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Abstract

The construction of computationally verifiable initial conditions which provide both the guaranteed and fast convergence of the
numerical root-finding algorithm is one of the most important problems in solving nonlinear equations. Smale’s “point estimation
theory” from 1981 was a great advance in this topic; it treats convergence conditions and the domain of convergence in solving an
equation f (z) = 0 using only the information of f at the initial point z0. The study of a general problem of the construction of initial
conditions of practical interest providing guaranteed convergence is very difficult, even in the case of algebraic polynomials. In the
light of Smale’s point estimation theory, an efficient approach based on some results concerning localization of polynomial zeros and
convergent sequences is applied in this paper to iterative methods for the simultaneous determination of simple zeros of polynomials.
We state new, improved initial conditions which provide the guaranteed convergence of frequently used simultaneous methods for
solving algebraic equations: Ehrlich–Aberth’s method, Ehrlich–Aberth’s method with Newton’s correction, Börsch-Supan’s method
with Weierstrass’ correction and Halley-like (or Wang–Zheng) method. The introduced concept offers not only a clear insight into
the convergence analysis of sequences generated by the considered methods, but also explicitly gives their order of convergence.
The stated initial conditions are of significant practical importance since they are computationally verifiable; they depend only on
the coefficients of a given polynomial, its degree n and initial approximations to polynomial zeros.
© 2006 Elsevier B.V. All rights reserved.
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1. Point estimation theory based on sequence approach

One of the most important problems in solving nonlinear equations is stating such initial conditions which provide
the guaranteed convergence of the applied numerical algorithm. Evidently, only those conditions which depend on
attainable data are useful from a practical point of view. First results which deal with computationally verifiable
initial conditions providing the guaranteed convergence were stated and developed in [12,31–35]. The research on
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0377-0427/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2006.04.039

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82760325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/cam
mailto:msp@junis.ni.ac.yu
mailto:msp@EUnet.yu
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this topic was later continued in [3,7,8,11,13,17–30,37,38,36], and other papers. This approach, often referred to as
“point estimation theory”, considers convergence conditions and the domain of convergence in solving an equation
f (z) = 0 using only the information of f at the initial point z0. In this way, it overcomes difficulties that appear in the
traditional treating the convergence conditions based on the asymptotical convergence analysis. This analysis is only of
theoretical importance since it involves (in the estimation procedure) some unknown parameters as constants, even the
(unknown) roots of equation, or uses the terminology as “sufficiently good (close enough) approximations” without
quantitative (and computationally verifiable) characterization of the closeness of these approximations to the roots. A
review of Smale’s point estimation theory and related results can be found in [22,23, Chapters 1–3] and we omit details
in this paper.

The study of a general problem of the construction of initial conditions and the choice of initial approximations
furnishing guaranteed convergence of a root-finding method is very difficult, even in the case of algebraic polynomials.
In this particular case, these conditions should depend only on the coefficients of a given polynomial P(z) = zn +
an−1z

n−1 + · · · + a1z + a0 of degree n and the vector of initial approximations z(0) = (z
(0)
1 , . . . , z

(0)
n ). More details

about the point estimation theory and its applications to algebraic polynomials can be found in the aforementioned
papers and the references cited therein.

The paper [22] gives a survey of results concerning the guaranteed convergence of some frequently used iterative
methods for the simultaneous determination of polynomial zeros as Durand–Kerner’s method, Börsch-Supan’s method,
the square-root one parameter family. That study uses the concept of convergent iterative corrections proposed in [18].
In this paper, which can be regarded as the continuation of research presented in [22], we state another approach to the
convergence analysis in the light of Smale’s point estimation theory and based on convergent sequences and some results
concerned with the localization of polynomial zeros. Using this approach we improve computationally verifiable initial
conditions for several iterative methods which belong to the class of the most efficient and often used simultaneous
methods for finding polynomial zeros. The introduced concept presents not only a clear insight into the convergence
analysis of sequences produced by the considered methods, but also explicitly gives their order of convergence, which
is the advantage in reference to the approach exposed in [22] and some other papers. It is worth noting that the aim of
this paper is not only the demonstration of the point estimation theory applied to algebraic polynomials, but also the
significant improvement of initial conditions for the four frequently used simultaneous methods for finding polynomial
zeros.

The essential question in stating initial convergence conditions is how to express these conditions. The requested
form should be computationally verifiable and, in addition, it must take into account some important properties as
distribution of zeros, their separation and closeness to initial approximations. Let In := {1, . . . , n} be the index set.
For i ∈ In and m = 0, 1, . . . let us introduce the quantity

W
(m)
i = P(z

(m)
i )∏n

j=1
j �=i

(z
(m)
i − z

(m)
j )

(i ∈ In, m = 0, 1, . . .)

which is often called Weierstrass’ correction since it appeared in Weierstrass’ paper [40]. As shown in [18], the above
requirements can be fulfilled in a satisfactory way by expressing initial conditions in the form

w(0) �cnd
(0), (1.1)

where

w(0) = max
1� i �n

|W(0)
i |, d(0) = min

1� i,j �n
i �=j

|z(0)
i − z

(0)
j |

and cn is a real quantity depending only on the polynomial degree n. The use of form (1.1) is justified since it involves
the requested properties; indeed, if the initial approximations are close enough, then the minimal distance d(0) can
be regarded as a measure of separation of the zeros, while w(0) is related to the closeness of approximations to the
zeros.

In [36] Wang and Zhao improved Smale’s result for Newton’s method and applied it to the Durand–Kerner method
for the simultaneous determination of polynomial zeros. Their approach also led in a natural way to form (1.1).
In both cases the quantity cn is expressed as cn = 1/(an + b), where a and b are suitably chosen positive constants.
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Fig. 1. The choice of i-factor cn iteratively.

It turned out that initial conditions of this form are also convenient for other simultaneous methods for solving polynomial
equations, as shown in the subsequent papers [2,3,17–30,37,36,42], etc. For these reasons, in the convergence analysis
of simultaneous methods considered in this paper, we will also use initial conditions of form (1.1). The quantity cn

will be called the inequality factor, or i-factor for brevity. We emphasize that in the last years a special attention has
been paid to the increase of i-factor cn for the following obvious reason. From (1.1) we notice that a greater value of
cn allows a greater value of |W(0)

i |. This means that initial approximations can be chosen more roughly, which is of
evident interest in practical realization.

In this paper we will discuss as good as possible values of the i-factor cn appearing in the initial condition (1.1) for
some efficient and frequently used iterative methods for the simultaneous determination of polynomial zeros. We study
the choice of “almost optimal” factor cn. The notion “almost optimal” i-factor arises from (i) the presence of a system
of (say) k inequalities and (ii) the use of computer arithmetic of finite precision:

(i) In the convergence analysis it is necessary to provide the validity of k substantial successive inequalities
g1(cn)�0, . . . , gk(cn)�0 (in this order), where all gi(cn) are monotonically decreasing functions of cn (see
Fig. 1). The optimal value cn would be determined as unique solution of the corresponding equations gi(cn) = 0.
Since all equations cannot be satisfied simultaneously, we are constrained to find such cn which makes the inequalities
gi(cn)�0 as sharp as possible. Since gi(cn)�0 succeeds gj (cn)�0 for j < i, we first find cn so that the inequality
g1(cn)�0 is as sharp as possible and check the validity of all remaining inequalities g2(cn)�0, . . . , gk(cn)�0. If some
of them is not valid, we decrease cn and repeat the process until all inequalities are satisfied. For demonstration, we give
a particular example on Fig. 1. The third inequality g3(cn)�0 is not satisfied for c

(1)
n so that cn takes a smaller value

c
(2)
n satisfying all three inequalities. In practice, the choice of cn is performed iteratively, using some programming

package, in our paper Mathematica 5.0.
(ii) Since computer arithmetic of finite precision is employed, the optimal value (the exact solution of gi(cn) = 0, if

it exists for some i) cannot be represented exactly so that cn should be decreased for few bits to satisfy the inequalities
gi(cn) > 0. The required conditions (in the form of inequalities gi(cn)�0) are still satisfied with great accuracy. We
stress that this slight decrease of the i-factor cn in reference to the optimal value is negligible from a practical point of
view. For this reason, the constants a and b appearing in cn = 1/(an + b) are rounded to one decimal place for all four
methods considered in this paper,

The entries of cn, obtained in this way and presented in this paper, are increased (and, thus, improved) compared
with those given in the literature, which means that newly established initial conditions for the guaranteed convergence
of the considered methods are weakened (see Fig. 2 in Section 7).

In what follows we will present in short the basic idea and concept of the convergence analysis involving initial
conditions of form (1.1) which guarantee the convergence of the considered methods.

Let z
(m)
1 , . . . , z

(m)
n be approximations to the simple zeros �1, . . . , �n of a polynomial P , generated by some iterative

method for the simultaneous determination of zeros at the mth iterative step and let u
(m)
i = z

(m)
i − �i (i ∈ In). Our

main goal is to study the convergence of the sequences {u(m)
1 }, . . . , {u(m)

n } under the initial condition (1.1). We will use
the initial condition w(0) < cnd

(0), where w(m) is the maximal Weierstrass correction and d(m) is the minimal distance
between approximations at the mth iteration. In our convergence analysis the main attention will be devoted to the
choice of cn which guarantees the convergence of the considered simultaneous methods.
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Throughout this paper a closed disk with center c and radius r will be denoted by the parametric notation {c; r}. For
simplicity, we will often omit the iteration index m and denote entries in the latter (m + 1)st iteration by the symbol .̂
In our analysis we will use the following result proved in [23].

Theorem 1.1. If the i-factor cn appearing in (1.1) is not greater than 1/(2n), then the disks defined by

Z
(0)
i =

{
z
(0)
i ; 1

1 − ncn

|W(0)
i |

}
(i ∈ In)

are mutually disjoint and each of them contains one and only one zero of P .

The point estimation approach presented in this paper consists of the following main steps:

1. If cn �1/(2n) and (1.1) holds, from Theorem 1.1 it follows that the inequalities

|u(0)
i | = |z(0)

i − �i | <
|W(0)

i |
1 − ncn

(1.2)

are valid for each i ∈ In. These inequalities have an important role in the estimation procedure involved in the
convergence analysis of the sequences {z(m)

i } which are produced by the considered simultaneous method.
2. In the next step we derive the inequalities

d < �nd̂ and |Ŵi | < �n|Wi |,
which involve the minimal distances and the maximal Weierstrass corrections at two successive iterative steps. The
i-factor cn appearing in (1.1) has to be chosen to provide such values of �n and �n which furnish the following
implication:

w < cnd ⇒ ŵ < cnd̂ .

This has the essential role in the proof of convergence theorems by induction. Let us note that the above implication
will hold if �n�n < 1.

3. In the final step we derive the inequalities of the form

|u(m)
i |��(n, d(m))|u(m)

i |p
⎛⎝∑

j �=i

|u(m)
j |q

⎞⎠r

(1.3)

for i = 1, . . . , n and m = 0, 1, . . . , and prove that all sequences {|u(m)
1 |}, . . . , {|u(m)

n |} tend to 0 under condition

(1.1) (with suitably chosen cn), which means that z
(m)
i → �i (i ∈ In). The order of convergence of these sequences

is obtained from (1.3) and it is equal to p + qr .

2. Some auxiliary results

In order to study iterative methods which do not involveWeierstrass’corrections Wi , appearing in the initial conditions
of form (1.1), it is necessary to establish a suitable relation between P(zi)/P

′(zi) and Wi . Applying the logarithmic
derivative to P(t), represented by the Lagrangian interpolation formula

P(t) =
⎛⎝ n∑

j=1

Wj

t − zj

+ 1

⎞⎠ n∏
j=1

(t − zj ) (2.1)

for distinct complex numbers z1, . . . , zn, one obtains

P ′(t)
P (t)

=
∑
j �=i

1

t − zj

+
∑

j �=i (Wj/(t − zj )) + 1 − (t − zi)
∑

j �=i (Wj/(t − zj )
2)

Wi + (t − zi)[∑j �=i (Wj/(t − zj )) + 1] .
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Putting t = zi in this formula we get (see [5])

P ′(zi)

P (zi)
=
∑
j �=i

1

zi − zj

+
∑

j �=i (Wj/(zi − zj )) + 1

Wi

. (2.2)

In the next sections we will apply the three-stage procedure described in Section 1 to some frequently used simulta-
neous methods. This procedure needs certain estimates of the same type and, to avoid the repetition, we give them in
the following lemma.

Lemma 2.1. For distinct complex numbers z1, . . . , zn, ẑ1, . . . , ẑn let

d = min
1� i,j �n

i �=j

|zi − zj |, d̂ = min
1� i,j �n

i �=j

|ẑi − ẑj | (i ∈ In),

and let the inequality

|ẑi − zi |��nd (i ∈ In) (2.3)

hold. Then

|ẑi − zj |�(1 − �n)d (i, j ∈ In), (2.4)

|ẑi − ẑj |�(1 − 2�n)d (i, j ∈ In), (2.5)

and ∣∣∣∣∣∣
∏
j �=i

ẑi − zj

ẑi − ẑj

∣∣∣∣∣∣ �
(

1 + �n

1 − 2�n

)n−1

. (2.6)

The proofs of the above assertions are based on triangular inequalities and the definition of the minimal distance,
and we omit them.

3. The Ehrlich–Aberth method

In this section we will use the Newton and Weierstrass correction given, respectively, by

N
(m)
i = P(z

(m)
i )

P ′(z(m)
i )

and W
(m)
i = P(z

(m)
i )∏

j �=i (z
(m)
i − z

(m)
j )

(i ∈ In; m = 0, 1, . . .).

We are concerned here with one of the most efficient numerical methods for the simultaneous approximation of all
zeros of a polynomial, given by the iterative formula:

z
(m+1)
i = z

(m)
i − 1

1/N
(m)
i −∑

j �=i (1/(z
(m)
i − z

(m)
j ))

(i ∈ In; m = 0, 1, . . .). (3.1)

Although this method was first suggested by Maehly [14] in 1954 for refinement of the Newton method and used
by Börsch-Supan [3] in finding a posteriori error bounds for the zeros of polynomials, it is more often referred to as
Ehrlich–Aberth’s method. Ehrlich [9] proved the cubic convergence of this method and Aberth [1] gave an important
contribution to its practical realization.

Our aim is to state practically applicable initial conditions of form (1.1) which enable a guaranteed convergence
of the Ehrlich–Aberth method (3.1), shorter the E–A method in the sequel. As mentioned above, in our analysis we
will sometimes omit iteration index m and new entries in the later (m + 1)st iteration will be additionally stressed by
the symbol ̂ (“hat”). For example, instead of z

(m)
i , z

(m+1)
i , W

(m)
i , W

(m+1)
i , d(m), d(m+1), N

(m)
i , N

(m+1)
i , etc., we will

write zi, ẑi , Wi, Ŵi, d, d̂, Ni, N̂i . According to this we denote

w = max
1� i �n

|Wi |, ŵ = max
1� i �n

|Ŵi |.

This denotation will be also used in the next sections.
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First we present a lemma concerned with the localization of polynomial zeros.

Lemma 3.1. Assume that the following condition

w < cnd, cn =
⎧⎨⎩

1

2n + 1.4
, 3�n�7,

1

2n
, n�8,

(3.2)

is satisfied. Then each disk {zi; 1/(1 − ncn)|Wi |} (i ∈ In) contains one and only one zero of P .

The above assertion follows from Theorem 1.1 under condition (3.2).

Lemma 3.2. Let z1, . . . , zn be disjoint approximations to the zeros �1, . . . , �n of a polynomial P of degree n, and let
ẑ1, . . . , ẑn be new respective approximations obtained by the E–A method (3.1). Then the following formula is valid:

Ŵi = −(ẑi − zi)
2
∑
j �=i

Wj

(ẑi − zj )(zi − zj )

∏
j �=i

(
1 + ẑj − zj

ẑi − ẑj

)
. (3.3)

Proof. From the iterative formula (3.1) one obtains

1

ẑi − zi

=
∑
j �=i

1

zi − zj

− P ′(zi)

P (zi)
,

so that, using (2.2),

Wi

ẑi − zi

= Wi

⎛⎝∑
j �=i

1

zi − zj

− P ′(zi)

P (zi)

⎞⎠= −Wi

⎡⎣ 1

Wi

⎛⎝∑
j �=i

Wj

zi − zj

+ 1

⎞⎠⎤⎦
= −

∑
j �=i

Wj

zi − zj

− 1.

According to this we have

n∑
j=1

Wj

ẑi − zj

+ 1 = Wi

ẑi − zi

+
∑
j �=i

Wj

ẑi − zj

+ 1

= −
∑
j �=i

Wj

zi − zj

− 1 +
∑
j �=i

Wj

ẑi − zj

+ 1

= − (ẑi − zi)
∑
j �=i

Wj

(ẑi − zj )(zi − zj )
.

Taking into account the last expression, returning to (2.1) we find for t = ẑi

P (ẑi) =
⎛⎝ n∑

j=1

Wj

ẑi − zj

+ 1

⎞⎠ n∏
j=1

(ẑi − zj )

= − (ẑi − zi)
2
∑
j �=i

Wj

(ẑi − zj )(zi − zj )

∏
j �=i

(ẑi − zj ).

After dividing by
∏

j �=i (ẑi − ẑj ) and some rearrangement, we obtain formula (3.3). �
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Let us introduce the abbreviations:

�n = 1

1 − ncn

, �n = 1

1 − �ncn − (n − 1)(�ncn)
2 ,

�n = �ncn(1 − �ncn)�n, �n = (n − 1)�2
n

1 − �n

(
1 + �n

1 − 2�n

)n−1

.

Lemma 3.3. Let z1, . . . , zn be approximations produced by the E–A method (3.1) and let ui = zi − �i , ûi = ẑi − �i .
If n�3 and inequality (3.2) holds, then

(i) d < 1
1−2�n

d̂;
(ii) ŵ < �nw;

(iii) ŵ < cnd̂;
(iv) |ûi |� �n

d2 |ui |2∑j �=i |uj |.

Proof. According to the initial condition (3.2) and Lemma 3.1 we have

|ui | = |zi − �i |��n|Wi |��nw < �ncnd . (3.4)

Having in mind (3.4) and the definition of the minimal distance d we find

|zj − �i |� |zj − zi | − |zi − �i | > d − �ncnd = (1 − �ncn)d. (3.5)

Using the identity

P ′(zi)

P (zi)
=

n∑
j=1

1

zi − �j

= 1

ui

+
∑
j �=i

1

zi − �j

, (3.6)

from (3.1) we get

ûi = ẑi − �i = zi − �i − 1

1/ui +∑
j �=i (1/(zi − �j )) −∑

j �=i (1/(zi − zj ))

= ui − ui

1 − uiSi

= − u2
i Si

1 − uiSi

, (3.7)

where

Si =
∑
j �=i

uj

(zi − �j )(zi − zj )
.

Using the definition of d and the bounds (3.4) and (3.5), we estimate

|uiSi |� |ui |
∑
j �=i

|uj |
|zi − �j ||zi − zj | < �ncnd · (n − 1)�ncnd

(1 − �ncn)d · d
= (�ncn)

2(n − 1)

1 − �ncn

. (3.8)

Now, by (3.4) and (3.8), we find from (3.1):

|ẑi − zi | =
∣∣∣∣ ui

1 − uiSi

∣∣∣∣ � |ui |
1 − |uiSi | <

|ui |
1 − ((�ncn)

2(n − 1)/(1 − �ncn))

<
�ncn(1 − �ncn)

1 − �ncn − (�ncn)
2(n − 1)

d = �ncn(1 − �ncn)�nd = �nd, (3.9)

and also

|ẑi − zi | < (1 − �ncn)�n|ui | < (1 − �ncn)�n�n|Wi |. (3.10)
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Having in mind (3.9), according to Lemma 2.1 we conclude that the estimates |ẑi −zj | > (1−�n)d and |ẑi − ẑj | > (1−
2�n)d (i ∈ In) hold. From the last inequality we find

d

d̂
<

1

1 − 2�n

for every n�3, (3.11)

which proves assertion (i) of Lemma 3.3.
Using the starting inequality w/d < cn and the bounds (3.9), (3.10), (2.4)–(2.6), we estimate the quantities involved

in (3.3):

|Ŵi |� |ẑi − zi |2
∑
j �=i

|Wj |
|ẑi − zj ||zi − zj |

∏
j �=i

(
1 + |ẑj − zj |

|ẑi − ẑj |
)

<
(n − 1)�2

n

(1 − �n)

(
1 + �n

1 − 2�n

)n−1

|Wi | = �n|Wi |,

where �n is the term in front of |Wi | depending on n.
Therefore, we have

ŵ < �nw (3.12)

so that, by (3.2), (3.11) and (3.12), we estimate

ŵ < �nw < �ncnd <
�n

1 − 2�n

cnd̂ .

Since
�n

1 − 2�n

< 0.95 < 1 for all 3�n�7,

and
�n

1 − 2�n

< 0.78 < 1 for all n�8,

we have

ŵ < cnd̂, n�3.

In this way we have proved assertions (ii) and (iii) of Lemma 3.3.
Using the already derived bounds we find

|ûi |� |ui |2|Si |
1 − |uiSi | <

|ui |2
1 − ((�cn)

2(n − 1)/(1 − �ncn))

∑
j �=i

|uj |
|zi − �j ||zi − zj |

<
1 − �ncn

1 − �ncn − (�ncn)
2(n − 1)

|ui |2
∑
j �=i

|uj |
(1 − �ncn)d · d

<
1

(1 − �ncn − (�ncn)
2(n − 1))d2

|ui |2
∑
j �=i

|uj |,

wherefrom

|ûi | < �n

d2 |ui |2
∑
j �=i

|uj |. (3.13)

This strict inequality is derived assuming that ui �= 0 (see Remark 2 in this section). If we include the case ui = 0 then
it follows

|ûi |� �n

d2 |ui |2
∑
j �=i

|uj |

and assertion (iv) of Lemma 3.3 is proved. �
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Remark 1. The assertions of form (i)–(iv) of Lemma 3.3 will be presented in Sections 4–6 for the three another
methods, but for different i-factor cn and specific entries of �n, �n, �n.

Now we give the convergence theorem for the E–A method (3.1) which involves only initial approximations to the
zeros, the polynomial coefficients and the polynomial degree n.

Theorem 3.1. Under the initial condition

w(0) < cnd
(0), (3.14)

where cn is given by (3.2), the E–A method (3.1) is convergent with the third order of convergence.

Proof. The convergence analysis is based on the estimate procedure of the error u
(m)
i = z

(m)
i − �i . The proof is by

induction with the argumentation used for inequalities (i)–(iv) of Lemma 3.3. Since the initial condition (3.14) coincides
with (3.2), all estimates given in Lemma 3.3 are valid for the index m = 1. Actually, this is the part of the proof with
respect to m = 1. Furthermore, inequality (iii) again reduces to the condition of form (3.2) and, therefore, assertions
(i)–(iv) of Lemma 3.3 hold for the next index, and so on. All estimates and bounds for the index m are derived essentially
in the same way as for m = 0. In fact, the implication

w(m) < cnd
(m) ⇒ w(m+1) < cnd

(m+1)

plays a key role in the convergence analysis of the E–A method (3.1) because it involves the initial condition (3.14)
which causes the validity of all inequalities given in Lemma 3.3 for all m = 0, 1, . . . . Especially, regarding (3.11) and
(3.13), we have

d(m)

d(m+1)
<

1

1 − 2�n

(3.15)

and

|u(m+1)
i |� �n

(d(m))2 |u(m)
i |2

∑
j �=i

|u(m)
j | (i ∈ In) (3.16)

for each iteration index m = 0, 1, . . . if (3.14) holds.
Substituting

t
(m)
i =

[
(n − 1)�n

(1 − 2�n)(d(m))2

]1/2

|u(m)
i |,

inequalities (3.16) become

t
(m+1)
i � (1 − 2�n)d

(m)

(n − 1)d(m+1)
[t (m)

i ]2
∑
j �=i

t
(m)
j ,

wherefrom, by (3.15),

t
(m+1)
i <

[t (m)
i ]2

n − 1

∑
j �=i

t
(m)
j (i ∈ In). (3.17)

By virtue of (3.4) we find

t
(0)
i =

√
(n − 1)�n

(1 − 2�n)(d(0))2 |u(0)
i | < �ncnd

(0)

√
(n − 1)�n

(1 − 2�n)(d(0))2

= �ncn

√
(n − 1)�n

1 − 2�n
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for each i = 1, . . . , n. Taking

t = max
1� i �n

t
(0)
i < �ncn

√
(n − 1)�n

1 − 2�n

,

we come to the inequalities

t
(0)
i � t < 0.570 < 1 (3�n�7)

and

t
(0)
i � t < 0.432 < 1 (n�8)

for all i = 1, . . . , n. According to this we conclude from (3.17) that the sequences {t (m)
i } (and, consequently, {|u(m)

i |})
tend to 0 for all i = 1, . . . , n. Therefore, the E–A method (3.1) is convergent.

Taking into account that the quantity d(m) which appears in (3.16) is bounded and tends to mini �=j |�i − �j |, and

setting u(m) = max1� i �n |u(m)
i |, from (3.16) we obtain

|u(m+1)
i |�u(m+1) <

(n − 1)�n

(d(m))2 |u(m)|3,

which proves the cubical convergence. �

Remark 2. As usual in the convergence analysis of iterative methods (see, e.g. [10]), we could assume that the errors
u

(m)
i = z

(m)
i − �i (i ∈ In) do not reach 0 for a finite m. However, if u

(m0)
i = 0 for some indices i1, . . . , ik and m0 �0,

we just take z
(m0)
i1

, . . . , z
(m0)
ik

as approximations to the zeros �i1 , . . . , �ik and do not iterate further for the indices

i1, . . . , ik . If the sequences {u(m)
i } (i ∈ In\{i1, . . . , ik}) have the order of convergence q, then obviously the sequences

{u(m)
i1

}, . . . , {u(m)
ik

} converge with the convergence rate at least q. This remark refers not only to the iterative method
(3.1) but also to all methods considered in this paper. For this reason, we do not discuss further this point.

4. Ehrlich–Aberth’s method with Newton’s corrections

The convergence of the Ehrlich–Aberth method (3.1) can be accelerated using Newton’s corrections N
(m)
i =

P(z
(m)
i )/P ′(z(m)

i )(i ∈ In; m = 0, 1, . . .). In this way the following method for the simultaneous approximation of
all simple zeros of a given polynomial P can be established

z
(m+1)
i = z

(m)
i − 1

1/N
(m)
i −∑

j �=i (1/(z
(m)
i − z

(m)
j + N

(m)
j ))

(i ∈ In), (4.1)

where m=0, 1, . . . . This method, proposed by Nourein [16], is an obvious improvement of method (3.1) and it is one of
the most efficient iterative methods for the simultaneous determination of polynomial zeros. The order of convergence
of the Ehrlich–Aberth method with Newton’s corrections (4.1) briefly the EAN method in the sequel, is four (see [16]).
The great computational efficiency of method (4.1) is the consequence of the increased convergence order (from 3 to
4) with the negligible number of additional numerical operations since already calculated quantities N

(m)
j are used in

the sum of (4.1).
From Theorem 1.1 the following lemma treating inclusion disks can be stated:

Lemma 4.1. Let z1, . . . , zn be distinct numbers satisfying the inequality

w < cnd, cn =
⎧⎨⎩

1

2.2n + 1.9
, 3�n�21,

1

2.2n
, n�22.

(4.2)
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Then the disks {z1; (1/(1 − ncn)) |W1|}, . . . , {zn; (1/(1 − ncn)) |Wn|} are mutually disjoint and each of them contains
exactly one zero of a polynomial P .

First we give the expression for the improved Weierstrass correction.

Lemma 4.2. Let z1, . . . , zn be distinct approximations to the zeros �1, . . . , �n of a polynomial P of degree n, and let
ẑ1, . . . , ẑn be new respective approximations obtained by the EAN method (4.1). Then the following formula is valid:

Ŵi = −(ẑi − zi)(Wi�N,i + (ẑi − zi)�W,i)
∏
j �=i

(
1 + ẑj − zj

ẑi − ẑj

)
, (4.3)

where

�N,i =
∑
j �=i

Nj

(zi − zj + Nj)(zi − zj )
, �W,i =

∑
j �=i

Wj

(ẑi − zj )(zi − zj )
.

Relation (4.3) is obtained by combining the Lagrangian interpolation formula (2.1) for t = ẑi , the iterative formula
(4.1) and identity (2.2), see the proof of Lemma 3.1 and [24].

In the sequel, we will use the abbreviations:

�n = 1

1 − ncn

, 	n = 1 − �ncn − (n − 1)�ncn,


n = (1 − �ncn)((1 − �ncn)
2 − (n − 1)�ncn),

�n = n − 1


n − (n − 1)2(�ncn)
3 , �n = 
n�n�ncn

n − 1
,

�n = �n(n − 1)

(
(1 − �ncn)

2�ncn


n

+ �n

1 − �n

)(
1 + �n

1 − 2�n

)n−1

.

Lemma 4.3. Let z1, . . . , zn be approximations produced by the EAN method (4.1) and let ui = zi − �i , ûi = ẑi − �i .
If n�3 and inequality (4.2) holds, then

(i) d < 1
1−2�n

d̂;
(ii) ŵ < �nw;

(iii) ŵ < cnd̂;
(iv) |ûi |� �n

d3 |ui |2∑j �=i |uj |2.

Proof. In regard to (4.2) and Lemma 4.1 it follows that �i ∈ {zi; (1/(1 − ncn))|Wi |} (i ∈ In), so that

|ui | = |zi − �i |��n|Wi | < �nw < �ncnd . (4.4)

According to this and the definition of the minimal distance d we find

|zj − �i |� |zj − zi | − |zi − �i | > d − �ncnd = (1 − �ncn)d. (4.5)

Using identity (3.6) and estimates (4.4) and (4.5), we obtain∣∣∣∣P ′(zi)

P (zi)

∣∣∣∣=
∣∣∣∣∣∣

n∑
j=1

1

zi − �j

∣∣∣∣∣∣ � 1

|zi − �i | −
∑
j �=i

1

|zi − �j | >
1

�ncnd
− n − 1

(1 − �ncn)d

= 1 − �ncn − (n − 1)�ncn

(1 − �ncn)�ncnd
= 	n

(1 − �ncn)�ncnd
.
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Hence

|Ni | =
∣∣∣∣ P(zi)

P ′(zi)

∣∣∣∣< (1 − �ncn)�ncnd

	n

, (4.6)

so that

|zi − zj + Nj |� |zi − zj | − |Nj | > d − (1 − �ncn)�ncnd

	n

= (1 − �ncn)
2 − (n − 1)�ncn

	n

d = 
n

	n(1 − �ncn)
d. (4.7)

Let us introduce

Si =
∑
j �=i

Nj − uj

(zi − �j )(zi − zj + Nj)
, hj =

∑
k �=j

1

zj − �k

.

We start from the iterative formula (4.1) and use identity (3.6) to find

ûi = ẑi − �i = zi − �i − 1

1/ui +∑
j �=i (1/(zi − �j )) −∑

j �=i (1/(zi − zj + Nj))

= ui − ui

1 + ui

∑
j �=i ((Nj − uj )/(zi − �j )(zi − zj + Nj))

= ui − ui

1 + uiSi

= u2
i Si

1 + uiSi

. (4.8)

Furthermore, we find

Nj = uj

1 + ujhj

, Nj − uj = − u2
j hj

1 + ujhj

, Si = −
∑
j �=i

u2
j hj /(1 + ujhj )

(zi − �j )(zi − zj + Nj)
.

Using (4.4) and the inequality

|hj | =
∣∣∣∣∣∣
∑
k �=j

1

zj − �k

∣∣∣∣∣∣< n − 1

(1 − �ncn)d
,

we find∣∣∣∣ hj

1 + ujhj

∣∣∣∣ � |hj |
1 − |uj ||hj | <

(n − 1)/(1 − �ncn)d

1 − �ncnd((n − 1)/(1 − �ncn)d)
= n − 1

	nd
. (4.9)

Combining (4.4), (4.5), (4.7) and (4.9), we obtain

|uiSi |� |ui |
∑
j �=i

|uj |2|hj/(1 + ujhj )|
|zi − �j ||zi − zj + Nj | < �ncnd · (n − 1)(�ncnd)2((n − 1)/	nd)

(1 − �ncn)d(
n/	n(1 − �ncn))d

= (n − 1)2(�ncn)
3


n

. (4.10)

Using (4.4) and (4.10), we find from (4.1)

|ẑi − zi | =
∣∣∣∣ ui

1 + uiSi

∣∣∣∣ � |ui |
1 − |uiSi | <

|ui |
1 − ((n − 1)2(�ncn)

3/
n)
= 
n


n − (n − 1)2(�ncn)
3 |ui |

<

n�ncn�n

n − 1
d = �nd
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and

|ẑi − zi | < 
n


n − (n − 1)2(�ncn)
3 |ui | < 
n�n�n

n − 1
|Wi | = �n

cn

|Wi | < �nd. (4.11)

Since (4.11) holds, we apply Lemma 2.1 and obtain from (2.9):

d <
1

1 − 2�n

d̂. (4.12)

Thus, assertion (i) of Lemma 4.3 is valid.
Using the starting inequality w/d < cn and bounds (4.6), (4.7), (4.11), (2.4) and (2.5), for n�3 we estimate the

quantities appearing in (4.3):

|Wi ||�N,i | < w · (n − 1)((1 − �ncn)�ncnd/	n)

(
n/	n(1 − �ncn))d · d
<

(n − 1)(1 − �ncn)
2�nc

2
n


n

,

|ẑi − zi ||�W,i | < �nd · (n − 1)cnd

(1 − �n)d · d
<

(n − 1)�ncn

1 − �n

.

According to the last two bounds and (2.6), from (4.3) we estimate

|Ŵi |� |ẑi − zi |(|Wi ||�N,i | + |ẑi − zi ||�W,i |)
∣∣∣∣∣∣
∏
j �=i

(
1 + ẑj − zj

ẑi − ẑj

)∣∣∣∣∣∣
<

�n

cn

|Wi |
(

(n − 1)(1 − �ncn)
2�nc

2
n


n

+ (n − 1)�ncn

1 − �n

)(
1 + �n

1 − 2�n

)n−1

= �n|Wi |,
that is,

ŵ < �nw. (4.13)

Therefore, we have proved assertion (ii) of Lemma 4.3.
Since

�n

1 − 2�n

< 0.942 for 3�n�21

and

�n

1 − 2�n

< 0.943 for n�22,

starting from (4.13), by (4.2) and (4.12) we find

ŵ < �nw < �ncnd <
�n

1 − 2�n

· cnd̂ < cnd̂ ,

which means that the implication w < cnd ⇒ ŵ < cnd holds. This proves (iii) of Lemma 4.3.
Using the above bounds, from (4.8) we obtain

|ûi |� |ui |2|Si |
1 − |uiSi | <


n


n − (n − 1)2(�ncn)
3 |ui |2

∑
j �=i

|uj |2|hj/(1 + ujhj )|
|zi − �j ||zi − zj + Nj |

<

n


n − (n − 1)2(�ncn)
3 · (n − 1)/	nd

(1 − �ncn)d · (
n/	n(1 − �ncn))d
|ui |2

∑
j �=i

|uj |2,
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wherefrom (taking into account Remark 2)

|ûi |� �n

d3 |ui |2
∑
j �=i

|uj |2,

which proves (iv) of Lemma 4.3. �

Now we give the convergence theorem for the EAN method (4.1) which involves only initial approximations to the
zeros, the polynomial coefficients and the polynomial degree n.

Theorem 4.1. Let P be a polynomial of degree n�3 with simple zeros. If the initial condition

w(0) < cnd
(0) (4.14)

holds, where cn is given by (4.2) then the EAN method (4.1) is convergent with the order of convergence four.

Proof. Similarly to the proof of Theorem 3.1, we apply induction with the argumentation used for inequalities (i)–(iv)
of Lemma 4.3. According to (4.14) and (4.2) all estimates given in Lemma 4.3 are valid for the index m = 1 which is
a part of the proof with respect to m = 1. Since inequality (iii) coincides with the condition of form (4.14), assertions
(i)–(iv) of Lemma 4.3 are valid for the next index, etc. The implication

w(m) < cnd
(m) ⇒ w(m+1) < cnd

(m+1)

provides the validity of all inequalities given in Lemma 4.3 for all m = 0, 1, . . . . In particular, we have

d(m)

d(m+1)
<

1

1 − 2�n

(4.15)

and

|u(m+1)
i |� �n

(d(m))3 |u(m)
i |2

∑
j �=i

|u(m)
j |2 (i ∈ In) (4.16)

for each iteration index m = 0, 1, . . . , where

�n = n − 1


n − (n − 1)2(�ncn)
3 .

Let us substitute

t
(m)
i =

[
(n − 1)�n

(1 − 2�n)(d(m))3

]1/3

|u(m)
i |,

then inequalities (4.16) become

t
(m+1)
i � (1 − 2�n)d

(m)

(n − 1)d(m+1)
[t (m)

i ]2
∑
j �=i

[t (m)
j ]2.

Hence, using (4.15), we obtain

t
(m+1)
i <

1

n − 1
[t (m)

i ]2
∑
j �=i

[t (m)
j ]2 (i ∈ In). (4.17)

Using (4.4) we find

t
(0)
i =

[
(n − 1)�n

(1 − 2�n)(d(0))3

]1/3

|u(0)
i | < �ncnd

(0)

[
(n − 1)�n

(1 − 2�n)(d(0))3

]1/3

= �ncn

[
(n − 1)�n

1 − 2�n

]1/3

.
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Taking t = max1� i �n t
(0)
i we have

t
(0)
i � t < 0.626 < 1 (3�n�21)

and

t
(0)
i � t < 0.640 < 1 (n�22),

for each i = 1, . . . , n. In regard to this we conclude from (4.17) that the sequences {t (m)
i } and {|u(m)

i |} tend to 0 for

all i = 1, . . . , n, which means that z
(m)
i → �i . Therefore, the EAN method (4.1) is convergent. Besides, taking into

account that the quantity d(m) appearing in (4.16) is bounded and tends to min i,j
i �=j

|�i − �j | and setting

u(m) = max
1� i �n

|u(m)
i |,

from (4.16) we obtain

|u(m+1)
i |�u(m+1) < (n − 1)

�n

(d(m))3 [u(m)]4,

which means that the order of convergence of the EAN method is four. �

5. Börsch-Supan method with Weierstrass’ correction

The cubically convergent Börsch-Supan’s method

z
(m+1)
i = z

(m)
i − W

(m)
i

1 +∑
j �=i (W

(m)
j /(z

(m)
i − z

(m)
j ))

(i ∈ In; m = 0, 1, . . .)

presented in [4], can be accelerated in the same way as the Ehrlich–Aberth method (3.1) using Weierstrass’ corrections
W

(m)
i = P(z

(m)
i )/

∏
j �=i (z

(m)
i − z

(m)
j ). In this way we obtain the following iterative formula (see Nourein [15]):

z
(m+1)
i = z

(m)
i − W

(m)
i

1 +∑
j �=i (W

(m)
j /(z

(m)
i − W

(m)
i − z

(m)
j ))

(i ∈ In; m = 0, 1, . . .). (5.1)

The order of convergence of the Börsch-Supan method with Weierstrass corrections (5.1) is four (see, e.g. [6,41]). For
brevity, method (5.1) will be referred to as the BSW method. We note that an interesting derivation of the BSW method
was given in [6] using the secant method and the Lagrangian interpolation formula (2.1).

Let us introduce the notation:

�n = 1

1 − ncn

, �n = �n(1 + �ncn)
2n−2

(1 − �ncn)
2 ,

�n = �ncn(1 − cn), �n = �n�nc
2
n(n − 1)2

(1 − �n)(1 − cn)

(
1 + �n

1 − 2�n

)n−1

.

Lemma 5.1. Let z1, . . . , zn be approximations produced by the iterative method (5.1) and let ûi = ẑi − �i , d̂ =
mini �=j |ẑi − ẑj |, ŵ = max1� i �n |Ŵi |. If the inequality

w < cnd, cn =

⎧⎪⎨⎪⎩
1

2n + 1
, 3�n�13,

1

2n
, n�14

(5.2)

holds, then

(i) d < 1
1−2�n

d̂;
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(ii) |ui | < �ncnd;
(iii) ŵ < cnd̂;
(iv) |ûi |� �n

d3 |ui |2(∑j �=i |uj |)2.

The proof of this lemma is similar to the proofs of Lemmas 3.3 and 4.3 and will be omitted.
Now we establish initial conditions of practical interest, which guarantee the convergence of the BSW method (5.1).

Theorem 5.1. If the initial condition given by

w(0) < cnd
(0) (5.3)

is satisfied, where cn is given by (5.2), then the iterative method (5.1) is convergent with the order of convergence
four.

Proof. The proof of this theorem is based on the assertions of Lemma 5.1 with the help of previously presented
technique. As in the already stated convergence theorems, the proof goes by induction. By the same argumentation as
in the previous proofs, the initial condition (5.3) provides the validity of the inequality w(m) < cnd

(m) for all m�0, and
whence, inequalities (i)–(iv) of Lemma 5.1 also hold for all m�0. In particular (according to Lemma 5.1(i)), we have

d(m)

d(m+1)
<

1

1 − 2�n

(5.4)

and (according to Lemma 5.1(iv))

|u(m+1)
i |� �n

(d(m))3 |u(m)
i |2

⎛⎝∑
j �=i

|u(m)
j |

⎞⎠2

(5.5)

for each i ∈ In and all m = 0, 1, . . . .
Substituting

t
(m)
i =

[
(n − 1)2�n

(1 − 2�n)(d(m))3

]1/3

|u(m)
i |

in (5.5) and using (5.4), we obtain

t
(m+1)
i <

1

(n − 1)2 [t (m)
i ]2

⎛⎝∑
j �=i

t
(m)
j

⎞⎠2

. (5.6)

By assertion (ii) of Lemma 5.1 for the first iteration (m = 0) we have

t
(0)
i =

[
(n − 1)2�n

(1 − 2�n)(d(0))3

]1/3

|u(0)
i | < �ncn

[
(n − 1)2�n

1 − 2�n

]1/3

. (5.7)

Putting t = maxi t
(0)
i , we find from (5.7) that t

(0)
i � t < 0.988 < 1 for 3�n�13, and t

(0)
i � t < 0.999 < 1 for n�14, for

each i = 1, . . . , n. According to this we infer from (5.6) that the sequences {t (m)
i } (and, consequently, {|u(m)

i |}) tend to
0 for all i = 1, . . . , n. Hence the BSW method (5.1) is convergent.

Let u(m) = maxi |u(m)
i |. Since the quantity d(m) involved in (5.5) is bounded and tends to mini |�i − �j |, from (5.5)

we get

u(m+1) <
�n

(d(m))3 (n − 1)2[u(m)]4,

which means that the order of convergence of the BSW method is four. �
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6. Halley-like method

Using a concept based on Bell’s polynomials, Wang and Zheng [39] established a family of iterative methods of the
order of convergence k + 2, where k is the highest order of the derivative of P appearing in the generalized iterative
formula. For k = 1 this family gives the Ehrlich–Aberth method (3.1), and for k = 2 produces the following iterative
method of the fourth order for the simultaneous approximation of all simple zeros of a polynomial P ,

z
(m+1)
i = z

(m)
i − 1

f (z
(m)
i ) − (P (z

(m)
i )/2P ′(z(m)

i ))([S(m)
1,i ]2 + S

(m)
2,i )

(i ∈ In; m = 0, 1, . . . ), (6.1)

where

f (z) = P ′(z)
P (z)

− P ′′(z)
2P ′(z)

, S
(m)
r,i =

∑
j �=i

1

(z
(m)
i − z

(m)
j )k

(r = 1, 2).

Iterative methods generated for k�3 are rather complicated and their computational efficiency is not high. For this
reason, they are rarely applied in practice and we pay attention to the method (6.1). Let us note that method (6.1) is of
Halley’s type since the function f (z) appears in the well known Halley iterative method

ẑi = zi − 1

P ′(zi)/P (zi) − P ′′(zi)/2P ′(zi)
= zi − 1

f (zi)
.

In literature, method (6.1) is also referred to as the Wang–Zheng method.
The convergence analysis of the Halley-like method (6.1) is similar to that given in the previous sections (see, also,

[21]) so that it will be presented in short.
Let us introduce the following abbreviations:

�n = 1

1 − ncn

, �n = 2(1 − n�ncn)

1 − �ncn

− n(n − 1)(�ncn)
3(2 − �ncn)

(1 − �ncn)
2 ,

�n = 2�ncn(1 − �ncn + (n − 1)�ncn)

(1 − �ncn)�n

, �n = n(2 − �ncn)

�n(1 − �ncn)
2 .

In a similar manner as in Sections 3 and 4, we can prove the following assertions.

Lemma 6.1. Let z1, . . . , zn be approximations produced by the iterative method (6.1) and let ûi = ẑi − �i , d̂ =
mini �=j |ẑi − ẑj |, ŵ = max1� i �n |Ŵi |. If the inequality

w < cnd, cn =
⎧⎨⎩

1

3n + 2.4
, 3�n�20,

1

3n
, n�21

(6.2)

holds, then

(i) d < 1
1−2�n

d̂;
(ii) |ui | < �ncnd;

(iii) ŵ < cnd̂;
(iv) |ûi |� �n

d3 |ui |3∑j �=i |uj |.

Now we give the convergence theorem for the iterative method (6.1) under computationally verifiable initial condi-
tions.

Theorem 6.1. Let P be a polynomial of degree n�3 with simple zeros. If the initial condition

w(0) < cnd
(0) (6.3)

holds, where cn is given by (6.2), then the Halley-like method (6.1) is convergent with the order of convergence four.
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Proof. The proof of this theorem goes in a similar way as in the previous sections using the assertions of Lemma 6.1.
By virtue of the implication (iii) of Lemma 6.1 (that is, w < cnd ⇒ ŵ < cnd̂) we conclude by the complete induction
that the initial condition (6.3) implies the inequality w(m) < cnd

(m) for each m = 1, 2, . . . . For this reason Lemma 6.1
is valid for all m�0. In particular (according to (i) and (iv) of Lemma 6.1), we have

d(m)

d(m+1)
<

1

1 − 2�n

(6.4)

and

|u(m+1)
i |� �n

(d(m))3 |u(m)
i |3

∑
j �=i

|u(m)
j | (i ∈ In) (6.5)

for each iteration index m = 0, 1, . . . .
Substituting

t
(m)
i =

[
(n − 1)�n

(1 − 2�n)(d(m))3

]1/3

|u(m)
i |

in (6.5), we find

t
(m+1)
i � (1 − 2�n)d

(m)

(n − 1)d(m+1)
[t (m)

i ]3
∑
j �=i

[t (m)
j ] (i ∈ In).

Hence, using (6.4), we obtain

t
(m+1)
i <

1

n − 1
[t (m)

i ]3
∑
j �=i

t
(m)
j (i ∈ In). (6.6)

Since |u(0)
i | < �ncnd

(0) (assertion (ii) of Lemma 6.1), we have

t
(0)
i =

[
(n − 1)�n

(1 − 2�n)(d(0))3

]1/3

|u(0)
i | < �ncn

[
(n − 1)�n

1 − 2�n

]1/3

for each i = 1, . . . , n. Let t
(0)
i �maxi t

(0)
i = t . Then

t < �ncn

[
(n − 1)�n

1 − 2�n

]1/3

< 0.310 for 3�n�20

and

t < 0.239 for n�21,

that is, t
(0)
i � t < 1 for all i = 1, . . . , n. Hence we conclude from (6.6) that the sequences {t (m)

i } (and, consequently,

{|u(m)
i |}) tend to 0 for all i = 1, . . . , n. Therefore, z

(m)
i → �i (i ∈ In) and method (6.1) is convergent.

Since the quantity d(m) appearing in (6.5) is bounded and tends to mini �=j |�i − �j |, from (6.5) there follows

|u(m+1)
i |�u(m+1) < (n − 1)

�n

(d(m))3 [u(m)]4,

where u(m) = max1� i �n |u(m)
i |. Therefore, the order of convergence of Halley-like method (6.1) is four. �

7. Some computational aspects

In this paper we have improved the convergence conditions of four root-finding methods. For the comparison purpose,
let us introduce the normalized i-factor �n = n · cn. The former �n for the considered methods, found in the recent
papers cited in Section 1, and the improved (new) �n, proposed in this paper, are given in Table 1.
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Table 1

Former �n New �n

Ehrlich–Aberth’s method (3.1)
n

2n + 3

{ n

2n + 1.4
(3�n�7),

1/2 (n�8)

The EAN method (4.1)
1

3

{ n

2.2n + 1.9
(3�n�21),

1/2.2 (n�22)

The BSW method (5.1)
n

2n + 2

{ n

2n + 1
(3�n�13),

1/2 (n�14)

Halley-like method (6.1)
1

4

{ n

3n + 2.4
(3�n�20),

1/3 (n�21)
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Fig. 2. (a) r%—Ehrlich–Aberth’s method (3.1). (b) r%—the EAN method (4.1). (c) r%—the BSW method (5.1). (d) r%—Halley-like method (6.1).

To compare the former �n = ncn with the improved values of �n obtained in this paper, we introduce a percentage
measure of the improvement

r% = �(new)
n − �(former)

n

�(former)
n

· 100.

Following Table 1 we calculated r% for n ∈ [3, 30] and displayed r% in Fig. 2 as a function of n for each of the
four considered methods. From Fig. 2 we observe that we significantly improved i-factors cn, especially for the EAN
method (4.1) and Halley-like method (6.1).

The values of the i-factor cn, given in the corresponding convergence theorems for the considered iterative methods,
are mainly of theoretical importance. We were constrained to take smaller values of cn to enable the validity of
inequalities appearing in the convergence analysis. However, these theoretical values of cn can be suitably applied in
ranking the considered methods regarding (i) their initial conditions for the guaranteed convergence and (ii) convergence
behavior in practice.
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Table 2

cn 1.5cn 2cn 3cn 5cn 10cn

Ehrlich–Aberth’s method (3.1) 3.9 4 4.2 5.4 7.3 13.3
The EAN method (4.1) 3.1 3.2 3.4 5.1 6.1 10.2
The BSW method (5.1) 3 3.1 3.3 4.3 5.8 9.8
Halley-like method (6.1) 3.2 3.4 4.2 5.5 6.7 10.7

As it was mentioned in [22], in practical implementation of simultaneous root-finding methods we can take greater
cn related to that given in the convergence theorems and still preserve both guaranteed and fast convergence. The
determination of the range of values of i-factor cn providing favorable features (guaranteed and fast convergence) is
very difficult problem and practical experiments are the only means for obtaining some information on this range. We
have tested the considered methods in examples of many algebraic polynomials with degree up to 20 taking initial
approximations in such a way that the i-factor has taken the values kcn for k = 1 (theoretical entry applied in the stated
initial conditions) and for k = 1.5, 2, 3, 5 and 10. The stopping criterion was given by the inequality

max
1� i �n

|z(m)
i − �i | < 10−15.

In Table 2 we give the average number of iterations (rounded to one decimal place), needed to satisfy this criterion.
From Table 2 we observe that the new i-factor not greater than 2cn mainly preserves the convergence rate related to

the theoretical value cn given in the presented convergence theorems. The entry 3cn is rather acceptable from a practical
point of view, while the choice of 5cn doubles the number of iterations. Finally, the value 10cn significantly decreases
the convergence rate of all considered methods, although still provides the convergence.
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[24] M.S. Petković, H. Herceg, S. Ilić, Point estimation and some applications to iterative methods, BIT 38 (1998) 112–126.
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