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Abstract The purpose of this paper is to evaluate and reduce the bullwhip effect in fuzzy environments by
means of type-2 fuzzymethodology. In order to reduce the bullwhip effect in a supply chain, we propose a
newmethod for demand forecasting. First, the demand data of a real steel industry in Canada is clustered
with an interval type-2 fuzzy c-regression clustering algorithm. Then, a novel interval type-2 fuzzy hybrid
expert system is developed for demand forecasting. This system uses Fuzzy Disjunctive Normal Forms
(FDNF) and Fuzzy Conjunctive Normal Forms (FCNF) for the aggregation of antecedents. An interval type-
2 fuzzy order policy is developed to determine orders in the supply chain. Then, the results of the proposed
method are compared with the type-1 fuzzy expert system as well as the type-1 fuzzy time series method
in the literature. The results show that the bullwhip effect is significantly reduced; also, the system has
less error and high accuracy.
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Open access under CC BY-NC-ND license.
1. Introduction

Customer demand information is very important in supply
chains because of the competitive nature of industries. So, each
entity in a supply chain tries to gather the demand informa-
tion of its downstream customers. Demands of the downstream
customers are considered as orders for their upstream suppli-
ers. When an end customer places an order, this order is am-
plified as it moves through the chain. Such a phenomenon is
recognized and described by Forrester [1]. He named this effect
‘‘demand amplification’’, which is now known as the bullwhip
effect [2]. The next research is related to Sterman [3], who de-
scribed this effect in a popular beer game.

Five reasons for bullwhip effect occurrence have been
introduced by Lee et al. [4,5]. These reasons are: demand fore-
casting, order batching, price fluctuation, rationing and short-
age gaming, and none-zero lead time. Metters [6], Baganha and
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Cohen [7], Chen et al. [8], and Campuzano et al. [9] focused on
demand forecasting. Kelle and Milne [10], and Lee and Wu [11]
studied order batching as one of the causes of the bullwhip ef-
fect. Pricing is considered by Özelkan and Cakanyıldırım [12]
as the other reason for bullwhip occurrence. Cachon and Lar-
iviere [13] studied shortage gaming. Agrawal et al. [14] inves-
tigated the effect of information sharing and lead time on the
bullwhip effect, as well as on hand inventory.

In some situations, we encounter vague information in
supply chains, which is represented by linguistic terms. Fuzzy
logic is a proper method to model and solve those linguistic
problems. For the first time, Carlsson and Fuller [15] used
fuzzy logic in bullwhip effect problems. Fazel Zarandi et al. [16]
presented an intelligent agent-based system for reducing the
bullwhip effect in supply chains, in which all demands, lead
times, and ordering quantities are fuzzy variables. Other work
in the area of bullwhip effects in fuzzy environments is related
to Fazel Zarandi et al. [17] and Campuzano et al. [9]. Fazel
Zarandi et al. [17] used a multi-agent system for reducing
the bullwhip effect. Campuzano et al. [9] considered a system
dynamics model with type-1 fuzzy estimations of demand.

In some situations, the information is too vague tomodel the
problem with type-1 fuzzy sets. In type-2 fuzzy systems, each
membership degree, itself, is represented by another member-
ship degree, which is called the secondary membership [18].
The method used for modeling and solving these kinds of prob-
lem is type-2 fuzzy theory,whichwas introduced by Zadeh [19].
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Turksen [20] andGorzalczany [21] are pioneers of interval type-
2 fuzzy sets. This fact that fuzzy normal forms can be generated
from fuzzy truth tables has been presented by Turksen [20].
Turksen [22] introduced the Fuzzy Disjunctive Normal Form
(FDNF) and the FuzzyConjunctiveNormal Form (FCNF) for type-
2 fuzzy sets, which are obtained from the fuzzy truth table. One
controversial issue in type-2 fuzzy theory has been the com-
plexity of the system. However, Sepúlveda et al. [23] showed
that interval type-2 fuzzy systems can accelerate the computa-
tion process and control uncertainty better than type-1 fuzzy
systems. Moreover, Melin et al. [24] showed that the most con-
spicuous images are obtained by using interval type-2 fuzzy
systems. Interval type-2 fuzzy systems consist of three steps:
structure identification, inference engine, and parameter tun-
ing.

Rhee and Hwang [25–27] presented a Interval Type-2 Fuzzy
C-Means clustering algorithm (IT2 FCM) for the structure
identification phase of type-2 fuzzy systems. This method
is used for Mamdani’s systems. However, the Fuzzy C-
Regression clustering Model (FCRM) is utilized in the structure
identification phase of Takagi–Sugeno’s systems.

In Mamdani’s systems, all variables in consequents and
antecedents have linguistic variables. In contrast, T–S systems
have linguistic variables, not in the consequent part, but in their
antecedents. On the other hand, the consequent of a T–S system
is a function. Therefore, they require different reasoning and
structure identification techniques. Hidalgo et al. [28] used the
genetic algorithm for designing a type-2 fuzzy inference system
with the Mamdani method.

Reviewing the literature of bullwhip problems shows that
there is no research work on the bullwhip effect in type-
2 fuzzy environments. So, this paper is the first to focus on
bullwhip effect reduction, in which all demands, orders, and
lead times are type-2 fuzzy sets. In order to model the problem,
we extend a method introduced by Li et al. [29]. The method
presented in [29] is FCRM for a type-1 fuzzy system, and we
extend it to interval type-2 FCRM. A Gaussian Mixture Model
(GMM) is developed to generate a partition matrix in the
clustering algorithm. Regression coefficients are generatedwith
a Weighted Least Square (WLS). After applying the interval
type-2 fuzzy c-regression method, a new hybrid interval type-
2 fuzzy inference system is used for demand prediction. This
system is a combination of the Mamdani and Sugeno inference
mechanism. We modify the FDNF and FCNF method, proposed
by Turksen [30], for the reasoning phase of this system. In
addition, the Adaptive-Network-Based Fuzzy Inference System
(ANFIS) is used for the parameter tuning phase.

The rest of this paper is organized as follows: In Section 2,
the background is presented. Section 3 addresses problem
definition. In this section, the structure of the proposed supply
chain, the bullwhip effect in this chain and the method of
reducing this effect, with numerical examples, are illustrated.
Finally, in Section 4, conclusions and futurework are presented.

2. Background

In this section, first, the interval type-2 fuzzy C-regression
clustering model for structure identification is described [31].
Then, Turksen’s FCNF and FDNF methods [30] are explained.
Finally, the type-2 fuzzy inference system is presented.

2.1. Interval type-2 fuzzy c-regression clustering model

The first step in developing a fuzzy expert system is structure
identification. A technique that is used in the literature for this
phase is Fuzzy C-Means clustering (FCM). It was introduced
by Bezdek [32], whose objective was to minimize total error
and to put similar data in the same clusters. This algorithm is
developed for the structure identification of Mamdani expert
systems. Since our proposedmethod uses Interval Type-2 Fuzzy
Takagi–Sugeno–Kang (IT2F TSK) expert systems, we propose
an Interval Type-2 Fuzzy C-Regression clustering Model (IT2
FCRM) [31]. This method is the extended model of the type-1
FCRM proposed by Li et al. [29].

In contrast to FCM, in which the shapes of clusters are
hyper-spheres, the clusters are hyper-planes [29] in FCRM. The
hyper-planes are generated from the regression function. In
the FCRM algorithm, the distance between data and the cluster
representative is obtained by calculating the total error of the
system. This error is defined as the difference between actual
output and estimated output [33]. For generating the partition
matrix, in the FCRM algorithm, we use the Gaussian Mixture
Model (GMM). The Weighted Least Square algorithm (WLS)
is applied for calculating regression coefficients. As stated by
Hwang and Rhee [34], interval type-2 FCM is generated with
two fuzzifiers, m1 and m2. We extend the IT2 FCM algorithm
proposed by Hwang and Rhee [34] to IT2 FCRM [31].

Eq. (1) represents the regression function:

yi = f z

xi, αj


=

M
q=1

az1xkq + bz0, (1)

where, xi =

x1,i, x2,i, . . . , xM,i

T denotes the data points, i =

1, . . . , n is the number of data, j = 1, . . . , c is the number of
clusters (or rules), z = 1, . . . , r is the number of regression
functions, b is a constant number, and q = 1, . . . ,M is the
number of variables in each regression. Regression coefficients
are represented by αj, and the Weighted Least Square method
(WLS) is used to calculate them in Eq. (2) [35]:

Xi =


x1,i
x2,i
...

xM,i


T

, y =


y1
y2
...
yM


T

,

Wi =


wj(x1) 0 · · · 0

0 wj(x2) · · · 0
...

...
. . .

...
0 0 · · · wj(xM)


αi =


XTWiX

−1
XTWiy

(2)

where x is a data point matrix for inputs, and y is a data point
matrix for outputs.

Gaussianmixture distribution is used for generating the par-
tition matrix in Eq. (3). This method can be used in cluster-
ing [36]:

N (x; x, C) =
1

(2π)
|x|
2
√

|C |

× exp


−1
2

(x − x)T C−1 (x − x)


, (3)

where x is the mean and C is the covariance matrix of the Gaus-
sian distribution. C is often diagonal [37]. The likelihood of a
given x being determined by a GMM is [37]:

P(x) =

N
i=1

wiN (x; x, C) , (4)
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where N is the number of Gaussians and wi is the weight of a
Gaussian i [37].

i

wi = 1 and ∀i : wi ≥ 0. (5)

We consider two fuzzifiers or weighting exponents,m1 andm2,
as proposed by Choi and Rhee [38], for representing the prob-
lem into Interval Type-2 Fuzzy (IT2F). However, the difference
between ourmethod and themodel in [38] is that ours is FCRM,
but theirs is FCM [31]. We extend the type-1 NFCRM algorithm
presented by Li et al. [29] to IT2 FCRM, with the following ob-
jective functions [31]:

Jm1 (U, v) =

n
i=1

C
j=1

uj(xi)m1Eji

αj


Jm2 (U, v) =

n
i=1

C
j=1

uj(xi)m2Eji

αj
 (6)

where, as stated in [35], (for type-1 FCRM) Eji is the total error
of the model.

Eji

αj


= (yi − fj(xi, αj))
2. (7)

In order tomake upper and lowermemberships,we use the def-
inition given by Hwang and Rhee [34] with somemodifications
(the method presented in [34] is for IT2 FCM, but our proposed
method is IT2 FCRM):

uj(xi) =



1
c

k=1


Eji (αi) /Eki


αj
1/(m1−1)

if
1

c
k=1


Eji (αi) /Eki


αj
1/(m1−1) <

1
c

1
c

k=1


Eji (αi) /Eki


αj
1/(m2−1)

Otherwise

(8)

uj(xi) =



1
c

j=1


Eji (αi) /Eki


αj
1/(m1−1)

if
1

c
k=1


Eji (αi) /Eki


αj
1/(m1−1) ≥

1
c

1
c

k=1


Eji (αi) /Eji


αj
1/(m2−1)

Otherwise.

(9)

After calculating the upper and lower memberships, Liang and
Mendel’s type reduction technique [36] is used for reducing the
complexity of the system. Eq. (10) shows the type reduction
technique used for further calculations [31]:

uj(xi) =
uj(xi) + uj(xi)

2
. (10)

After applying type reduction, the regression coefficients (αi)
are calculated again with the updated uj(xi) from Eq. (10).
Eqs. (2), (7), (8), (9) and (10) are iterated until the specific
threshold is satisfied.

In order to generate Gaussian membership functions, we
define interval type-2 mean vji for upper Gaussian member-
ships and vjk for lowermemberships in Eqs. (11) and (12). Then,
Eqs. (13) and (14) show standard deviation, σ jk, for upper Gaus-
sian memberships and σ jk for lower ones, respectively. (Type-1
FCRM presented by Li et al. [29] is extended to IT2 FCRM in the
following equations [31].)

vjk =

n
i=1

uj(xi)Xjk

n
i=1

uj(xi)
, j = 1, 2, . . . , c, k = 1, 2, . . . ,M, (11)

vjk =

n
i=1

uj(xi)Xjk

n
i=1

uj(xi)
, j = 1, 2, . . . , c, k = 1, 2, . . . ,M, (12)

where j is the number of clusters, k is the number of variables,
and i is the number of data points.

σ jk =


2

n
i=1

uj (Xjk − vjk)2

n
i=1

uj(xi)
,

j = 1, 2, . . . , c, k = 1, 2, . . . ,M (13)

σ jk =


2

n
i=1

uj(Xjk − vjk)
2

n
i=1

uj(xi)
,

j = 1, 2, . . . , c, k = 1, 2, . . . ,M. (14)
Then, by putting Gaussian membership function parameters,
(vji, σ jk),


vjk, σ jk


, in Eqs. (15) and (16), the upper and lower

Gaussian membership functions are constructed, respectively:

µx = exp


−
(Xk − vjk)

2

σ jk


,

j = 1, 2, . . . , c, k = 1, 2, . . . ,M, (15)

µ
x
= exp


−

(Xk − vjk)
2

σ jk


,

j = 1, 2, . . . , c, k = 1, 2, . . . ,M. (16)
Consequent parameters are defined similar to the method pro-
posed by Kim et al. [39] and Li et al. [29] in Eq. (17):

y = pθ + e, θ =

θ0
1 , . . . , θM

1 , . . . , θ0
c , . . . , θM

c


,

y = [y1, y2, . . . , yn] ,
(17)

where e = [e1, e2, . . . , en]T is the error vector, ek = yk−ŷk (1 ≤

k ≤ n), and
pi(xk) = [1, λ1kxk1, . . . , λ1kxkM , . . . , 1,

λckxk1, . . . , λckxkM ], (18)
where xkj (1 ≤ k ≤ n, 1 ≤ j ≤ d) is the jth element of the kth
input, and λik (1 ≤ i ≤ c, 1 ≤ k ≤ n) is the combination of the
weight of rules [39,29].

λik =
wi
n

i=1
wi

. (19)

2.2. Type II reasoning

A Type II inference process with a rule set is represented in
Eqs. (20)–(24) [30]:
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µ∗

B(y) =


x∈X

µ́A(x)T [µFDNF(A → B)(x, y)]

x∈X

µ́A(x)

× T [µFCNF(A → B)(x, y)]


, ∀y ∈ Y , (20)

where µFDNF (A → B) (x, y) and µFCNF (A → B) (x, y) are two
boundaries of Type II approximate reasoning, based on fuzzy
normal forms. µ∗

B(y) is the consequence of an inference result,
and µ́A(x) is the observed membership value. In Eq. (20), ‘‘T ’’ is
used to indicate T -norm between two membership functions:
A

x∗

D,i,r(r)


= µ(x∗

FDNF(A(i,r))(r)),
A

x∗

C,i,r(r)


= µ(x∗

FCNF(A(i,r))(r)).
(21)

In Eq. (21), µ

x∗

FDNF(A(i,r))(r)

is the membership value of the

fuzzy disjunctive normal form of the left-hand side of the
ith rule, which has ‘‘r ’’ input variables evaluated at x∗

(r) =

(x∗

1, x
∗

2, . . . , x
∗
r ). Moreover, µ(x∗

FCNF(A(i,r))(r)) is the membership
value of the fuzzy conjunctive normal form [30].

A

x∗

D,i,r(r)

is computed recursively as [30]:AD,i,ρ


x∗ (ρ)


=

AD,i,ρ−1


x∗ (ρ − 1)


TAi,ρ


x∗

ρ


× S


AD,i,ρ−1


x∗ (ρ − 1)


TAi,ρ


x∗

ρ


For ρ = 2, 3, 4, . . . , r.

(22)

Such that X∗(2) = (X∗

1 , X∗

2 ) and A(i, 2) = Ai1AND Ai2. In
the definition of ‘‘AD,i,ρ (x∗ (ρ))’’, ‘‘S’’ indicates S-norm of two
membership functions [30].

AC,i,r (x∗(r)) is computed recursively as [30]:

AC,i,ρ(x∗(ρ)) = [A(x∗

C,i,ρ−1(ρ − 1))SAiρ(x∗

ρ)]T [A(x∗

C,i,ρ−1

× (ρ − 1))SAiρ(x∗

ρ)]T [A(x∗

C,i,ρ−1(ρ − 1))

× Sn(Aiρ(x∗

ρ))]T [A(x∗

C,i,ρ−1(ρ − 1))

× Sn(Aiρ(x∗

ρ))]T [n(A(x∗

C,i,ρ−1(ρ − 1))

× S(Aiρ(x∗

ρ)))]T [n(A(x∗

C,i,ρ−1(ρ − 1))

× S(Aiρ(x∗

ρ)))], ρ = 2, 3, 4, . . . , r. (23)

In Eq. (23), AC,i,r (x∗(r)) is the membership value of the
fuzzy conjunctive normal form of the left-hand side of the
ith rule which has ‘‘r ’’ input variables evaluated at x∗

(r) =

(x∗

1, x
∗

2, . . . , x
∗
r ) [30].

After aggregating the antecedents, the implication process
was presentedby Türksen [30]. The implication and aggregation
of consequents proposed in [30] are not mentioned here,
because, in our proposed method, we only use FDNF and FCNF
for aggregation of antecedents. In Eq. (24), B∗(y) is the final
output of the model, which is obtained by combining the final
output of FDNF and FCNF [30].

B∗(y) = βB∗

D(y) + (1 − β) B∗

C (y), ∀y ∈ Y , 0 ≤ β ≤ 1, (24)

where β∗

D(y) is the final result of the inference system for FDNF,
and β∗

C (y) is the final result for FCNF after the inference process.

2.3. Interval type-2 fuzzy inference system

An interval type-2 fuzzy rule base system is presented in the
following equation [33]:

R̃i : IF
nv

AND
j=1

(xj ∈ Xj isr Ãij) THEN y ∈ Y isr B̃i, (25)
where xj is the jth input variable, j = 1, . . . , nv, ‘‘nv’’ is the
total number of input variables, Xj is the domain of xj, and Ãij
is the linguistic label associated with the jth input variable in
the ith rule represented by a type-2 membership function. In
addition, y is the output variable, Y is the domain of y, and B̃i
is the linguistic label associated with the output variable in the
ith rule with type-2 membership function. In Eq. (25), AND is
the logical connective used to aggregate membership values
of input variables for a given observation in order to find the
degree of fire of each rule. Moreover, in Eq. (25), THEN is the
logical IMPLICATION connective.

Liang and Mendel [36] considered the upper and lower
membership functions of IT2F sets as lower and upper points of
an interval. Let µU

Ã
(x) be the upper membership function, and

µL
Ã
(x) the lower membership function. Liang and Mendel [36]

described the IT2F inference system:

µÃ(x) : x → 1/u, u ∈ [µL
Ã
(x), µU

Ã
(x)]. (26)

Aggregated antecedent membership values for each rule are
calculated by:

µ̃L
i (x) = T nv

j=1(µ̃
L
i (xj)), µ̃U

i (x) = T nv
j=1(µ̃

U
i (xj)), (27)

where T denotes the T -norm connective. µ̃∗L
i (y) and µ̃∗U

i (y) are
upper and lower memberships for consequents.

µ̃∗

i (y) : Y →
1
w

, w ∈ [µ̃∗L
i (y), µ̃∗U

i (y)]. (28)

The aggregated antecedents and consequents for lower and
upper membership functions are presented in Eqs. (29) and
(30) [33]:

µ̃∗L
i (y) = T


µ̃L

i (x), µ̃
L
i (y)


, (29)

µ̃∗U
i (y) = T


µ̃U

i (x), µ̃U
i (y)


. (30)

Eqs. (31) and (32) present the aggregation stage of all rules:

µ̃∗L(y) = Sc∗i=1


µ̃L

i (y)

, (31)

µ̃∗U(y) = Sc∗i=1


µ̃U

i (y)

, (32)

where ‘‘S’’ is S-norm or T -conorm operator, and ‘‘c ’’ is the
number of rules. At the end of the inference process, a crisp
output is required. The following equation has been presented
by Liang and Mendel [36] to calculate the crisp output (y∗).

y∗
= [y∗L

+ y∗U
]/2, (33)

where y∗L and y∗U are lower and upper bounds, i.e. y∗
∈

y∗L, y∗U

.

3. Problem definition

In this paper, we focus on a supply chain of a real steel indus-
try in Canada. The total supply chain consists of eight entities
and three echelons (supplier, manufacturer, and customer). Its
entities are: supplier, warehouse1, blast furnace, torpedo car,
Basic Oxygen Furnace (BOF), continuous caster, warehouse2,
and customer, as shown in Figure 1. The internal supply chain
consists of six entities: warehouse1, blast furnace, torpedo car,
BOF, continuous caster, and warehouse2. We briefly describe
the steel making process in this section.

3.1. Steel making process in supply chain

Since the end customer requires and orders high quality
steel, we categorize steel demand by the degree of sulphur. The
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Figure 1: Supply chain of the steel industry.
higher the degree of sulphur is, the lower the quality of steel. So,
for reducing the amount of sulphur, two reagents are used in a
steel factory: reagent1 and reagent2. When a customer places
an order for steelwith low sulphur, itmeans that the steel needs
an especial amount of reagents to achieve the desired degree
of sulphur (target sulphur). In such a situation, the amount
of reagents is considered as a demand in the supply chain.
The demands of the reagents move through the chain from
downstream to upstream. The steel factory provides its raw
material from the supplier. In this paper, we consider reagent1
and reagent2 as the main materials ordered by the factory. The
steel making process is described as follows.

After providing rawmaterials (reagent1 and reagent2) from
a supplier, the material batches are gathered in a warehouse of
raw material, which is named warehouse1. Then, in the blast
furnace, a batch melting process, which produces batches of
molten steel, is implemented. The third step is desulphurization
of the hot metal, which is implemented in the torpedo car.
In this step, sulphur is removed from the hot metal leaving
the blast furnace by injection of two reagents [40]. After the
desulphurization process, the liquid steel is transported to a
Basic Oxygen Furnace (BOF). The BOF is a large, open-mouthed,
pear-shaped vessel lined with a basic refractory material that
refines molten iron from the torpedo car, and ferrous scrap
into steel, by injecting a jet of high-purity oxygen to remove
carbon as CO and CO2. The steel is produced in BOFs and follows
similar routes after themolten steel is poured from the furnace.
The molten steel is transferred from the ladle metallurgy to
the continuous caster, which casts the steel into semi-finished
shapes (e.g., slabs, blooms, billets, rounds and other special
sections) [41].

Since reagents are expensive materials, steel factories are
eager to reduce their consumption. An inaccurate prediction of
reagents leads to their consummation being more than their
demand, especially when the demands of the reagents move
through the chain. The bullwhip effect exists in supply chains,
which causes demand amplification. So, if it is not controlled,
the second echelonmanufacturerwill ordermore reagents than
the real demands of the customers. This phenomenon causes a
lot of cost for the factory. So, in this paper, we focus on demand
prediction as one of the main causes of the bullwhip effect. We
show that when demands, orders, and lead times are type-2
fuzzy variables, the bullwhip effect is significantly reduced, in
comparison with the type-1 fuzzy system.

In order to measure the bullwhip effect, the following
process should be developed in the supply chain of a steel
industry:
(i) The end customer’s demand process;
(ii) The policy that the participant at each stage applies to

determine its inventory level and order quantity;
(iii) The forecasting method of each stage for predicting

demands and orders to the upstream stage [16].

In order to predict end customer demands, we develop a hybrid
expert system. First, we implement an Interval Type-2 FCRM
clustering algorithm (IT2 FCRM) [31], which was presented
in Section 2.1, for the structure identification phase of the
expert system. The outputs of the IT2 FCRM are membership
function parameters of antecedents and regression coefficients
of consequents in a rule based system.

Then, we use the outputs of the IT2 FCRM algorithm in
a hybrid expert system. This system is a combination of the
Mamdani and Sugeno inference mechanism. It uses regression
functions in consequents of the rule base system, similar to the
Sugeno method. There is no defuzzification step in the Sugeno
system because the consequents are functions. In contrast to
the Sugeno method, the antecedents and consequents of the
Mamdani rule-based system are fuzzy sets, so defuzzification
is required. Therefore, by combining these two inference
engines, the new method is obtained. In order to aggregate the
antecedents, we use FDNF and FCNF and modify the algorithm
proposed by Türksen [30]. For the implication process, we
first defuzzify the result of the aggregated antecedents; then,
the result of the defuzzification step is normalized. Next,
parameters of the system are tuned with the Adaptive-
Network-Based Fuzzy Inference System (ANFIS).

3.2. Steps of the proposed inference system

• Fuzzification
In this step, in order to identify membership functions and

the number of rules, the result of the IT2 FCRMalgorithm is used
from Section 2.1. [42].
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• Aggregation of antecedents
For this step, Türksen’s FDNF and FCNF methods, which are

obtained from the truth table, are used in order to aggregate
antecedents. The formulations of these methods are presented
in Eq. (22) for FDNF. Eq. (23) describes the FCNF method
for each upper and lower membership functions. Those two
equations are used to aggregate antecedents. Because the
consequent parts of our proposed method are auto-regressive
moving average functions, FDNF and FCNF are used only for
aggregation of antecedents. The implication and aggregation of
consequents proposed by Türksen [30] are not mentioned here.
Aggregation of antecedents was presented by Türksen [30], and
we propose the following stages for the remaining inference
engine processes [42].

• Defuzzification
In the Mamdani method, defuzzification is used after infer-

ence. However; since FDNF and FCNF are used in our proposed
method, aggregated antecedents should be defuzzified in order
to take the weighted average of crisp consequents and aggre-
gated antecedents. It means that defuzzification is done in the
inference engine. In this paper, Yager defuzzification, which is
presented in Eq. (34), is used. In the following equations, ‘i’ in-
dicates the number of rules [42].

Bi =


x
Ai(x∗(r))α × x

x
xα

∀ i = 1, . . . , c 0 < α < 1. (34)

• Normalization
In order to take the weighted average of aggregated

antecedents and consequents, the crisp value of each rule
obtained from the previous step should be normalized [42].

Wi =
Bi
Bi

∀ i = 1, . . . , c. (35)

• Implication
This step is used in order to weight the crisp consequent of

each rule [42].

Yi = W i ×Di ∀ i = 1, . . . , c. (36)

• Aggregation of Consequents
The model output of each rule is aggregated by taking the

weighted average of the output of each rule in the fuzzy rule
base [42].

Y =


i=1:c

Yi
i=1:c

Wi
∀ i = 1, . . . , c. (37)

These steps are used separately for upper and lower member-
ship functions for both FDNF and FCNF. After applying the last
step in the inference engine, the final output of the model is
obtained by combining the outputs of FDNF and FCNF [42]. Fig-
ure 2 shows the proposed interval type-2 fuzzy hybrid expert
system.

3.3. The proposed method in a steel supply chain

In order to predict end customer demands, we identify the
variables which influence the amount of reagents; Table 1
shows these variables. First, we predict the amount of reagents
related to the degree of sulphur with the proposed expert
system, in which consequents are regression functions.
Figure 2: Structure of the proposed interval type-2 fuzzy hybrid system.

Figure 3: Framework of interval type-2 fuzzy hybrid expert system.

3.3.1. Predicting the amount of reagent1
The steps of developing the IT2 fuzzy expert system is de-

picted in Figure 3. In the variable selection phase, the following
variables are selected: Endsulphur, KGS, Temp, FB, compound1,
compound2, compound3, compound4, and compound5.

If the starting amount of sulphur in the product is much
higher than the expectation, then, two reagents will be added
simultaneously. In this case, Reagent2 is the output and
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Figure 4: Rule base and inference mechanism in which reagent1 is an output for the proposed IT2F hybrid expert system.
Reagent1 is the input of the system. If the starting level of
sulphur is close to the targeted value, then only reagent1will be
used [37]. So, first, we predict the amount of reagent1 and, then,
reagent2 is forecasted. In the forecasting process of reagent2,
reagent1 is an input of the model.

The first step for forecasting the amount of reagent is to
obtain the number of rules and the parameters of antecedents
and consequents from the IT2 FCRM clustering algorithm. In
the second step, we use the proposed IT2 fuzzy hybrid expert
system. In addition, ANFIS is used for tuning the upper and
lower membership function parameters of antecedents and
regression coefficients in consequents of the IT2F hybrid expert
system.

Table A.1 in Appendix A shows themembership function and
regression parameters obtained from the IT2 FCRM clustering
method. Table A.2 in Appendix A demonstrates the parameters
of regression functions in consequents of the IT2F hybrid expert
system after tuning. Figure 4 depicts the rule base and inference
mechanism for the proposed IT2F hybrid expert system. The
first four rows show four rules for the first five variables, and
the second four rows depict the four rules for the remaining
variables and output of the system. The consequent of each
rule is shown in the second column from the right hand side
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Table 1: Input and output variables of a steel company in Canada.

Column Description

Id Batch Id column is created by K.I.L
Reagent1 Amount of reagent1 used in the process
Reagent2 Amount of reagent2 used in the process
Startsulphur(ss) Sulphur level of the batch before the desulphurization process
Endsulphur(es) Sulphur level of the batch after the desulphurization process
Aimsulphur The aimed level of sulphur which is planned to be retrieved after desulphurization process
Car Car identifier. It can be grouped in three categories: small (607–623), medium (637–641 and 601–623), jumbo (630–636)
Pos Is the specific station in which the sulphurization took place (there are four stations)
KGS Weight of the batch
Temp Temperature of the hot metal as it leaves the blast furnace
Practice 1 Indicates a certain type of intervention or modification to the normal operating practice. These take place over the course

of desulphurization and are not often known in advance
Practice2
Practice3
Practice4
Table 2: Coefficient test for reagent1.

Variables Coefficient Std. error t-statistic Prob.

AR(2) −0.103309 0.004282 −24.12827 0.0000
AR(4) 0.824410 0.006266 131.5599 0.0000
AR(5) 0.357875 0.017997 19.88511 0.0000
AR(9) −0.077964 0.018936 −4.117280 0.0000
MA(1) 0.980674 0.018719 52.38938 0.0000
MA(2) 1.075049 0.016387 65.60504 0.0000
MA(3) 1.094153 0.016185 67.60324 0.0000
MA(4) 0.249138 0.019124 13.02720 0.0000
MA(80) 0.018188 0.004884 3.724168 0.0002

R-squared 0.999889 Mean dependent var 285.4900 R-squared
Adjusted R-squared 0.999888 S.D. dependent var 46.92681 Adjusted R-squared
S.E. of regression 0.495660 Akaike info criterion 1.437487 S.E. of regression
Sum squared resid 658.9117 Schwarz criterion 1.457212 Sum squared resid
Log likelihood −1925.139 Hannan–Quinn criter. 1.444622 Log likelihood
of the last four rows. The last column from the right side of the
figure contains two subfigures. The first subfigure from the top
indicates the output of the system for both upper and lower
bounds. The second subfigure depicts the final output of the
system,which is the aggregated result of a combination of FDNF
and FCNF.

3.3.2. Predicting end customer demand with ARMA method
The first step for measuring the bullwhip effect is to predict

end customer demand. After predicting the amount of reagent1,
the end customer demand should be predicted for steel with
different degrees of sulphur in the desulphurization process
for the next 300 days. An Auto Regressive Moving Average
(ARMA) method is used for demand prediction. It means that
the consequent parts of the IT2F hybrid expert systemareARMA
functions. 2700 data from 5000 data of the predicted amount of
reagents are selected for identifying the ARMA function. After
applying the statistical test, these variables are selected: AR(2),
AR(4), AR(5), AR(9), MA(1), MA(2), MA(3), MA(4), and MA(80).
Table 2 shows the results of the statistical test. Figure 5 depicts
the residual of themodel and actual output, as well as the fitted
output.

After determining ARMA variables, we divide 2700 data
of reagents into nine groups for nine ARMA variables, which
were selected from the variable selection phase. This leads to
allocating 300 data to each variable for predicting end customer
demand for the next 300 days. Figure 3 depicts the results of
applying the IT2 FCRM method using 300 data for each ARMA
variable.
Figure 5: Actual and fitted data with the residual of the system.

In the next step, ANFIS is used for tuning the upper and
lower membership function parameters of antecedents and
ARMA coefficients in the consequents of the IT2F hybrid expert
system. Table A.2 in Appendix A demonstrates the parameters
of regression functions in consequents after tuning. In this
table, vjk is the mean of the upper Gaussian membership
function and vjk is themean of the lower Gaussianmembership
function. In addition, σ jk and σ jk are the standard deviations of
upper and lower Gaussian membership functions, respectively.
In Appendix A, Table A.3 shows the tuned parameters of
upper membership functions, and Table A.4 shows the tuned
parameters of lower membership functions.

After identifying the parameters of the system with IT2
FCRM, the inference step should be performed. Eq. (38) shows
the structure of the rules, which are used in the IT2F hybrid
expert system for the inference phase. We assign nine linguis-
tic terms to the ARMA variables: ‘‘very very high’’, ‘‘very high’’,
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‘‘high’’, ‘‘mediumhigh’’, ‘‘medium’’, ‘‘medium low’’, ‘‘low’’, ‘‘very
low’’, and ‘‘very very low’’. Thismeans that the demand for each
reagent is related to the amount of sulphur. For example, when
the amount of sulphur is ‘‘very very low’’ it consumes lower
reagents, and the demand for low sulphur steel is ‘‘very very
high’’. Also, the demand for ‘‘very low’’ sulphur steel is ‘‘very
high’’. The next linguistic is ‘‘low’’ sulphur, which is equal to
‘‘high’’ demand. ‘‘medium low’’ sulphur has ‘‘medium high’’ de-
mand. Other linguistic variables are assigned to IT2 fuzzy de-
mands by the same order. This order continues to reach the final
linguistic, which is ‘‘very very high’’ sulphur, whose demand is
‘‘very very low’’:

Rk
: IF Dk

t−2 is Ã AND Dk
t−4 is B̃ AND Dk

t−5 is C̃

AND Dk
t−9 is Ẽ AND εt−1 is F̃ AND εt−2 is G̃ AND εt−3

is H̃ AND εt−4 is Ĩ AND εt−80 is J̃ THEN Dk
t = ϕ1 ×Dk

t−2

+ ϕ2 ×Dk
t−4 +ϕ3 ×Dk

t−5 +ϕ4 ×Dk
t−9 +θ1 × εk

t−1 + θ2

×εk
t−2 + θ3 × εk

t−3 + θ4 × εk
t−4 + θ5 × εk

t−80, (38)

where Rk is the kth rule, and Ã, B̃, C̃, Ẽ, F̃ , G̃, H̃, Ĩ , and J̃ are type-
2 linguistic variables. In Eq. (38), Dk

t−i indicates the demand for
the (t − i)th period and the kth rule; ϕi is the autoregressive
coefficient. In Eq. (38), εk

t−j indicates themoving average for the
(t − j)th period and the kth rule; θi is the moving average coef-
ficient, where, i = 2, 4, 5, 9 and j = 1, 2, 3, 4, 80.

Using the IT2F hybrid expert system with the above rule
base, which consists of four rules, we forecast end customer
demand.

3.3.3. Predicting the order policy for each entity in the chain
The second step for measuring the bullwhip effect is the

policy that each participant at each stage applies to determine
its inventory level and order quantity. The order that moves
from end customer to upstream (warehouse2) is calculated
with the following equations [43] (we extend the type-1 fuzzy
ordering policy presented by [43] to the type-2 fuzzy model):

S̃k,t = m̃k,t + zk
√

vk,t , (39)

where:

m̃k,t = E

 l̃k+1
i=1

D̃k,t+i|D̃k,t

 , (40)

vk,t = var

 l̃k+1
i=1

D̃k,t+i|D̃k,t

 , (41)

zk = ϕ−1(hk/(pk + hk)), (42)

where S̃k,t is an interval type-2 fuzzy value of ‘‘the order-up-to

level’’ at stage k and period t , E(
l̃k+1

i=1 D̃k,t+i|D̃k,t) is themean of

the interval type-2 fuzzy set, and var(
l̃k+1

i=1 D̃k,t+i|D̃k,t) is equal
to the variance of interval type-2 fuzzy sets. In order to calculate
the mean and variance of interval type-2 fuzzy sets, we useWu
and Mendel’s definitions [44].

Definition 1. Centroid of an IT2 FS. The centroid CÃ of an IT2
FS Ã is the union of the centroids of all its embedded T1 FSs Ae,
i.e. [44]:

CÃ ≡


∀Ae

C(Ae) =


Cl


Ã


, Cr


Ã


, (43)
where ∪ is the union operation, and:

Cl


Ã


= min
∀Ae

C(Ae), (44)

Cr


Ã


= max
∀Ae

C(Ae). (45)

Cl


Ã

and Cr


Ã

can be expressed as [44–47]:

Cl


Ã


=

L
i=1

xiµÃ(xi) +

N
i=L+1

xiµÃ
(xi)

L
i=1

µÃ(xi) +

N
i=L+1

µ
Ã
(xi)

(46)

Cr


Ã


=

R
i=1

xiµÃ
(xi) +

N
i=R+1

xiµÃ(xi)

R
i=1

µ
Ã
(xi) +

N
i=R+1

µÃ(xi)
(47)

where µ
Ã
(xi) is the lower membership function, and µÃ(xi) is

the upper one in domain xi.

Definition 2. Variance of an IT2 FS. One way to define variance
VÃ of an IT2 FS Ã is to find the union of the variances of all its
embedded T1 FSs Ae, i.e. [44]:

VÃ =


∀Ae

v(Ae) =


∀Ae


N
i=1

[xi − C(Ae)]2 µ Ae(xi)

N
i=1

µ Ae(xi)

 . (48)

Since there are an uncountable number of Ae, this method
cannot compute the variances of all Ae; Wu and Mendel [44]
have presented Eqs. (49) and (50) to calculate the variance of
IT2F sets:

vÃ(Ae) =

N
i=1

[xi − C(A)]2 µAe(xi)

N
i=1

µ Ae(xi)
, (49)

C(A) =

Cl


Ã


+ Cr


Ã


2
(50)

where C(A) is the center of the centroid of Ã and CÃ that was
given in Eq. (43) [44].

3.3.4. Demand prediction of each entity in the supply chain
The third step that should be determined for measuring

the bullwhip effect is the demand forecasting method of each
entity [16,43]. It is assumed that each entity in the supply chain
has the same inventory and order policy as follows [16]:

D̃k+1,t = D̃k,t + (S̃k,t − S̃k,t−1), (51)

where S̃k,t is an interval type-2 fuzzy value of ‘‘the order-up-to
level’’ at stage k and period t , and D̃k,t is an interval type-2 fuzzy
value of ‘‘demand’’ at stage k and period t . In order to predict the
demand of each entity in supply chains, we use the proposed
interval type-2 fuzzy hybrid expert system. First, we use the
IT2 FCRM algorithm to cluster the data of these variables:
(D̃k+1,t , D̃k,t , S̃k,t , S̃k,t−1). Then, the following rule base system
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is utilized in an interval type-2 fuzzy hybrid expert system
for the inference phase. It should be mentioned that ANFIS
is implemented seven times for tuning the parameters of the
system for each entity in the supply chain:

Rk
: IF D̃k,t is Ã AND S̃k,t is B̃ AND S̃k,t−1 is C̃,

THEN D̃k+1,t = γ × D̃k,t + (δ × S̃k,t − τ × S̃k,t−1) (52)
where γ , δ and τ are regression coefficients. We consider
Eq. (51), the ordering policy, as the regression function for
predicting the value of D̃k+1,t .

3.3.5. Measuring and reducing bullwhip effect in type-1 and type-
2 fuzzy environment

In order to measure the bullwhip effect in the type-1 fuzzy
environment, the amount of reagents should be predicted.
We use the type-1 fuzzy expert system for predicting the
amount of reagents. The first phase of the type-1 fuzzy
expert system is structure identification with type-1 fuzzy c-
regression clustering [29]. This algorithm has been presented
by Li et al. [29], and we use it with some modifications.

The first modification is the use of a Gaussian mixture for
generating the partition matrix. The other modification is to
use the weighted least square method, presented in Eq. (2), for
producing regression coefficients instead of Eq. (57).

In FCRM, the distance between the data pair and the cluster
representative is defined by Eq. (53). The goal of the FCRM
algorithm is to minimize the objective function, represented in
Eq. (54). Eq. (56) shows the constraint in the FCRM algorithm,
wherein the summation of memberships of a data point in all
clusters has to be one [29]:

dik (θi) =
yk − [xk1] · θ T

i

 . (53)

Jm (U, θ) =

n
k=1

c
i=1

(µik)
m (yk − [xk1] · θ T

i )2

=

n
k=1

c
i=1

(µik)
m


yk −

M+1
j=1

θijx̂kj

2

, (54)

where x̂k = [xk, 1] ,m ∈ (1, ∞) is the fuzzy weighting
exponent, and µik ∈ [0, 1] is the fuzzy membership degree of
the kth data pair belonging to the ith cluster. Eq. (55) shows this
membership function:

µik =
1

c
j=1


dik(θi)/djk(θj)

2/(m−1) , (55)

c
i=1

µik = 1, k = 1, 2, . . . , n, (56)

θik =

n
k=1

(µik)
m


yk −


t≠j

θit x̂kt


x̂kj

n
k=1

(µik)mx̂2kj

,

i = 1, 2, . . . , c, j = 1, 2, . . . ,M + 1. (57)
Eqs. (58) and (59) show the means and standard deviations of
the Gaussian membership function of premises [29,39]:

vij =

n
k=1

µikxkj

n
k=1

µik

, i = 1, 2, . . . , c j = 1, 2, . . . ,M, (58)
Figure 6: End customer’s demand and warehouse2’s order (first entity in
manufacturer tier).

σij =


2

n
k=1

µik(xkj − vij)2

n
k=1

µik

,

i = 1, 2, . . . , c j = 1, 2, . . . ,M. (59)

The consequent parameters are defined by Eq. (60) [29,39]:

y = pθ + e, θ =

θ0
1 , . . . , θM

1 , . . . , θ0
c , . . . , θM

c


,

y = [y1, y2, . . . , yn] ,
(60)

where e = [e1, e2, . . . , en ]T is the error vector, ek = yk −

ŷk (1 ≤ k ≤ n),

pi(xk) = [1, λ1kxk1, . . . , λ1kxkM , . . . ,

1, λckxk1, . . . , λckxkM ], (61)

where xkj (1 ≤ k ≤ n, 1 ≤ j ≤ d) is the jth element of the kth
input and λik (1 ≤ i ≤ c, 1 ≤ k ≤ n) is the combination of
weights of rules [29,39].

λik =
wi
n

i=1
wi

. (62)

After identifying the parameters of antecedents and conse-
quents, the type-1 fuzzy expert system is used for predicting
the amount of reagents. Then, the end customer demand is pre-
dicted for steel with different degrees of sulphur in the desul-
phurization process for the next 300 days. The Auto Regressive
Moving Average (ARMA)method is used for demandprediction.
It means that the consequent parts of the type-1 fuzzy expert
system are ARMA functions.

The next step for measuring the bullwhip effect is the policy
that each participant at each stage applies to determine its
inventory level and order quantity. The order that moves from
end customer to upstream (warehouse2) is calculated with
the method presented in [43]. We explained that method in
Section 3.3.3 for the type-2 fuzzy system. In this section, we use
it in a type-1 fuzzy expert system.

After predicting end customer demand, determining order-
ing policy, and predicting the demands of each entity in the sup-
ply chain, the bullwhip effect is measured with both a type-1
fuzzy expert system and an interval type-2 fuzzy hybrid expert
system.

When demands move from downstream to upstream, they
are amplified. This demand amplification is named the bullwhip
effect. Figures 6–12 depict the demand and order of each entity
for type-1 and interval type-2 fuzzy systems, as well as demand
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Figure 7: Warehouse2’s demand and continuous caster’s order (second entity
in manufacturer tier).

Figure 8: Continuous caster’s demand and BOF’s order (third entity in
manufacturer tier).

Figure 9: BOF’s demand and torpedo car’s order (forth entity in manufacturer
tier).

amplification (bullwhip effect), in the supply chain. In order to
show demand amplification clearly in these figures, we use the
last 51 data points from300 data. If we used thewhole 300 data,
the boundary of lines would not be recognizable because of the
massive data points in the figures. As these figures show, the
bullwhip effect is significantly reduced by our proposed interval
type-2 fuzzy hybrid expert system in comparisonwith the type-
1 fuzzy expert system and fuzzy time series presented in [16].

In order to validate our model, we compare the results of
the interval type-2 fuzzy hybrid expert system with the type-1
fuzzy time seriesmethod in the literature. Thismethodhas been
presented by Fazel Zarandi et al. [16]. They used the fuzzy time
series for demand prediction. The method that they applied
for predicting end customer demand was a fuzzy triangular
Figure 10: Torpedo car’s demand and blast furnace order (fifth entity in
manufacturer tier).

Figure 11: Blast furnace demand and warehouse1’s order (sixth entity in
manufacturer tier).

Figure 12: Warehouse1’s demand and supplier’s order.

number, in which the midpoint was ARMA and the left and
right points were generated randomly. Figures 13–16 show
the results of the demand and order prediction of that model.
As Figures 13–16 show, the variability of demands and orders
from downstream to upstream is high in comparison with our
proposed method.

Figure 17 depicts demands of the end customer, ware-
house2, continuous caster, BOF, torpedo car, blast furnace, and
warehouse1, which are obtained from the interval type-2 fuzzy
hybrid expert system. In order to show demand amplification
clearly in Figures 17 and 18, we use the last 51 data points from
300 data. Figure 17 shows that the difference between the de-
mands of each entity and the demands of its upstream sup-
plier is very low. Figure 18 depicts the demands of the entities
forecast by the type-1 fuzzy expert system. This figure shows
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Figure 13: Customer’s demand and retailer’s order forecasted by type-1 fuzzy
time series [16].

Figure 14: Retailer’s demand and distributer’s order forecasted by type-1 fuzzy
time series [16].

Figure 15: Distributer’s demand and producer’s order forecasted by type-1
fuzzy time series [16].

that the difference between the demands of each entity and the
demands of its upstream supplier is higher than our proposed
interval type-2 fuzzy hybrid expert system. It means that the
demand variation in the type-1 fuzzy expert system is more
than the demand amplification in our proposed interval type-
2 fuzzy hybrid expert system.
Figure 16: Producer’s demand and supplier’s order forecasted by type-1 fuzzy
time series [16].

Figure 17: Demands of each entity in the chain forecasted by IT2F hybrid expert
system.

Figure 18: Demands of each entity in the chain forecasted by type-1 fuzzy
expert system.

Figure 19 depicts the orders of warehouse2, continuous
caster, BOF, torpedo car, blast furnace, warehouse1, and
supplier. The orders of each entity are very close to its upstream
cooperator in the chain. Figure 20 shows the orders of each
entity calculated with the type-1 fuzzy expert system. In
comparison with the IT2F system, the orders of each entity are
farther from its upstream cooperator in the chain.

If Var(Dend customer)<Var(DWarehouse2)<Var(DContinuous caster)
< Var (DBOF) < Var


DTorpedo car


< Var (DBlast Furnace) < Var

(DWarehouse1) exists between the demand variance of end
customer, warehouse2, continuous caster, BOF, torpedo car,
blast furnace, andwarehouse1, itmeans that the bullwhip effect
exists in the chain. Table 3 shows that in the type-1 fuzzy
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Table 3: Value of demand variance and BWmetric of reagent1 for different entities.

End
customer

Warehouse2 Continuous
caster

BOF Torpedo car Blast
furnace

Warehouse1

Type-1 fuzzy variance of demands 400.8059594 401.0527292 402.2934512 404.1183751 404.4611015 405.5177001 406.6546425
Metric value for Type-1 expert system – 0.000615684 0.003093663 0.0045363 0.000848084 0.002612361 0.002803681
Interval Type-2 fuzzy variance of demands 408.3135523 408.1530656 407.9833725 407.8328927 407.5073497 407.2617169 407.1679306
Metric value for IT2F hybrid expert system – 0.000393048 0.000415758 0.000368838 0.000798226 0.000602769 0.000230285
Figure 19: Orders of each entity in the chain forecasted by IT2F hybrid expert
system.

Figure 20: Orders of each entity in the chain forecasted by type-1 fuzzy expert
system.

method, the above relation between the variance of demands
is true. However, in the proposed interval type-2 fuzzy hybrid
expert system, the inequality sign (‘‘>’’) exists between the
variance of each entity from downstream (‘‘end customer’’) to
upstream (‘‘warehouse1’’). It means that the bullwhip effect
in the steel supply chain is significantly reduced with the
proposed IT2F hybrid expert system.

In order to quantify the bullwhip effect, we utilize a metric
proposed by Li et al. [48]. This metric uses the variance of
demands predicted by our proposed interval type-2 fuzzy
hybrid expert system. Then, we calculate this metric with the
variance of demands predicted by the type-1 fuzzy expert
system and the method proposed by Fazel Zarandi et al. [16].
In the next step, we compare the results of the metric obtained
from those aforementioned methods. Eq. (63) shows this
metric:

Ai,j =
Var(Di) − Var(Dj)

Var(Dj)
. (63)

When this metric is used, if
Ak+2,k+1

 >
Ak+1,k

, it is said
that the information transformation propagates from stage k to
Table 4: Value of sample variance and BWmetric for different stages.
Source: [16].

Retailer Distributor Producer Supplier

Variance of demand 0.0640 0.2994 1.0329 1.9142
Metric value – 0.7862 0.7721 0.4604

k + 2 in an increasing magnitude. Otherwise, if
Ak+2,k+1

 <Ak+1,k
, we say that the information transformation propagates

from stage k to k + 2 in a decreasing magnitude [16]. In order
to calculate interval type-2 fuzzy variance, Wu and Mendel’s
formulation [44], presented in Section 3.3.3, is used. The results
of computing the metric value are presented in Table 3. The
results show that the metric value for our proposed interval
type-2 fuzzy hybrid expert system is reduced significantly in
comparison with the type-1 fuzzy system. After comparing
the results of the proposed method (Table 3) with the results
of Fazel Zarandi et al. [16], which are shown in Table 4, this
conclusion is obtained: The metric value for each entity is
reduced drastically in the interval type-2 fuzzy hybrid expert
system in comparison with the method proposed in [16]. In
addition, the type-1 fuzzy expert system used in this paper has
less metric value than its corresponding value in [16].

3.3.6. Predicting the amount of reagent2
When the start sulphur is far from the targeted sulphur,

reagent2 is added in the desulphurization process for reducing
the amount of sulphur. So, in this section, similar to the pro-
cesses for reagent1, first, we predict the amount of reagent2
with the interval type-2 fuzzy hybrid expert system. The vari-
able selection is done with the least square method. These vari-
ables are selected with that method for predicting reagent2:
Reagent1, AimSulphur, StartSulphur, EndSulphur, KGS, Temp,
Compound1, Compound2, Compound3, Compound4, and Com-
pound5.

The rule base and inference mechanism for the proposed
IT2F hybrid system is depicted in Figure 21. The first four rows
show four rules for the first six variables, and the second four
rows depicts the four rules for the remaining variables and
output of the system. The second column from the right hand
side shows the consequent of each rule. The last column from
the right side of the figure contains two subfigures. The first
subfigure from the top indicates the output of the system for
both upper and lower bounds. The second subfigure depicts the
final output of the system, which is the aggregated result of
FDNF and FCNF for predicting the amount of reagent2.

Table 5 indicates the Mean Square Error (MSE) of the
proposed method, multiple-regression, type-1 fuzzy expert
system, interval type-2 fuzzy TSK, and the method proposed by
Fazel Zarandi et al. [37]. The results show that the proposed IT2F
hybrid expert system has less error and higher accuracy than
other methods. Table 5 shows that the MSE of the proposed
method after training is 0.048482 for reagent1. This error is
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Figure 21: Rule base and inference mechanism where reagent2 is an output for the proposed IT2F hybrid expert system.
Table 5: Mean Square Error (MSE) of different methods.
Source: [42].

MSE Systems
Multiple
regression

The method
presented by Fazel
Zarandi et al. [16]

Type-1 fuzzy
model

Interval type-2
fuzzy TSK

Proposed
method before
training

Proposed method
after training

Error for the first model, in
which reagent1 is an output

0.065927 0.049523 0.191931 0.057487 0.056470 0.048482 (with 20
hidden layers)

Error for the second model, in
which reagent2 is an output.

0.033650 0.047454 0.074957 0.029406 0.029187 0.003692 (with 100
hidden layers)
less than the MSE of type-1 fuzzy (0.191931), MSE of multiple-
regression (0.065927), and MSE of interval type-2 fuzzy TSK
(0.057487). Moreover, the proposed method has less error
(0.048482) in comparison with the method presented in [37],
which is equal to 0.049523. The error reduction power of the
proposedmethod is more observable for reagent2. This powder
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Figure 22: End customer’s demand and warehouse2’s order for reagent2.

Figure 23: Warehouse2’s demand and continuous caster’s order for reagent2.

Figure 24: Continuous caster’s demand and BOF’s order for reagent2.

is a more important material in the desulphurization process
of steel making, since it is more expensive in comparison to
reagent1. So, we need to predict the amount of reagent2 as
accurately as possible, in order to avoid ordering more than
the real requirement of the factory. The MSE of the proposed
method after training, for reagent2, is 0.003692, which is less
than the MSE of type-1 fuzzy (0.074957), MSE of multiple-
regression (0.033650), and MSE of interval type-2 fuzzy TSK
(0.029406). In addition, the proposed method has less error
(0.003692) in comparison with the method presented in [37],
which is equal to 0.047454.
Figure 25: BOF’s demand and torpedo car’s order for reagent2.

Figure 26: Torpedo car’s demand and blast furnace’s order for reagent2.

Figure 27: Blast furnace’s demand and warehouse1’s order for reagent2.

Figure 28: Warehouse1’s demand and supplier’s order for reagent2.
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Table 6: Value of demand variance and BWmetric of reagent2 for different entities.

End
customer

Warehouse2 Continuous
caster

BOF Torpedo car Blast
furnace

Warehouse1

Type-1 fuzzy variance of demands 26.02314613 26.42708973 26.67347479 26.52753078 26.5174378 26.31382465 26.34257093
Metric value for Type-1 expert system – 0.015522474 0.009323201 0.005471504 0.000380472 0.007678462 0.00109244
Interval Type-2 fuzzy variance of demands 26.13074482 26.12773479 26.17700797 26.15481011 26.15406357 26.19792586 26.27029294
Metric value for IT2F hybrid expert system – 0.000115191 0.001885857 0.000847991 0.000028543 0.001677074 0.002762321
Figure 29: Demands of each entity in the chain for reagent2 forecasted by IT2F
hybrid expert system.

Figure 30: Demands of each entity in the chain for reagent2 forecasted by type-
1 fuzzy expert system.

3.3.7. Predicting end customer demand with ARMA method
In this section, reagent2 is considered as the end customer

demand. Predicting end customer demand is the first step
towards measuring the bullwhip effect. End customer demand
should be predicted for the next 300 days for each degree of
sulphur in the desulphurization process. The Auto Regressive
Moving Average (ARMA)method is used for demandprediction.
It means that the consequent part of the IT2F hybrid expert
system is an ARMA function. In order to identify the ARMA
function, we select 2700 data from 5000 data of the predicted
amount of reagents. After applying statistical tests, these
variables are selected: AR(2), AR(4), AR(5), AR(9),MA(1),MA(2),
MA(3), MA(4), and MA(80).

After determining ARMA variables, we divide 2700 data of
reagents into nine groups for nine ARMA variables, which were
selected from the variable selection phase. This process leads to
assigning 300 data to each variable for predicting end customer
Figure 31: Orders of each entity in the chain forecasted by IT2F hybrid expert
system.

Figure 32: Orders of each entity in the chain for reagent2 forecasted by type-1
fuzzy expert system.

demand for the next 300 days. The IT2 FCRM method, which
was presented in Section 2.1, is applied using 300 data for
each ARMA variable. In Appendix B, Tables B.1 and B.2 show
membership function parameters obtained from the IT2 FCRM
clusteringmethod after parameter tuningwith ANFIS. Table B.3
indicates parameters of regression functions in consequents
after tuning.

After identifying the parameters of the system with IT2
FCRM, the inference step should be developed. Nine linguistic
terms are assigned to the ARMA variables for reagent2 in
the fuzzification step: ‘‘very very high’’, ‘‘very high’’, ‘‘high’’,
‘‘medium high’’, ‘‘medium’’, ‘‘medium low’’, ‘‘low’’, ‘‘very low’’,
and ‘‘very very low’’.

The ordering policy and demand of each entity in the
chain for reagent2 is calculated similar to reagent1, which was
presented in Sections 3.3.3 and 3.3.4.

3.3.8. Measuring and reducing bullwhip effect
The next steps for measuring the bullwhip effect are to

calculate the demand of each entity and the order that moves
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Table A.1: Membership function and regression parameters where reagent1 is an output of the IT2 FCRM.

IT2 fuzzy parameters

Rule1
200.386923889683 199.78273665084 29.154714561463 28.71977903503 0.992306953796287
v12 v12 σ 12 σ 12 a12
240.378987444701 240.22008138113 6.9997872565227 6.829769919302 0.0680872873954286
v13 v13 σ 13 σ 13 a13
256.521432108360 256.36670121299 6.2021546606634 6.014976281301 0.0680872873954286
v14 v14 σ 14 σ 14 a14
270.370177742795 270.19520552506 8.8560714904950 8.792889134618 −0.00164602183212992
v15 v15 σ 15 σ 15 a15
286.721704150994 286.60505717758 6.3582965563913 6.236712872548 0.0134452820420847
v16 v16 σ 16 σ 16 a16
301.200089303269 301.08604752786 5.5081435487796 5.369661628348 0.0243054005841259
v17 v17 σ 17 σ 17 a17
317.277927250643 317.15689587577 5.6781761024962 5.518121102838 −0.0390284665409126
v18 v18 σ 18 σ 18 a18
334.286405695644 334.12455470885 9.8015632817378 9.656319722936 −0.0160002726338462
v19 v19 σ 19 σ 19 a19
359.505054161935 359.25061733505 11.076768586337 10.77929424939 0.00266575697423832

b10
−6.45425755158067

Rule2 v21 v21 σ 21 σ 21 a21
199.883623589104 200.14662509359 27.733210119964 28.02615271308 0.997597096013124
v22 v22 σ 22 σ 22 a22
240.356503783117 240.40784233873 6.4835381253128 6.492926097973 −0.0241309895445738
v23 v23 σ 23 σ 23 a23
256.604227543059 256.67589840588 5.7162738665179 5.689179006228 0.0266908722829839
v24 v24 σ 24 σ 24 a24
270.126604401960 270.26274128284 8.5418333764863 8.542130177744 −0.0116598585227621
v25 v25 σ 25 σ 25 a25
286.668763654920 286.73274608976 5.8653181701639 5.915270247358 0.0546987912421173
v26 v26 σ 26 σ 26 a26
301.163210994670 301.21143581545 5.0292683392491 5.055587995164 −0.00258356434642337
v27 v27 σ 27 σ 27 a27
317.320595845143 317.35511840629 5.1015789328826 5.113713102915 −0.0160782763996394
v28 v28 σ 28 σ 28 a28
334.173447366642 334.27992424031 9.2983167439347 9.293036693155 −0.0123426710515560
v29 v29 σ 29 σ 29 a29
359.472869743826 359.59872066176 10.189734005043 10.20880665460 0.000958262007770827

b20
−3.20224236324430

Rule3 v31 v31 σ 31 σ 31 a31
200.084831524207 199.47384345974 28.521312399802 28.61924619775 1.00038021589899
v32 v32 σ 32 σ 32 a32
240.300442141778 240.13271074641 6.8439544018164 6.858928128989 −0.0187914857187934
v33 v33 σ 13 σ 33 a33
256.451792214693 256.30035076015 6.1006254784743 6.084011227327 −0.00410993461491671
v34 v34 σ 34 σ 34 a34
270.340229583777 270.12998447347 8.7247474292744 8.759538603582 0.0149190465381253
v35 v35 σ 35 σ 35 a35
286.692057152096 286.52857224753 6.1929887585724 6.208349034995 −0.0625144882289987
v36 v36 σ 36 σ 36 a36
301.160692538486 301.02286250282 5.2812794298939 5.302542982667 −0.028968875209102
v37 v37 σ 37 σ 37 a37
317.260640030407 317.13372907610 5.4389609025414 5.476156928078 0.0337565070894925
v38 v38 σ 18 σ 38 a38
334.268895045785 334.04485324558 9.6310699934765 9.670662675240 0.0205755915972077
v39 v39 σ 39 σ 39 a39
359.389624517381 359.14132614800 10.754432441651 10.76161026005 0.0137478195538279

b30
5.82769897207618

Rule4
v41 v41 σ 41 σ 41 a41
200.564962571797 200.19247348018 29.356754189162 29.21609218973 1.00295877840290
v42 v42 σ 42 σ 42 a42
240.469140900366 240.39103433857 6.9659813293248 6.977026792209 −0.0359335819175612
v43 v43 σ 43 σ 43 a43
256.627757645573 256.55255206873 6.2040546078353 6.149153117260 0.0258010084103262

(continued on next page)
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Table A.1 (continued)

IT2 fuzzy parameters

v44 v44 σ 44 σ 44 a44
270.650153530683 270.60291904336 8.8672042415837 8.876849369984 0.0401843806685065
v45 v45 σ 45 σ 45 a45
286.812715748138 286.76688080765 6.2883402135872 6.312697123053 0.000421580994043325
v46 v46 σ 46 σ 46 a46
301.264920538835 301.18901571181 5.4216435762859 5.402242700356 −0.0596213198150508
v47 v47 σ 47 σ 47 a47
317.335079274534 317.24934112582 5.6584438772265 5.621983051787 −0.0363773121353006
v48 v48 σ 48 σ 48 a48
334.433249345254 334.38228537627 9.8783783207043 9.831625767418 0.0109459600346327
v49 v49 σ 49 σ 49 a49
359.646364080831 359.47866655465 10.974619178208 10.92916206040 0.00836995833742549

b40
13.5331820361316
Table A.2: Parameters of regression functions in consequents for reagent1
after tuning.

Rules Regression function parameters

Rule1 a11 a12 a13 a14 a15
16.02 6.611 −50.82 26.23 −27.17
a16 a17 a18 a19 b10
43.08 25.6 −59.76 22.47 −9.745

Rule2 a21 a22 a23 a24 a25
5.87 3.245 −20.63 14.39 2.784
a26 a27 a28 a29 b20
10.85 1.444 −22.4 7.383 −10.27

Rule3 a31 a32 a33 a34 a35
−8.003 2.942 46.46 −42.28 12.88
a36 a37 a38 a39 b30
−45.23 −13.58 63.53 −18.02 −9.304

Rule4 a41 a42 a43 a44 a45
−10.15 −12.41 25.79 1.507 12.34
a46 a47 a48 a49 b40
−9.53 −13.72 18.92 −12.33 −10.54

upstream. For this purpose, both type-1 fuzzy expert system
and the proposed interval type-2 fuzzy hybrid expert system
are used.

After identifying the parameters of antecedents and con-
sequents with IT2 FCRM, the type-1 fuzzy expert system is
implemented. Figures 22–28 depict the demand and order
of each entity estimated by type-1 and the proposed type-2
fuzzy systems. As shown in these figures, the bullwhip effect
is significantly reduced by using the proposed interval type-
2 fuzzy expert system in comparison with the type-1 fuzzy
system.

Figure 29 shows the demands of the end customer, ware-
house2, continuous caster, BOF, torpedo car, blast furnace, and
warehouse1 for the proposed Interval Type-2 Fuzzy (IT2F) ex-
pert system. The corresponding demands in the type-1 fuzzy
expert system are depicted in Figure 30. Figure 29 shows that
the proposed type-2 fuzzy hybrid expert system has a little de-
mand amplification (bullwhip effect) from the end customer
to the upstream entities. The comparison of Figure 29 with
Figure 30 shows that the demand variation in the type-1 fuzzy
expert system is much more than the demand amplification in
the proposed IT2F hybrid expert system.

Figure 31 depicts the orders of warehouse2, continuous
caster, BOF, torpedo car, blast furnace, warehouse1, and
supplier forecast by the IT2F hybrid expert system. As explained
for demand predictions, the orders of each entity are very close
to its upstream cooperator in the chain. The orders predicted
by the type-1 fuzzy expert system are shown in Figure 32. The
variation of orders calculated by the type-1 fuzzy system is
higher than those predicted by the IT2F expert system.

The results of computing the metric values are presented in
Table 6. The results show that the metric value for an interval
type-2 fuzzy hybrid expert system is reduced significantly in
comparison with a type-1 fuzzy system.
Table A.3: Parameters of upper membership function for reagent1 after tuning.

Rules Membership functions parameters

Rule1 [v11 , σ 11 ] [v12, σ 12 ] [v13, σ 13 ] [v14, σ 14] [v15, σ 15]

[29.15 200.4] [7.007 240.4] [6.18 256.5] [8.865 270.4] [6.422 286.7]
[v16 , σ 16 ] [v17, σ 17 ] [v18, σ 18] [v19, σ 19 ]

[5.454 301.2] [5.632 317.3] [9.82 334.3] [11.09 359.5]

Rule2 [v21 , σ 21 ] [v22, σ 22 ] [v23, σ 23 ] [v24, σ 24] [v25, σ 25]

[27.73 199.9] [6.491 240.4] [5.71 256.6] [8.555 270.1] [5.895 286.7]
[v26 , σ 26 ] [v27, σ 27 ] [v28, σ 28] [v29, σ 29 ]

[4.998 301.2] [5.089 317.3] [9.3 334.2] [10.2 359.5]

Rule3 [v31 , σ 31 ] [v32, σ 32 ] [v33, σ 33 ] [v34, σ 34] [v35, σ 35]

[28.52 200.1] [6.836 240.3] [6.125 256.5] [8.7 270.3] [6.133 286.7]
[v36 , σ 36 ] [v37, σ 37 ] [v38, σ 38] [v39, σ 39 ]

[5.331 301.2] [5.469 317.3] [9.626 334.3] [10.75 359.4]

Rule4 [v41 , σ 41 ] [v42, σ 42 ] [v43, σ 43 ] [v44, σ 44] [v45, σ 45]

[29.35 200.6] [6.96 240.5] [6.207 256.6] [8.872 270.7] [6.253 286.8]
[v46 , σ 46 ] [v47, σ 47 ] [v48, σ 48] [v49, σ 49 ]

[5.456 301.3] [5.686 317.3] [9.864 334.4] [10.95 359.6]
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Table A.4: Parameters of lower membership function for reagent1 after tuning.

Rules Membership functions parameters

Rule1 [v11, σ 11] [v12, σ 12] [v13, σ 13] [v14, σ 14] [v15, σ 15]

[28.72 199.8] [6.829 240.2] [6.015 256.4] [8.791 270.2] [6.235 286.6]
[v16, σ 16] [v17, σ 17] [v18, σ 18] [v19, σ 19]

[5.368 301.1] [5.516 317.2] [9.657 334.1] [10.78 359.3]

Rule2 [v21, σ 21] [v22, σ 22] [v23, σ 23] [v24, σ 24] [v25, σ 25]

[28.03 200.1] [6.493 240.4] [5.689 256.7] [8.861 270.3] [5.915 286.7]
[v26, σ 26] [v27, σ 27] [v28, σ 28] [v29, σ 29]

[5.054 301.2] [5.111 317.4] [9.293 334.3] [10.21 359.6]

Rule3 [v31, σ 31] [v32, σ 32] [v33, σ 33] [v34, σ 34] [v35, σ 35]

[28.62 199.5] [6.859 240.1] [6.084 256.3] [8.761 270.1] [6.211 286.5]
[v36, σ 36] [v37, σ 37] [v38, σ 38] [v39, σ 39]

[5.305 301] [5.48 317.1] [9.67 334] [10.76 359.1]

Rule4 [v41, σ 41] [v42, σ 42] [v43, σ 43] [v44, σ 44] [v45, σ 45]

[29.22 200.2] [6.977 240.4] [6.149 256.6] [8.877 270.6] [6.312 286.8]
[v46, σ 46] [v47, σ 47] [v48, σ 48] [v49, σ 49]

[5.403 301.2] [5.623 317.2] [9.831 334.4] [10.93 359.5]
Table B.1: Parameters of upper membership function for reagent2 after tuning.

Rules Membership functions parameters

Rule1 [v11, σ 11] [v12, σ 12] [v13, σ 13] [v14, σ 14] [v15, σ 15]

[7.588 36.03] [1.605 45.8] [1.225 49.23] [1.782 51.95] [1.158 55.21]
[v16, σ 16] [v17, σ 17] [v18, σ 18] [v19, σ 19]

[1.178 58.02] [1.137 61.38] [1.953 64.65] [2.345 69.79]

Rule2 [v21, σ 21] [v22, σ 22] [v23, σ 23] [v24, σ 24] [v25, σ 25]

[7.366 36.28] [1.527 45.84] [1.157 49.3] [1.744 51.99] [1.08 55.27]
[v26, σ 26] [v27, σ 27] [v28, σ 28] [v29, σ 29]

[1.141 58.1] [1.079 61.43] [1.884 64.7] [2.213 69.87]

Rule3 [v31, σ 31] [v32, σ 32] [v33, σ 33] [v34, σ 34] [v35, σ 35]

[7.175 36.66] [1.527 45.9] [1.178 49.36] [1.759 52.14] [1.058 55.34]
[v36, σ 36] [v37, σ 37] [v38, σ 38] [v39, σ 39]

[1.06 58.1] [1.055 61.48] [1.89 64.8] [2.199 69.98]

Rule4 [v41, σ 41] [v42, σ 42] [v43, σ 43] [v44, σ 44] [v45, σ 45]

[7.393 36.42] [1.595 45.94] [1.15 49.32] [1.765 52.07] [1.134 55.27]
[v46, σ 46] [v47, σ 47] [v48, σ 48] [v49, σ 49]

[1.15 58.1] [1.021 61.47] [1.889 64.78] [2.177 69.94]
Table B.2: Parameters of lower membership function for reagent2 after tuning.

Rules Membership functions parameters

Rule1 [v11, σ 11] [v12, σ 12] [v13, σ 13] [v14, σ 14] [v15, σ 15]

[7.712 36.14] [1.634 45.85] [1.235 49.26] [1.811 52.02] [1.175 55.25]
[v16, σ 16] [v17, σ 17] [v18, σ 18] [v19, σ 19]

[1.197 58.06] [1.154 61.41] [1.993 64.71] [2.367 69.84]

Rule2 [v21, σ 21] [v22, σ 22] [v23, σ 23] [v24, σ 24] [v25, σ 25]

[7.191 36.44] [1.5 45.88] [1.124 49.33] [1.73 52.01] [1.059 55.28]
[v26, σ 26] [v27, σ 27] [v28, σ 28] [v29, σ 29]

[1.071 58.08] [1.02 61.5] [1.843 64.73] [2.131 69.92]

Rule3 [v31, σ 31] [v32, σ 32] [v33, σ 33] [v34, σ 34] [v35, σ 35]

[7.119 36.59] [1.523 45.93] [1.158 49.35] [1.759 52.14] [1.077 55.32]
[v36, σ 36] [v37, σ 37] [v38, σ 38] [v39, σ 39]

[1.079 58.12] [1.052 61.43] [1.877 64.79] [2.172 69.99]

Rule4 [v41, σ 41] [v42, σ 42] [v43, σ 43] [v44, σ 44] [v45, σ 45]

[7.4 36.7] [1.571 45.89] [1.176 49.32] [1.756 52.06] [1.104 55.28]
[v46, σ 46] [v47, σ 47] [v48, σ 48] [v49, σ 49]

[1.114 58.09] [1.054 61.45] [1.899 64.74] [2.216 69.92]
4. Conclusions and future research

In this paper, for the first time, the bullwhip effect was
measured and reduced in a type-2 fuzzy environment, in which
all demands, lead times, and orders were type-2 fuzzy sets. This
paper has focused on demand prediction as one of the main
causes of the bullwhip effect. The real data of a Canadian steel
company was applied, and the bullwhip effect was measured
in the supply chain of this industry. This is the first work
investigating the supply chain of a steel company. It was shown
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Table B.3: Parameters of regression functions in consequents for reagent2
after tuning.

Rules Regression function parameters

Rule1 a11 a12 a13 a14 a15
0.918 −0.457 1.897 −1.195 −7.319
a16 a17 a18 a19 b10
−1.225 10.05 −1.332 −0.859 0.2829

Rule2 a21 a22 a23 a24 a25
−2.016 8.179 −18.74 5.75 22.02
a26 a27 a28 a29 b20
−3.695 −2.681 1.667 −8.097 1.286

Rule3 a31 a32 a33 a34 a35
−0.7194 21.25 −30.01 2.06 36.57
a36 a37 a38 a39 b30
32.24 −12.62 −8.303 −29.57 −1.492

Rule4 a41 a42 a43 a44 a45
5.687 −27.16 45.91 −6.957 −52.81
a46 a47 a48 a49 b40
−25.58 5.299 8.779 37.34 −1.572

that demandpredictionwith the proposed interval type-2 fuzzy
hybrid expert system has less error than other methods in
literature. It also leads to reducing the bullwhip effect more
effectively than the type-1 fuzzy expert system, which was
implemented in this paper, and the type-1 fuzzy time-series in
the literature. An interval type-2 fuzzy c-regression clustering
algorithm was used in the structure identification phase of the
proposed system. An adaptive-network-based fuzzy inference
system was used for tuning the parameters of the system. The
inference engine of the proposed system was a combination of
Mamdani and Sugeno methods, and it used fuzzy disjunctive
and conjunctive normal forms in the inference mechanism.
Studying other reasons for the bullwhip effect in a type-2 fuzzy
environment, such as non-zero lead time, can be considered in
future work.

Appendix A

See Tables A.1–A.4.

Appendix B

See Table B.1.
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