xj (j = 1,2, . . . , n) on at-
tribute fi (i = 1,2, . . . ,m) given by the decision maker is a trapezium fuzzy number
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f̃ij = (aij l, aijm1, aijm2, aijr ). Hence, a fuzzy multiattribute decision making problem can
be concisely expressed in matrix format as follows:

F̃ = (f̃ij )m×n =

x1 x2 · · · xn

f1

f2

...

fm

⎛
⎜⎜⎜⎜⎜⎝

f̃11 f̃12 · · · f̃1n

f̃21 f̃22 · · · f̃2n

...
...

. . .
...

f̃m1 f̃m2 · · · f̃mn

⎞
⎟⎟⎟⎟⎟⎠

, (3)

which is referred to as a fuzzy decision matrix usually used to represent the fuzzy multiat-
tribute decision making problem.

Since the physical dimensions and measurements of the m attributes are different, so
the fuzzy decision matrix F̃ needs to be normalized. In this paper, we choose the following
normalization formula

r̃ij =
(

aijl

amax
ir

,
aijm1

amax
im2

,
aijm2

amax
im1

∧ 1,
aijr

amax
il

∧ 1

) (
i ∈ F 1) (4)

and

r̃ij =
(

amin
il

aijr

,
amin
im1

aijm2

,
amin
im2

aijm1

∧ 1,
amin
ir

aij l

∧ 1

) (
i ∈ F 2), (5)

where F 1 and F 2 are the set of benefit attributes and cost attributes, respectively, and

amax
il = max

{
aijl | f̃ij = (aij l, aijm1, aijm2, aijr ), j = 1,2, . . . , n

}
,

amin
il = min

{
aijl | f̃ij = (aij l, aijm1, aijm2, aijr ), j = 1,2, . . . , n

}
,

amax
im1

= max
{
aijm1 | f̃ij = (aij l, aijm1, aijm2, aijr ), j = 1,2, . . . , n

}
,

amin
im1

= min
{
aijm1 | f̃ij = (aij l, aijm1, aijm2, aijr ), j = 1,2, . . . , n

}
,

amax
im2

= max
{
aijm2 | f̃ij = (aij l, aijm1, aijm2, aijr ), j = 1,2, . . . , n

}
,

amin
im2

= min
{
aijm2 | f̃ij = (aij l, aijm1, aijm2, aijr ), j = 1,2, . . . , n

}
,

amax
ir = max

{
aijr | f̃ij = (aij l, aijm1, aijm2, aijr ), j = 1,2, . . . , n

}
and

amin
ir = min

{
aijr | f̃ij = (aij l, aijm1, aijm2, aijr ), j = 1,2, . . . , n

}
.

Denote r̃ij by r̃ij = (rij l, rijm1, rijm2, rijr ) for any i = 1,2, . . . ,m and j = 1,2, . . . , n.
It is easily seen that all r̃ij are trapezium fuzzy numbers. Furthermore, all r̃ij ∈ [0,1]
(i = 1,2, . . . ,m; j = 1,2, . . . , n), i.e., each r̃ij is a normalized positive trapezium fuzzy
number.

Using Eqs. (4) and (5), Eq. (3) can be transformed into the following normalized positive
trapezium fuzzy number decision matrix
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R̃ = (r̃ij )m×n =

x1 x2 · · · xn

f1

f2

...

fm

⎛
⎜⎜⎜⎜⎝

r̃11 r̃12 · · · r̃1n

r̃21 r̃22 · · · r̃2n

...
...

. . .
...

r̃m1 r̃m2 · · · r̃mn

⎞
⎟⎟⎟⎟⎠

. (6)

3. Fuzzy LINMAP model and method

3.1. Consistency and inconsistency measurements

Let R̃j = (r̃1j , r̃2j , . . . , r̃mj )
T express a normalized positive trapezium fuzzy num-

ber vector for alternatives xj (j = 1,2, . . . , n), where r̃ij = (rij l , rijm1, rijm2, rijr ) (i =
1,2, . . . ,m; j = 1,2, . . . , n) is a normalized positive trapezium fuzzy number. Sometimes
R̃j is called an alternative. In other words, R̃j and xj have the same meaning.

Suppose that the fuzzy positive ideal solution be ã∗ = (ã∗
1, ã

∗
2, . . . , ã

∗
m)T which is un-

known a priori and needs to determine, where ã∗
i = (a∗

il , a
∗
im1

, a∗
im2

, a∗
ir ) (i = 1,2, . . . ,m)

is a positive trapezium fuzzy number on attribute fi .
Using Eq. (1), the square of the weighted Euclidean distance between the alternative

R̃j = (r̃1j , r̃2j , . . . , r̃mj )
T and the FPIS ã∗ = (ã∗

1 , ã∗
2 , . . . , ã∗

m)T can be calculated as

Sj =
m∑

i=1

ωi

[
d(r̃ij , ã

∗
i )

]2
. (7)

It is easily seen that Sj can be written explicitly as

Sj =
m∑

i=1

ωi

6

[
(aij l − a∗

il)
2 + 2(aijm1 − a∗

im1
)2 + 2(aijm2 − a∗

im2
)2 + (aijr − a∗

ir )
2],

(8)

where ω = (ω1,ω2, . . . ,ωm)T is a weight vector which is unknown a priori and needs to
determine.

Assume that the decision maker gives the preference relations between alternatives by
Ω = {(k, j) | xk � xj , (k, j = 1,2, . . . , n)} from his/her knowledge and experience, where
the symbol “�” is a preference relation given by the decision maker. xk � xj means that
either the decision maker prefers the alternative xk to xj or the decision maker is indifferent
between xk and xj . If the weight vector ω = (ω1,ω2, . . . ,ωm)T and the fuzzy positive
ideal solution ã∗ = (ã∗

1 , ã∗
2 , . . . , ã∗

m)T are chosen by the decision maker already, then using
Eq. (7) the decision maker can calculate the square of the weighted Euclidean distance
between each pair of alternative (k, j) ∈ Ω and the fuzzy positive ideal solution ã∗ =
(ã∗

1 , ã∗
2 , . . . , ã∗

m)T as follows:

Sk =
m∑

ωi

[
d(r̃ik, ã

∗
i )

]2
i=1
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and

Sj =
m∑

i=1

ωi

[
d(r̃ij , ã

∗
i )

]2
.

For each pair of alternatives (k, j) ∈ Ω , the alternative xk is closer to the FPIS than
the alternative xj if Sj � Sk . So the ranking order of alternatives xk and xj determined by
Sj and Sk based on (ω, ã∗) is consistent with the preference given by the decision maker.
Conversely, if Sj < Sk , then (ω, ã∗) is not chosen properly since it results in that ranking
order of alternatives xk and xj determined by Sj and Sk based on (ω, ã∗) is inconsistent
with the preferences given by the decision maker. Therefore, (ω, ã∗) should be chosen so
that the ranking order of alternatives xk and xj determined by Sj and Sk is consistent with
the preference provided by the decision maker.

We define an index (Sj − Sk)
− to measure inconsistency between the ranking order of

alternatives xk and xj determined by Sj and Sk and the preferences given by the decision
maker preferring xk to xj as follows

(Sj − Sk)
− =

{
Sk − Sj (Sj < Sk),

0 (Sj � Sk).
(9)

Obviously, the ranking order of alternatives xk and xj determined by Sj and Sk based on
(ω, ã∗) is consistent with the preferences given by the decision maker if Sj � Sk . Hence,
(Sj − Sk)

− is defined to be 0. On the other hand, the ranking order of alternatives xk and
xj determined by Sj and Sk based on (ω, ã∗) is inconsistent with the preferences given
by the decision maker if Sj < Sk . Hence, (Sj − Sk)

− is defined to be Sk − Sj . Then, the
inconsistency index can be rewritten as

(Sj − Sk)
− = max{0, Sk − Sj }.

Then, a total inconsistency index of the decision maker is defined as

B =
∑

(k,j)∈Ω

(Sj − Sk)
− =

∑
(k,j)∈Ω

max{0, Sk − Sj }. (10)

In a similar way, an index (Sj −Sk)
+ to measure consistency between the ranking order

of alternatives xk and xj determined by Sj and Sk and the preferences given by the decision
maker preferring xk to xj can be defined as follows:

(Sj − Sk)
+ =

{
Sj − Sk (Sj � Sk),

0 (Sj < Sk).
(11)

This equation mention above can be rewritten as

(Sj − Sk)
+ = max{0, Sj − Sk}.

Hence, a total consistency index of the decision maker is defined as

G =
∑

(k,j)∈Ω

(Sj − Sk)
+ =

∑
(k,j)∈Ω

max{0, Sj − Sk}. (12)
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3.2. Fuzzy LINMAP model and method

To determine (ω, ã∗), we construct the following mathematical programming as fol-
lows:

max{G}
G − B � h,
m∑

i=1

ωi = 1,

ωi � ε (i = 1,2, . . . ,m), (13)

where h > 0 is given by the decision maker a priori and ε > 0 is sufficiently small which
ensures that the weights generated are not zero as it may be the case in the LINMAP
method [24].

The aim of Eq. (13) is to maximize the total consistency index G of the decision maker
under the condition in which the total consistency index G is greater than or equals to the
total inconsistency index B by a given value h > 0.

Using Eqs. (9)–(12), it follows

G − B =
∑

(k,j)∈Ω

(Sj − Sk)
+ −

∑
(k,j)∈Ω

(Sj − Sk)
−

=
∑

(k,j)∈Ω

[
(Sj − Sk)

+ − (Sj − Sk)
−] =

∑
(k,j)∈Ω

(Sj − Sk).

Combining Eq. (12), Eq. (13) can be rewritten as follows:

max

{ ∑
(k,j)∈Ω

max{0, Sj − Sk}
}

∑
(k,j)∈Ω

(Sj − Sk) � h,

m∑
i=1

ωi = 1,

ωi � ε (i = 1,2, . . . ,m). (14)

For each pair of (k, j) ∈ Ω , let

λkj = max{0, Sj − Sk},
then for each (k, j) ∈ Ω

λkj � 0

and

λkj � Sj − Sk.
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Thus, Eq. (14) can be transformed into the following mathematical programming

max

{ ∑
(k,j)∈Ω

λkj

}
∑

(k,j)∈Ω

(Sj − Sk) � h,

ωi � ε (i = 1,2, . . . ,m),

m∑
i=1

ωi = 1,

Sk − Sj + λkj � 0
(
(k, j) ∈ Ω

)
,

λkj � 0
(
(k, j) ∈ Ω

)
. (15)

Using Eq. (8), we can construct the following linear programming model:

max

{ ∑
(k,j)∈Ω

λkj

}

m∑
i=1

ωi

∑
(k,j)∈Ω

[(
a2
ij l − a2

ikl

) + 2
(
a2
ijm1

− a2
ikm1

) + 2
(
a2
ijm2

− a2
ikm2

)

+ (
a2
ijr − a2

ikr

)] − 2

[
m∑

i=1

vil

∑
(k,j)∈Ω

(aijl − aikl)

+ 2
m∑

i=1

vim1

∑
(k,j)∈Ω

(aijm1 − aikm1) + 2
m∑

i=1

vim2

∑
(k,j)∈Ω

(aijm2 − aikm2)

+
m∑

i=1

vir

∑
(k,j)∈Ω

(aijr − aikr )

]
� 6h,

m∑
i=1

ωi

[(
a2
ikl − a2

ij l

) + 2
(
a2
ikm1

− a2
ijm1

) + 2
(
a2
ikm2

− a2
ijm2

) + (
a2
ikr − a2

ijr

)]

− 2

[
m∑

i=1

vil(aikl − aijl) + 2
m∑

i=1

vim1(aikm1 − aijm1)

+ 2
m∑

i=1

vim2(aikm2 − aijm2) +
m∑

i=1

vir (aikr − aijr )

]
+6λkj � 0

(
(k, j) ∈ Ω

)
,

ωi � ε (i =1,2, . . . ,m),
m∑

i=1

ωi = 1,

λkj � 0
(
(k, j) ∈ Ω

)
,

vil � 0, vim � 0, vim � 0, vir � 0 (i = 1,2, . . . ,m), (16)
1 2
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where

vil = ωia
∗
il ,

vim1 = ωia
∗
im1

,

vim2 = ωia
∗
im2

,

vir = ωia
∗
ir , (17)

ωi , vil , vim1 , vim2 and vir (i = 1,2, . . . ,m) can be obtained by solving the above linear
programming (i.e., Eq. (16)) using the Simplex method. Then, the best values of a∗

il , a∗
im1

,
a∗
im2

and a∗
ir (i = 1,2, . . . ,m) are computed using Eq. (17) and are denoted as the trapez-

ium fuzzy number ã∗
i = (a∗

il , a
∗
im1

, a∗
im2

, a∗
ir ) (i = 1,2, . . . ,m). Hence the ranking order

of the alternative set X = {x1, x2, . . . , xn} is generated based on the increasing order of
distances Sj (j = 1,2, . . . , n) calculated with Eq. (8).

If the ratings of attributes are expressed by triangular fuzzy numbers f̃ij = (aij l, aijm,

aijr ) (i = 1,2, . . . ,m; j = 1,2, . . . , n), the linear programming model (i.e., Eq. (16)) can
be transformed into the following:

max

{ ∑
(k,j)∈Ω

λkj

}

m∑
i=1

ωi

∑
(k,j)∈Ω

[(
a2
ij l − a2

ikl

) + 4
(
a2
ijm − a2

ikm

) + (
a2
ijr − a2

ikr

)]

− 2

[
m∑

i=1

vil

∑
(k,j)∈Ω

(aijl − aikl) + 4
m∑

i=1

vim

∑
(k,j)∈Ω

(aijm − aikm)

+
m∑

i=1

vir

∑
(k,j)∈Ω

(aijr − aikr )

]
� 6h,

m∑
i=1

ωi

[(
a2
ikl − a2

ij l

) + 4
(
a2
ikm − a2

ijm

) + (
a2
ikr − a2

ijr

)] − 2

[
m∑

i=1

vil(aikl − aijl)

+ 4
m∑

i=1

vim(aikm − aijm) +
m∑

i=1

vir (aikr − aijr )

]
+ 6λkj � 0

(
(k, j) ∈ Ω

)
,

ωi � ε (i = 1,2, . . . ,m),
m∑

i=1

ωi = 1,

λkj � 0
(
(k, j) ∈ Ω

)
,

vil � 0, vim � 0, vir � 0 (i = 1,2, . . . ,m), (18)

where

vil = ωia
∗ ,
il
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vim = ωia
∗
im,

vir = ωia
∗
ir , (19)

ωi , vil , vim and vir (i = 1,2, . . . ,m) can be obtained by solving the above linear pro-
gramming (i.e., Eq. (18)) using the Simplex method. Then, the best values of a∗

il , a∗
im

and a∗
ir (i = 1,2, . . . ,m) are computed using Eq. (19) and are denoted as the triangular

fuzzy number ã∗
i = (a∗

il , a
∗
im, a∗

ir ) (i = 1,2, . . . ,m). Hence the ranking order of the alter-
native set X = {x1, x2, . . . , xn} is generated based on the increasing order of distances Sj

(j = 1,2, . . . , n) calculated with Eq. (8).

3.3. Decision process of fuzzy LINMAP method

In the above, the fuzzy LINMAP method is proposed, especially the fuzzy linear pro-
gramming model is constructed to solve the weight vector and the FPIS. Hence the ranking
order of all alternatives is generated once the distances of alternatives from the FPIS.

In sum, an algorithm and decision process of the fuzzy multiattribute decision making
with fuzzy set approach is given in the following.

Step 1: The decision maker identifies the evaluation attributes.
Step 2: The decision maker gives the preference relations between alternatives by Ω =

{(k, j) | xk � xj , (k, j = 1,2, . . . , n)}.
Step 3: Choose the appropriate linguistic variables for the linguistic ratings of alterna-

tives on attributes.
Step 4: Pool the decision maker’s opinion to get the linguistic rating f̃ij of alternative

xj under attribute fi .
Step 5: Construct the fuzzy decision matrix F̃ and the normalization positive trapezium

fuzzy number decision matrix R̃.
Step 6: Construct the linear programming Eq. (16).
Step 7: Solve Eq. (16) using the Simplex method of the linear programming.
Step 8: Obtain ωi and ã∗

i = (a∗
il , a

∗
im1

, a∗
im2

, a∗
ir ) (i = 1,2, . . . ,m) using Eq. (17), hence

obtain the weight vector ω = (ω1,ω2, . . . ,ωm)T and the fuzzy positive ideal solution ã∗ =
(ã∗

1 , ã∗
2 , . . . , ã∗

m)T .
Step 9: Calculate the distance Sj (j = 1,2, . . . , n) of alternative xj from the FPIS ã∗

using Eq. (8).
Step 10: According to the increasing order of the distances Sj (j = 1,2, . . . , n), the best

alternative from the alternative set X is determined and the ranking order of all alternatives
is generated.

Compared with the LINMAP method [24], Eqs. (16) and (17) can be used in fuzzy
decision-making environments with linguistic ratings. Furthermore, to avoid the situa-
tion of ωi = 0 as it may be the case in the LINMAP method, the constraints ωi � ε and∑m

i=1 ωi = 1 are added to Eq. (16). It is easy to show that Eqs. (16) and (17) are reduced
to the linear programming model of the LINMAP method in a crisp environment if the
fuzzy ratings f̃ik and f̃ij (or r̃ik and r̃ij ) are reduced to the crisp ratings fik and fij (or rik
and rij ), respectively.
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4. A numerical example

An extended air-fighter selection problem [14] is investigated in this section.
Suppose one country D plans to buy air-fighters from another country H. The Defense

Department of the country H would provide the country D with characteristic data for
four candidate air-fighters x1, x2, x3 and x4. The decision maker takes into consideration
the following six attributes in evaluating the air-fighters, including maximum speed (f1),
cruise radius (f2), maximum loading (f3), price (f4), reliability (f5) and maintenance (f6).
f5 and f6 are qualitative attributes and their ratings are expressed using linguistic variables.

The data and ratings of all air-fighters on every attribute are given by the decision maker
as in Table 1.

The corresponding relations between linguistic variables and positive trapezium fuzzy
numbers are given in Table 2.

The linguistic variables are depicted as in Fig. 4.
Assume that the decision maker provide his/her preferences between air-fighters as fol-

lows:

Ω = {
(1,2), (3,2), (1,3), (3,4)

}
. (20)

We can obtain the following fuzzy decision matrix according to Tables 1 and 2

F̃ =

x1 x2 x3 x4

f1

f2

f3

f4

f5

f6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.0 2.5 1.8 2.2

1.5 2.7 2.0 1.8

2.0 1.8 2.1 2.0

5.5 6.5 4.5 5.0

(0.3,0.4,0.5,0.6) (0.1,0.2,0.3,0.4) (0.5,0.6,0.7,0.8) (0.3,0.4,0.5,0.6)

(0.7,0.8,0.9,1) (0.3,0.4,0.5,0.6) (0.5,0.6,0.7,0.8) (0.3,0.4,0.5,0.6)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(21)

Notice that real numbers can be written as trapezium fuzzy numbers such as 2.0 =
(2.0,2.0,2.0,2.0) and 1.8 = (1.8,1.8,1.8,1.8).

For the benefit attribute f5, we have

amax
5l = 0.5, amax

5m1
= 0.6, amax

5m2
= 0.7, amax

5r = 0.8.

Table 1
Decision information given by the decision maker

Air-fighters Attributes

f1 f2 f3 f4 f5 f6
(mach) (mile × 103) (lb. × 104) ($ × 106)

x1 2.0 1.5 2.0 5.5 medium very high
x2 2.5 2.7 1.8 6.5 low medium
x3 1.8 2.0 2.1 4.5 high high
x4 2.2 1.8 2.0 5.0 medium medium
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Table 2
The relations between linguistic variables and positive trapezium fuzzy numbers

Linguistic variables Trapezium fuzzy numbers

Very high (VH) (0.7,0.8,0.9,1)

High (H) (0.5,0.6,0.7,0.8)

Medium (M) (0.3,0.4,0.5,0.6)

Low (L) (0.1,0.2,0.3,0.4)

Very low (VL) (0,0.1,0.2,0.3)

Fig. 4. Linguistic variables.

So the normalization positive trapezium fuzzy numbers of xj (j = 1,2,3,4) on the at-
tribute f5 can be calculated as follows using Eq. (4):

r̃51 =
(

a51l

amax
5r

,
a51m1

amax
5m2

,
a51m2

amax
5m1

∧ 1,
a51r

amax
5l

∧ 1

)
=

(
0.3

0.8
,

0.4

0.7
,

0.5

0.6
∧ 1,

0.6

0.5
∧ 1

)
= (0.375,0.571,0.831,1),

r̃52 =
(

a52l

amax
5r

,
a52m1

amax
5m2

,
a52m2

amax
5m1

∧ 1,
a52r

amax
5l

∧ 1

)
=

(
0.1

0.8
,

0.2

0.7
,

0.3

0.6
∧ 1,

0.4

0.5
∧ 1

)
= (0.125,0.286,0.5,0.8),

r̃53 =
(

a53l

amax
5r

,
a53m1

amax
5m2

,
a53m2

amax
5m1

∧ 1,
a53r

amax
5l

∧ 1

)
=

(
0.5

0.8
,

0.6

0.7
,

0.7

0.6
∧ 1,

0.8

0.5
∧ 1

)
= (0.625,0.875,1,1)

and

r̃54 =
(

a54l

amax
5r

,
a54m1

amax
5m2

,
a54m2

amax
5m1

∧ 1,
a54r

amax
5l

∧ 1

)
=

(
0.3

0.8
,

0.4

0.7
,

0.5

0.6
∧ 1,

0.6

0.5
∧ 1

)
= (0.375,0.571,0.831,1).

In a similar way, the fuzzy decision matrix mention above (i.e., Eq. (21)) can be trans-
formed into the following normalization positive trapezium fuzzy number matrix with
Eqs. (4) and (5):
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R̃ =

x1 x2 x3 x4
f1

f2

f3

f4

f5

f6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.8 1 0.72 0.88

0.55 1 0.74 0.67

0.95 0.86 1 0.95

0.82 0.69 1 0.9

(0.375,0.571,0.831,1) (0.125,0.286,0.5,0.8) (0.625,0.857,1,1) (0.375,0.571,0.831,1)

(0.7,0.889,1,1) (0.3,0.444,0.625,0.875) (0.5,0.667,0.875,1) (0.3,0.444,0.625,0.875)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(22)

Notice that real numbers can be written as trapezium fuzzy numbers such as 0.8 =
(0.8,0.8,0.8,0.8) and 0.67 = (0.67,0.67,0.67,067).

Using Eq. (16) and combining with Eqs. (20) and (22), we can construct the linear
programming problem:

max{λ12 + λ32 + λ13 + λ34}
−0.976ω1 − 1.296ω2 + 0.423ω3 + 0.5826ω4 + 0.8992ω5 + 1.3021ω6

+ 0.1867v1l + 0.3733v1m1 + 0.3733v1m2 + 0.1867v1r + 0.2767v2l

+ 0.5533v2m1 + 0.5533v2m2 + 0.2767v2r − 0.0767v3l − 0.1533v3m1

− 0.1533v3m2 − 0.0767v3r − 0.12v4l − 0.24v4m1 − 0.24v4m2 − 0.12v4r

− 0.25v5l − 0.5707v5m1 − 0.554v5m2 − 0.1333v5r − 0.3333v6l − 0.742v6m1

− 0.6667v6m2 − 0.143v6r � −1,

0.36ω1 + 0.6975ω2 − 0.1629ω3 − 0.1963ω4 − 0.3091ω5 − 0.5118ω6

− 0.0667v1l − 0.1333v1m1 − 0.1333v1m2 − 0.0667v1r − 0.15v2l − 0.3v2m1

− 0.3v2m2 − 0.15v2r + 0.03v3l + 0.06v3m1 + 0.06v3m2 + 0.03v3r

+ 0.0433v4l + 0.0867v4m1 + 0.0867v4m2 + 0.0433v4r + 0.0833v5l

+ 0.19v5m1 + 0.2207v5m2 + 0.0667v5r + 0.1333v6l + 0.2967v6m1

+ 0.25v6m2 + 0.0477v6r − λ12 � 0,

0.4816ω1 + 0.4524ω2 − 0.2604ω3 − 0.5239ω4 − 0.5901ω5 − 0.2785ω6

− 0.0933v1l − 0.1867v1m1 − 0.1867v1m2 − 0.0933v1r − 0.0867v2l

− 0.1733v2m1 − 0.1733v2m2 − 0.0867v2r + 0.0467v3l + 0.0933v3m1

+ 0.0933v3m2 + 0.0467v3r + 0.1033v4l + 0.2067v4m1 + 0.2067v4m2

+ 0.1033v4r + 0.1667v5l + 0.3807v5m1 + 0.3333v5m2 + 0.0667v5r

+ 0.0667v6l + 0.1487v6m1 + 0.1667v6m2 + 0.0477v6r − λ32 � 0,

−0.1216ω1 + 0.2451ω2 + 0.0975ω3 + 0.3276ω4 + 0.281ω5 − 0.2333ω6

+ 0.0267v1l + 0.0533v1m1 + 0.0533v1m2 + 0.0267v1r − 0.0633v2l

− 0.1267v2m1 − 0.1267v2m2 − 0.0633v2r − 0.0167v3l − 0.0333v3m1

− 0.0333v3m2 − 0.0167v3r − 0.06v4l − 0.12v4m1 − 0.12v4m2 − 0.06v4r

− 0.0833v5l − 0.1907v5m1 − 0.1127v5m2 + 0v5r + 0.0667v6l + 0.0148v6m1

+ 0.0833v6m + 0v6r − λ13 � 0,
2
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0.256ω1 − 0.0987ω2 − 0.0975ω3 − 0.19ω4 − 0.281ω5 − 0.2785ω6 − 0.0267v1l

− 0.0533v1m1 − 0.0533v1m2 − 0.0267v1r + 0.0233v2l + 0.0467v2m1

+ 0.0467v2m2 + 0.0233v2r + 0.0167v3l + 0.0333v3m1 + 0.0333v3m2

+ 0.0167v3r + 0.0333v4l + 0.0667v4m1 + 0.0667v4m2 + 0.0333v4r

+ 0.0833v5l + 0.1907v5m1 + 0.1127v5m2 + 0v5r + 0.0667v6l

+ 0.1487v6m1 + 0.1667v6m2 + 0.0477v6r − λ34 � 0,

ωi � 0.001, vil � 0, vim1 � 0, vim2 � 0, vir � 0

(i = 1,2, . . . ,6),

6∑
i=1

ωi = 1,

λ12 � 0, λ32 � 0, λ13 � 0, λ34 � 0. (23)

Solving Eq. (23) using the existing Simplex method software, we can obtain the optimal
solutions as follows:

ω = (ω1,ω2, . . . ,ω6)
T = (0.194,0.261,0.15,0.164,0.148,0.083)T (24)

and

ṽ = (ṽ1, ṽ2, . . . , ṽ6)

= (
0.487,0.453,0.505,0.502, (0.505,0.510,0.510,0.520),

(0.521,0.537,0.537,0.548)
)
. (25)

Using Eq. (17) and combining with Eqs. (24) and (25), the fuzzy positive ideal solution
can be calculated as follows:

ã∗ = (ã∗
1 , ã∗

2 , . . . , ã∗
6)T

= (
2.510,1.736,3.367,3.061, (0.341,0.345,0.345,0.351),

(0.628,0.647,0.647,0.660)
)T

.

The square of the distance of each air-fighter from the FPIS ã∗ can be calculated using
Eq. (8) as follows:

S1 = 6.336, S2 = 7.733, S3 = 6.102, S4 = 6.502.

So the ranking order of four air-fighters is generated as follows:

x3 � x1 � x4 � x2.

Obviously, the best selection is the air-fighter x3.
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5. Short conclusions

Most multiattribute decision making problems include both quantitative and qualitative
attributes which are often assessed using imprecise data and human judgments. Fuzzy set
theory is well suited to dealing with such decision problems. In this paper, the LINMAP
method [24] is further developed to solve multiattribute decision making problems in fuzzy
environments. Linguistic variables as well as crisp numerical values are used to assess
qualitative and quantitative attributes. In particular, trapezium fuzzy numbers are used in
this paper to assess alternatives with respect to qualitative attributes.

A fuzzy linear programming (FLP) model was constructed to rank alternative decisions
using the pairwise comparisons between alternatives, which can be used in both crisp and
fuzzy environments. In the FLP model, the normalization constraints on weights are im-
posed, which ensures that the weights generated are not zero. The technique can be used
to generate consistent and reliable ranking order of alternatives in question.

The developed method is illustrated using an air-fighter selection problem [14]. It is ex-
pected to be applicable to decision problems in many areas, especially in situations where
multiple decision makers are involved and the weights of attributes are not provided a pri-
ori.
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