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Abstract

By using comparison theorem and constructing suitable Lyapunov functional, we study the following
almost periodic nonlinear N -species competitive Lotka–Volterra model:

ẋi (t) = xi(t)

[
ri (t) −

N∑
j=1

aij (t)x
αij

j
(t) −

N∑
j=1

bij (t)x
αij

j

(
t − τij (t)

) −
N∑

j=1

cij (t)x
αii

i
(t)x

αij

j
(t)

]
.

A set of sufficient conditions is obtained for the existence and global attractivity of a unique positive almost
periodic solution of the above model. As applications, some special competition models are studied again,
our new results improve and generalize former results. Examples and their simulations show the feasibility
of our main results.
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1. Introduction

In the present paper, we consider a generalized nonlinear N -species Gilpin–Ayala type com-
petition system which takes the form

ẋi (t) = xi(t)

[
ri(t) −

N∑
j=1

aij (t)x
αij

j (t) −
N∑

j=1

bij (t)x
αij

j

(
t − τij (t)

)

−
N∑

j=1

cij (t)x
αii

i (t)x
αij

j (t)

]
, (1.1)

where i = 1,2, . . . ,N , xi(t) denotes the density of the ith specie Xi at time t ; ri(t) is the intrinsic
growth rate of the ith species Xi , aij (t), bij (t) (i �= j) measures the amount of competition
between the specie Xi and Xj , τij (t) corresponds to the time delay; αii provides a nonlinear
measure of intraspecific interference and αij (i �= j) provides a nonlinear measure of interspecific
interference, αij is a positive constant; ri(t), aij (t), bij (t), cij (t), τij (t), i, j = 1,2, . . . ,N , are all
almost periodic functions defined on (−∞,+∞); aij (t), bij (t), cij (t), τij (t), i, j = 1,2, . . . ,N ,
are all nonnegative; αij are positive constants; the intrinsic growth rate of the prey species ri(t)

may be negative while limT →∞ 1
T

∫ T

0 ri(t) dt > 0; aii , bii , i = 1,2, . . . ,N , are positive. For the
readers’ convenience, the definition of almost periodic function is given here.

Definition 1.1. Let f : R → R, t �→ f (t) be a continuous function. We say that f (t) is an almost
periodic function on R if for all ε > 0, there exists τ = τ(ε) such that for all t ∈ R,∥∥f (t + τ) − f (τ)

∥∥ < ε.

The number τ is called an ε-translation number of f (t).

The purpose of this article is to obtain some sufficient conditions for the global attractivity
(see Definition 2.2) and existence of a positive almost periodic solution of the system (1.1). The
remaining part of this paper is organized as follows. We introduce the background of our work
in the rest of this section. In Section 2, we shall prove some preliminary results. Then, by using
comparison theorem and the preliminary results, some sufficient conditions are obtained for the
persistency (see Definition 2.1) of system (1.1). We then deduce the existence of a bounded solu-
tion of system (1.1) on R. In Section 3, first, by constructing a suitable Lyapunov function, some
sufficient conditions are obtained for the global attractivity of system (1.1). Then, we devote our-
self to obtain some sufficient conditions for the existence of a unique almost periodic solution of
system (1.1). The approach is based on the properties of almost periodic function and the choice
of a suitable Lyapunov function. In Section 4, as applications, we deduce criteria for some well-
known special cases of system (1.1) to illustrate the generality of our results which generalize
former known results. Finally, a suitable example and their simulations show the feasibility of
our results.

Traditional Lotka–Volterra competitive system is a rudimentary model on mathematical ecol-
ogy which can be expressed as follows:

ẋi (t) = xi(t)

[
ri(t) −

N∑
aij (t)xj (t)

]
, i = 1,2, . . . ,N. (1.2)
j=1
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The model has been investigated extensively (for example, see [1–18] and the references cited
therein). Many interesting results concern with the persistency, extinction and global attractivity
of periodic or almost periodic solutions.

On one hand, according to the culture figures that are obtained by Ayala on the studies
of D. Psendoobscura and D. Serrata, the growth rate of some competitive species does not
correspond with that of the Lotka–Volterra model (see Chen [1]). So the results obtained by
Lotka–Volterra system are not applicable for every species. The reason is that ignoring nonlinear
terms in the problem leads to neglecting many important factors, such as the effect of toxic (see
Chattopadhyay [19] and Xia et al. [31]) or the age-structure of a population (see Cui et al. [20]).
As these important factors are to be considered, we have to introduce more complex equations.
For the above reasons, the following autonomous or nonautonomous system has been considered
in [15,16], respectively,{

ẋ1(t) = x1(t)
[
r1(t) − a1(t)x1(t) − b1(t)x2(t) − c1(t)x1(t)x2(t)

]
,

ẋ2(t) = x2(t)
[
r2(t) − a2(t)x1(t) − b2(t)x2(t) − c2(t)x1(t)x2(t)

]
.

On the other hand, in 1973, Ayala et al. [21] conducted experiments on fruit fly dynamics
to test the validity of 10 models of competitions. One of the models accounting best for the
experimental results is given by⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ẋ1(t) = r1x1(t)

[
1 −

(
x1(t)

K1

)θ1

− α12
x2(t)

K2

]
,

ẋ2(t) = r2x2(t)

[
1 −

(
x2(t)

K2

)θ2

− α21
x1(t)

K1

]
.

(1.3)

In order to fit data in their experiments and to yield significantly more accurate results, Gilpin
et al. [22] claimed that a slightly more complicated model was needed and proposed the following
model:

ẋi (t) = rixi(t)

[
1 −

(
xi(t)

Ki

)θi

−
N∑

j=1, j �=i

bij (t)
xj (t)

Kj

]
, i = 1,2, . . . ,N, (1.4)

where xi is the population density of the ith species, ri is the intrinsic exponential growth rate
of the ith species, Ki is the environment carrying capacity of species i in the absence of compe-
tition, θi provides a nonlinear measure of intra-specific interference, and bij (i �= j) provides a
measure of interspecific competition. Goh et al. [23] and Liao et al. [24] obtained sufficient con-
ditions which guarantee the global asymptotic stability of the system (1.4). By means of Ahmad
et al. [25] definitions of lower and upper averages of a function, Chen [26] studied the following
generalized N -species nonautonomous Gilpin–Ayala type competitive model:

ẋi (t) = xi(t)

[
ri(t) −

N∑
j=1

aij (t)x
αij

j (t)

]
, i = 1,2, . . . ,N. (1.5)

Some sufficient conditions were obtained for the persistency and extinction of system (1.5). Also,
Fan et al. [27] further incorporated time delays in the model (1.6) and they proposed the following
delayed Gilpin–Ayala competitive model:

ẋi (t) = xi(t)

[
ri(t) −

N∑
aij (t)x

αij

j

(
t − τij (t)

)]
, i = 1,2, . . . ,N. (1.6)
j=1
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By applying the coincidence degree theory (see Gaines et al. [37]), they obtained a set of easily
verifiable sufficient conditions for the existence of at least one positive (componentwise) periodic
solution of system (1.6).

It is well known that ecosystem in the real world are continuously distributed by unpredictable
forces which can result in changes in the biological parameters such as survival rates. Due to the
various seasonal effects of the environmental factors in real life situation (e.g., seasonal effects
of weather, food supplies, mating habits, harvesting, etc.), it is rational and practical to study the
ecosystem with periodic coefficients. A very basic and important ecological problem in the study
of multi-species population dynamics concerns the existence and global attractivity of positive
periodic solutions.

However, if the various constituent components of the temporally nonuniform environment is
with incommensurable (nonintegral multiples) periods, then one has to consider the environment
to be almost periodic since there is no a priori reason to expect the existence of periodic solutions.
If we consider the effects of the environmental factors, the assumption of almost periodicity is
more realistic, more important and more general. For more details about the significance of the
almost periodicity, one could refer to [6,10,11,16,28–35] and references cited therein. Motivated
by the above works, we propose system (1.1) which consider both the effect of toxic and Gilpin–
Ayala effect. However, must of the existing works handle systems (from (1.2) to (1.6)) with the
uniform persistence, global attractivity or existence of positive periodic solutions. To the best of
the authors’ knowledge, no study has concerned system (1.1) with the almost periodic coeffi-
cients so far. Our aim is to obtain sufficient conditions for the existence of a globally attractive
positive almost periodic solution of the system (1.1). The method is based on the use of compar-
ison theorem and constructing suitable Lyapunov functional. Our results generalize and improve
those in Ahmad [6], Gopalsamy [9,10], Zhao [13], He [16], Zhao [18], Chen [26], Xia et al. [31].

Throughout this paper, we shall use the following notations:

• We always use i, j = 1, . . . ,N , unless otherwise stated.
• If f (t) is an almost periodic function defined on (−∞,+∞), we set

f = sup
t∈(−∞,+∞)

f (t), f = inf
t∈(−∞,+∞)

f (t).

• Denote pi = (
ri

aii
)

1
αii , qi = [(ri − ∑N

j=1, j �=i aijp
αij

j )/aii]
1

αii .
• Let ψij (t) = t − τij (t). We assume that for all integers i, j this function is always invertible,

i.e., with nonvanishing derivative. We denote by ψ−1
ij its inverse.

• Denote mean value m(f ) = limT →∞ 1
T

∫ T

0 f (t) dt . When f (t) is an ω-periodic function,
then m(f ) = 1

ω

∫ ω

0 f (t) dt . Obviously, when f (t) is an ω-periodic function, m(f ) > 0 ⇔∫ ω

0 f (t) dt > 0. We denote the hull of f (t) by H(f ), where H(f ) is the set of real func-
tion g(t) such that there exists a sequence tn such that limn→+∞ f (t + tn) = g(t) uniformly
on R.

• Given x(t) = (x1(t), . . . , xN(t)) ∈ RN , y(t) = (y1(t), . . . , yN(t)) ∈ RN , we put x(t) � y(t),
if xi(t) � yi(t), for all i = 1,2, . . . ,N .

Throughout this paper, we suppose that the following conditions are satisfied:

(H1) ri(t), aij (t), bij (t), cij (t) are nonnegative almost periodic functions defined for t ∈
(−∞,+∞) and inft∈R aii(t) > 0, inft∈R bii(t) > 0; αij > 0.
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(H2) τij (t) are nonnegative, continuously differentiable and almost periodic functions on t ∈ R,
ψij (t) = t − τij (t) are invertible. Moreover, τ̇ij (t) are all uniformly continuous on R with
inft∈R{1 − τ̇ij (t)} > 0.

(H3) m(ri) > 0.

2. Existence of bounded solutions

Since we are interested in the positive solutions of system (1.1), we assume the system (1.1)
to be supplemented with initial conditions of the form

xi(s) = φi(s) ∈ C
([−τ,0],R+

)
, φi(0) > 0, (2.1)

where C denotes the set of continuous functions, φi ∈ C is the initial value function and τ =
supt∈R{τij (t), i, j = 1,2, . . . ,N}, R+ = (0,+∞). Integrating (1.1) over [t0, t] leads to

xi(t) = xi(t0) exp

{ t∫
t0

[
ri(s) −

N∑
j=1

aij (s)x
αij

j (s)

−
N∑

j=1

bij (s)x
αij

j

(
s − τij (s)

) −
N∑

j=1

cij (s)x
αii

i (s)x
αij

j (s)

]
ds

}
.

Hence, any solution x(t) = (x1(t), . . . , xN(t)) of the initial value problem (1.1)–(2.1) exists and
satisfies xi(t) > 0, for all i = 1,2, . . . ,N and t � t0, i.e., x(t) > 0 for t � t0.

Definition 2.1. The initial value problem (1.1)–(2.1) is said to be persistent, if for any positive
solution of the initial value problem (1.1)–(2.1) there exists positives constants m,M such that
for all solution x(t) there exists T > 0 such that m � xi(t) � M , for all t � T . The solution of
the initial value problem is also called ultimately bounded above and below.

Definition 2.2. A positive bounded solution x(t) = (x1(t), . . . , xN(t)) of the initial value prob-
lem (1.1)–(2.1) is said to be globally attractive, if for any other positive solution y(t) =
(y1(t), . . . , yN(t)) of the initial value problem (1.1)–(2.1), we have

lim
t→+∞

∣∣xi(t) − yi(t)
∣∣ = 0, i = 1,2, . . . ,N.

In the following we will prove a preliminary result which will be used in the proof of our main
results.

Now we consider the generalized almost periodic logistic equation

ẋ(t) = x(t)
[
r(t) − a(t)xα(t)

]
, (2.2)

where r(t) and a(t) are continuous almost periodic functions with α > 0, a > 0 and m(r) > 0.
We now state the following lemma:

Lemma 2.1. System (2.2) has a unique positive globally attractive almost periodic solu-

tion x̃(t) with x̃(t) � (ri/aii)
1
α . Let x̃i (i = 1,2) be the unique solution of (2.2) when replacing

r(t) by ri(t), a(t) by ai(t) (i = 1,2), respectively. If r2(t) � r1(t) and a2(t) � a1(t), then
x̃2(t) � x̃1(t).
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Proof. By the transformation of variable

z(t) = 1

xα(t)
, (2.3)

then Eq. (2.2) becomes

ż(t) = αa(t) − αr(t)z(t). (2.4)

Since a > 0 and m(r) > 0, obviously, system (2.4) has a unique almost periodic solution repre-
sented as follows:

z̃(t) = α

t∫
−∞

exp

(
−α

t∫
s

r(u) du

)
a(s) ds, (2.5)

with z̃(t) � a/r > 0 and z̃(t) is bounded for t ∈ R. Therefore, x̃(t) = ( 1
z̃(t)

)
1
α is the unique

positive almost periodic solution of (2.2) with 0 < x̃(t) � (r/a)
1
α .

Next we will show that the unique positive almost periodic solution of (2.2) is globally at-
tractive. In fact, let z̃(t) be given by (2.5) and z(t) = z(t,0, z0) (t0 = 0) be any other solution of
system (2.4) with any initial value (0, z0), then by using the variation of constants formula, we
have

z(t) =
[
z0 + α

t∫
0

a(s) exp

( s∫
0

αr(u)du

)
ds

]
exp

(
−

t∫
0

αr(u)du

)
. (2.6)

Simple computation shows that z(t) � a/r[1 + (r/az0 − 1)e−αrt ]. This implies that there exists
T > 0 such that z(t) � a/r > 0, for all t � T . Also, it follows from (2.5) and (2.6) that

∣∣z(t) − z̃(t)
∣∣ =

∣∣∣∣∣z0 − α

0∫
−∞

a(s) exp

( 0∫
s

αr(u)du

)
ds

∣∣∣∣∣ exp

(
−

t∫
0

αr(u)du

)

= ∣∣z0 − z̃(0)
∣∣ exp

(
−

t∫
0

αr(u)du

)
.

Since m(r) > 0, we have
∫ t

0 αr(u)du → +∞ as t → +∞. Thus, z(t) − z̃(t) → 0 as t → +∞.

Let x̃(t) = (1/z̃(t))
1
α and x(t) = ( 1

z(t)
)

1
α and note that the function y = xa is nonincreasing as

a � 0. By the mean value theorem, together with z̃(t), z(t) � a/r > 0, for all t � T , we have

∣∣x(t) − x̃(t)
∣∣ =

∣∣∣∣
(

1

z̃(t)

) 1
α −

(
1

z(t)

) 1
α
∣∣∣∣ = ∣∣z̃− 1

α (t) − z− 1
α (t)

∣∣
� 1

α
(a/r)−

1
α
−1

∣∣z(t) − z̃(t)
∣∣, for all t � T .

Therefore, x(t) − x̃(t) → 0 as t → +∞, i.e., x̃(t) is the unique positive almost periodic solu-
tion of system (2.2) which is globally attractive. By using (2.3) and (2.5), the remaining part of
Lemma 2.1 follows and this completes the proof. �
Remark 2.1. Take α = 1, then Lemma 2.1 reduces to Lemma 2.2 in Xia et al. [31].



150 Y. Xia et al. / J. Math. Anal. Appl. 337 (2008) 144–168
If (H1) and (H3) hold, it follows from Lemma 2.1 that the following system:

ẋi (t) = xi(t)
[
ri(t) − aii(t)x

αii

i (t)
]

(2.7)

has a unique globally attractive positive almost periodic solution, denoted by Xi(t).

Lemma 2.2. If (H1)–(H3) hold, then

m

(
ri(t) −

N∑
j=1, j �=i

[
aij (t)X

αij

j (t) + bij (t)X
αij

j

(
t − τij (t)

)])

= m

(
ri(t) −

N∑
j=1, j �=i

[
aij (t)X

αij

j (t) + bij (ψ
−1
ij (t))

1 − τ̇ij (ψ
−1
ij (t))

]
X

αij

j (t)

)
.

Proof. The proof of Lemma 2.2 is similar to the proof of Lemma 2.2 in Xia et al. [33].
From (H1), (H2) and the properties of almost periodic functions, we note that τij (t) and

bij (ψ−1
ij (t))

1−τ̇ij (ψ−1
ij (t))

X
αij

j (t) are all almost periodic functions. By the boundedness of the almost peri-

odic functions, we can verify that
∫ T −τij

T

bij (ψ−1
ij (t))

1−τ̇ij (ψ−1
ij (t))

X
αij

j (t) dt is bounded. Then, we have

m
(
bij (t)X

αij

j

(
t − τij (t)

))

= lim
T →∞T −1

T∫
0

bij (t)X
αij

j

(
t − τij (t)

)
dt

= lim
T →∞T −1

T −τij (T )∫
−τij (0)

bij (ψ
−1
ij (t))

1 − τ̇ij (ψ
−1
ij (t))

X
αij

j (t) dt

= lim
T →∞T −1

[ T∫
0

bij (ψ
−1
ij (t))

1 − τ̇ij (ψ
−1
ij (t))

X
αij

j (t) dt +
0∫

−τij (0)

bij (ψ
−1
ij (t))

1 − τ̇ij (ψ
−1
ij (t))

X
αij

j (t) dt

+
T −τij (T )∫

T

bij (ψ
−1
ij (t))

1 − τ̇ij (ψ
−1
ij (t))

X
αij

j (t) dt

]

= lim
T →∞T −1

T∫
0

bij (ψ
−1
ij (t))

1 − τ̇ij (ψ
−1
ij (t))

X
αij

j (t) dt = m

(
bij (ψ

−1
ij (t))

1 − τ̇ij (ψ
−1
ij (t))

X
αij

j (t)

)
. �

Theorem 2.1. In addition to (H1)–(H3), if further assume that

(H4) m(ri(t)−∑N
j=1, j �=i[aij (t)+ bij (ψ−1

ij (t))

1−τ̇ij (ψ−1
ij (t))

]Xαij

j (t)) > 0, where Xj(t) is the unique globally

attractive positive almost periodic solution of system (2.7). Then the initial value problem
(1.1)–(2.1) is persistent.
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Proof. Proof of Theorem 2.1 is motivated by Teng [17] and Xia et al. [33]. First, we show that
any positive solution of system (1.1) are ultimately bounded above by some positive constant.
Let x(t) = (x1(t), . . . , xN(t))T be any other solution of system (1.1). It follows from (1.1) that

ẋi (t) = xi(t)

[
ri(t) −

N∑
j=1

aij (t)x
αij

j (t) −
N∑

j=1

bij (t)x
αij

j

(
t − τij (t)

)

−
N∑

j=1

cij (t)x
αii

i (t)x
αij

j (t)

]

� xi(t)
[
ri(t) − aii(t)x

αii

i (t)
]
,

for all t � t0. By using the comparison theorem, we have

xi(t) � Xi(t), for all t � t0, (2.8)

where Xi(t) is the unique globally attractive positive almost periodic solution of system (2.7)
which satisfies the initial condition xi(t0) � Xi(t0). From Lemma 2.1 and (2.8), it is not difficult
to obtain that the following two inequalities hold:

lim sup
t→+∞

xi(t) �
(

ri

aii

) 1
αii := pi, for all t ∈ R,

and there exists T̃i > t0 such that

xi(t) � pi, for all t � T̃i . (2.9)

We choose M = maxi pi , then xi(t) � M , for all t � maxi T̃i .

Second, we shall show that any positive solution of system (1.1) is ultimately bounded below
by some positive constant. To this end, we proceed with two steps.

Step 1: We show that there exists δ0 > 0 such that lim supt→+∞ xi(t) � δ0, for all i. In fact, it
follows from (2.8) that for any constant ε > 0, there exists T (ε) � t0 such that

xi(t) � Xi(t) + ε, for all t � T (ε), i = 1,2, . . . ,N. (2.10)

Denote

Bi(t) = ri(t) −
N∑

j=1, j �=i

[
aij (t)X

αij

j (t) + bij (t)X
αij

j

(
t − τij (t)

)]
,

Bi(t, ε) = ri(t) −
N∑

j=1, j �=i

[
aij (t)

(
Xj(t) + ε

)αij + bij (t)
(
Xj

(
t − τij (t)

) + ε
)αij

]
,

Ai(t, ε) = aii(t) + bii(t) +
N∑

j=1

cij (t)
(
Xj(t) + ε

)αij , for all t � T (ε).

It follows from (H4) and Lemma 2.2 that

lim
T →∞

T +s∫
Bi(t) dt = m

(
ri(t) −

N∑
j=1, j �=i

[
aij (t) + bij (ψ

−1
ij (t))

1 − τ̇ij (ψ
−1
ij (t))

]
X

αij

j (t)

)
> 0,
s
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uniformly for s ∈ R. Therefore, there exist positive constants λ and δ such that

t+λ∫
t

Bi(u) du � δ, for all t ∈ R. (2.11)

From (2.11), we can choose sufficient small positive constants ε0, δ0, γ0 such that

t+λ∫
t

[
Bi(u, ε0) − δ

αii

0 Ai(u, ε0)
]
du > γ0, for all t ∈ R. (2.12)

Now we claim that the following inequality holds:

lim sup
t→+∞

xi(t) � δ0. (2.13)

By way of contradiction, suppose that lim supt→+∞ xp(t) < δ0 for a certain p ∈ {1,2, . . . ,N},
then there exists T2 > T1 = T (ε0) such that xp(t) < δ0, for all t � T2. This, together with (2.10),
gives

ẋp(t) = xp(t)

[
rp(t) −

N∑
j=1

apj (t)x
αpj

j (t) −
N∑

j=1

bpj (t)x
αpj

j

(
t − τpj (t)

)

−
N∑

j=1

cpj (t)x
αpp
p (t)x

αpj

j (t)

]

� xp(t)

[
rp(t) − app(t)δ

αpp

0 −
N∑

j=1, j �=p

apj (t)
(
Xj(t) + ε0

)αpj − bpp(t)δ
αpp

0

−
N∑

j=1, j �=p

bpj (t)
(
Xj

(
t − τpj (t)

) + ε0
)αpj −

N∑
j=1

cpj (t)
(
Xj(t) + ε0

)αpj δ
αpp

0

]

= xp(t)
[
Bp(t, ε0) − δ

αpp

0 Ap(t, ε0)
]
, (2.14)

for all t � T2. An integration of (2.14) over [T2, t] leads to

xp(t) � xp(T2) exp

t∫
T2

[
Bp(s, ε0) − δ

αpp

0 Ap(s, ε0)
]
ds.

Obviously, it follows from (2.12) that xp(t) → +∞ as t → +∞, which contradicts xi(t) � pi ,
for all t � T̃i in (2.9). Hence, the inequality (2.13) is correct.

Step 2: We show that for any solution x(t) = (x1(t), . . . , xN(t)), there exists a positive con-
stant m > 0 such that

lim inf
t→+∞ xi(t) � m, for all i = 1,2, . . . , n. (2.15)

In fact, suppose the contrary, there exist a certain p ∈ {1,2, . . . ,N} and a sequence of solu-
tion x

(n)
p (t), n = 1,2, . . . , such that
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lim sup
t→+∞

x(n)
p (t) <

1

n2
, for all n = 1,2, . . . . (2.16)

Then there exist two time sequences {s(n)
q } and {t (n)

q } such that

0 < s
(n)
1 < t

(n)
1 < s

(n)
2 < t

(n)
2 < · · · < s(n)

q < t(n)
q < · · · , for all n = 1,2, . . . ,

s(n)
q → ∞, t (n)

q → ∞, as q → ∞, x(n)
p

(
t (n)
q

) = 1

n2
, x(n)

p

(
s(n)
q

) = 1

n
, (2.17)

and

1

n2
< x(n)

p (t) <
1

n
, for all t ∈ (

s(n)
q , t (n)

q

)
. (2.18)

It follows from (2.10) that there exists T
(n)
2 > T1 such that

x
(n)
i (t) � Xi(t) + ε0, t � T

(n)
2 .

Clearly, there exists an integer sequence N
(n)
1 > 0 such that s

(n)
q > T

(n)
2 , for all q � N

(n)
1 and all

n = 1,2, . . . . Hence, for any t ∈ [s(n)
q , t

(n)
q ] and q � N

(n)
1 , we have

ẋ(n)
p (t) = x(n)

p (t)

[
rp(t) −

N∑
j=1

apj (t)
(
x

(n)
j (t)

)αpj −
N∑

j=1

bpj (t)
(
x

(n)
j

(
t − τpj (t)

))αpj

−
N∑

j=1

cpj (t)
(
x(n)
p (t)

)αpp
(
x

(n)
j (t)

)αpj

]

� x(n)
p (t)

[
rp(t) −

N∑
j=1

apj (t)
(
X

(n)
j (t) + ε0

)αpj

−
N∑

j=1

bpj (t)
(
X

(n)
j

(
t − τpj (t)

) + ε0
)αpj

−
N∑

j=1

cpj (t)
(
X

(n)
j (t) + ε0

)αpj
(
X(n)

p (t) + ε0
)αpp

]

� −k0x
(n)
p (t), (2.19)

where

k0 = sup
t∈R

{
N∑

j=1

apj (t)
(
X

(n)
j (t) + ε0

)αpj +
N∑

j=1

bpj (t)
(
X

(n)
j

(
t − τpj (t)

) + ε0
)αpj

+
N∑

j=1

cpj (t)
(
X

(n)
j (t) + ε0

)αpj
(
X(n)

p (t) + ε0
)αpp

}
.

An integration of (2.19) over [s(n)
q , t

(n)
q ] leads to

1
2

= x(n)
p

(
t (n)
q

)
� x(n)

p

(
s(n)
q

)
exp

[−k0
(
t (n)
q − s(n)

q

)] = 1
exp

[−k0
(
t (n)
q − s(n)

q

)]
,

n n
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for all q � N
(n)
1 and all n = 1,2, . . . , which implies

t (n)
q − s(n)

q � lnn

k0
, for all q � N

(n)
1 , n = 1,2, . . . . (2.20)

It follows from (2.20) that there exists a sufficient large integer n0 such that

δ0 >
1

n
, t(n)

q − s(n)
q � λ, for all n � n0, q � N

(n)
1 .

Therefore, for any n � n0, q � N
(n)
1 and t ∈ [s(n)

q , t
(n)
q ], it follows from (2.17) and (2.18) that

ẋ(n)
p (t) = xp(t)

[
rp(t) −

N∑
j=1

apj (t)
(
x

(n)
j (t)

)αpj −
N∑

j=1

bpj (t)
(
x

(n)
j

(
t − τpj (t)

))αpj

−
N∑

j=1

cpj (t)
(
x(n)
p (t)

)αpp
(
x

(n)
j (t)

)αpj

]

� xp(t)

[
rp(t) − app(t)

(
1

n

)αpp

−
N∑

j=1, j �=p

apj (t)
(
X

(n)
j (t) + ε0

)αpj

− bpp(t)

(
1

n

)αpp

−
N∑

j=1, j �=p

bpj (t)
(
X

(n)
j

(
t − τpj (t)

) + ε0
)αpj

−
N∑

j=1

cpj (t)
(
X

(n)
j (t) + ε0

)αpj

(
1

n

)αpp
]

� xp(t)

[
rp(t) − app(t)δ

αpp

0 −
N∑

j=1, j �=p

apj (t)
(
X

(n)
j (t) + ε0

)αpj − bpp(t)δ
αpp

0

−
N∑

j=1, j �=p

bpj (t)
(
X

(n)
j

(
t − τpj (t)

) + ε0
)αpj −

N∑
j=1

cpj (t)
(
X

(n)
j (t) + ε0

)αpj δ
αpp

0

]

= xp(t)
[
Bp(t, ε0) − δ

αpp

0 Ap(t, ε0)
]
. (2.21)

Together with (2.12), (2.17) and (2.18), an integration of (2.21) over [t (n)
q − λ, t

(n)
q ] leads to

1

n2
= x(n)

p

(
t (n)
q

)
� x(n)

p

(
t (n)
q − λ

)
exp

t
(n)
q∫

t
(n)
q −λ

[
Bp(t, ε0) − δ

αpp

0 Ap(t, ε0)
]
dt >

1

n2
eγ0 >

1

n2
.

This is a contradiction, thus the inequality (2.15) is correct. That is to say, any positive so-
lution x(t) of the initial value problem (1.1)–(2.1) is ultimately bounded below by a positive
constant m. From Definition 2.1, the proof of Theorem 2.1 is complete. �

Denote

K = {
x(t) = (

x1(t), . . . , xN(t)
) ∣∣ m � xi(t) � M, for all t ∈ R, i = 1,2, . . . ,N

}
.
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Theorem 2.2. If (H1)–(H4) hold, then the initial value problem (1.1)–(2.1) has at least one
positive (componentwise) solution on all of R belonging to K .

Proof. Theorem 2.2 implies that there exists T 0 � t0 such that system (1.1) has at least one
positive solution x(t) satisfying 0 < m � xi(t) � M for t � T 0. In what follows, we will prove
that system (1.1) has at least one positive solution v(t) = (v1(t), . . . , vN(t)) defined on R such
that m � vi(t) � M , for all t ∈ R.

Since ri(t), aij (t), bij (t), cij (t), τij (t) are almost periodic, there exists a sequence {tn},
tn → ∞ as n → ∞ such that ri(t + tn) → ri(t), aij (t + tn) → aij (t), bij (t + tn) → bij (t),
cij (t + tn) → cij (t), τij (t + tn) → τij (t) uniformly for all t ∈ R as n → ∞.

We claim that the sequence {x(t + tn)} is uniformly bounded and equi-continuous on any
bounded interval in R.

In fact, for any bounded interval [t−, t+] ⊂ R, as n is large enough, tn + β � T 0. So m �
xi(t + tn) � M for t ∈ [t−, t+], which implies that the sequence {x(t + tn)} is uniformly bounded.
On the other hand, ∀t1, t2 ∈ [t−, t+], from the elementary mean value theorem of differential
calculus, we have

∣∣xi(t1 + tn) − xi(t2 + tn)
∣∣ � M

[
ri +

N∑
j=1

(
aij + bij + cijM

αii
)
Mαij

]
|t1 − t2|.

The above inequality shows that the sequence {x(t + tn)} is equi-continuous on [t−, t+], the claim
follows.

By Ascoli–Arzela theorem, there exist a subsequence of {tn} (we still denote it as {tn}) and a
continuous function v(t) such that

xi(t + tn) → vi(t), i = 1, . . . ,N, as n → ∞,

uniformly in t on any bounded interval in R. Let σ ∈ R be given. We may assume that tn +σ � 0,
for all n. For t � t0, an integration of (1.1) over [tn + σ, t + tn + σ ] leads to

xi(t + tn + σ) − xi(tn + σ)

=
t+tn+σ∫
tn+σ

xi(s)

[
ri(s) −

N∑
j=1

aij (s)x
αij

j (s) −
N∑

j=1

bij (s)x
αij

j

(
s − τij (s)

)

−
N∑

j=1

cij (s)x
αii

i (s)x
αij

j (s)

]
ds

=
t+σ∫
σ

xi(s + tn)

[
ri(s + tn) −

N∑
j=1

aij (s + tn)x
αij

j (s + tn)

−
N∑

j=1

bij (s + tn)x
αij

j

(
s + tn − τij (s + tn)

)

−
N∑

j=1

cij (s + tn)x
αii

i (s + tn)x
αij

j (s + tn)

]
ds.

Using the Lebesgue’s dominated convergence theorem, one has
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vi(t + σ) − vi(σ ) =
t+σ∫
σ

vi(s)

[
ri(s) −

N∑
j=1

aij (s)v
αij

j (s) −
N∑

j=1

bij (s)v
αij

j

(
s − τij (s)

)

−
N∑

j=1

cij (s)v
αii

i (s)v
αij

j (s)

]
ds.

This means that v(t) = (v1(t), . . . , vN(t)) is a solution of system (1.1), and by the arbitrary of σ ,
v(t) is a solution of system (1.1) on R with m � vi(t) � M . Therefore, Theorem 2.2 is valid. �
3. Existence of a unique almost periodic solution

In what follows, we will give some lemmas which will be used in the proving of Theorems 3.1
and 3.2.

In order to investigate the global attractivity of the bounded positive (componentwise) solution
of (1.1), we shall make some preparations. Let d be any positive constant such that 0 < d < m,
making the change of variable ui = xi

d
, then system (1.1) change to

u̇i (t) = ui(t)

[
ri(t) −

N∑
j=1

aij (t)d
αij u

αij

j (t) −
N∑

j=1

bij (t)d
αij u

αij

j

(
t − τij (t)

)

−
N∑

j=1

cij (t)d
αii+αij u

αii

i (t)u
αij

j (t)

]
. (3.1)

Obviously, system (1.1) is equivalent to system (3.1). In what follows, we will investigate some
basic results of system (3.1).

Lemma 3.1. If all conditions in Theorem 2.1 hold, then system (3.1) is persistent.

Proof. Let Ui(t) be the unique globally attractive almost periodic solution of the following sys-
tem (3.2)

u̇i (t) = ui(t)
[
ri(t) − aii(t)d

αii u
αii

i (t)
]
. (3.2)

From Theorem 2.2, if m(ri(t) − ∑N
j=1, j �=i[aij (t) + bij (ψ−1

ij (t))

1−τ̇ij (ψ−1
ij (t))

]dαij U
αij

j (t)) > 0, then sys-

tem (3.1) is persistent and m
d

� lim inft→+∞ ui(t) � lim supt→+∞ ui(t) � M
d

. It is easy to see

that system (3.2) is equivalent to system (2.7) by making change of variables Ui(t) = Xi(t)
d

.
Therefore, we have

m

(
ri(t) −

N∑
j=1, j �=i

[
aij (t) + bij (ψ

−1
ij (t))

1 − τ̇ij (ψ
−1
ij (t))

]
X

αij

j (t)

)

= m

(
ri(t) −

N∑
j=1, j �=i

[
aij (t) + bij (ψ

−1
ij (t))

1 − τ̇ij (ψ
−1
ij (t))

]
dαij U

αij

j (t)

)
> 0.

The assertion of Lemma 3.1 follows immediately. �
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Denote

K1 =
{
u(t) = (

u1(t), . . . , uN(t)
) ∣∣∣ m

d
� xi(t) � M

d
, for all t ∈ R, i = 1,2, . . . ,N

}
.

Similar to the proof of Theorem 2.3, the following lemma follows.

Lemma 3.2. If (H1)–(H4) hold, then system (3.1) has at least one positive solution on R belong-
ing to K1.

We now state the following lemmas.

Lemma 3.3. (See [36].) Let f be a nonnegative function defined on [0,+∞) such that f is
integrable on [0,+∞) and is uniformly continuous on [0,+∞). Then limt→+∞ f (t) = 0.

Lemma 3.4. (See Fink [28, Theorem 10.1], He [29, Theorem 3.2].) Consider system ẋ = f (t, x),
suppose f (t, x) is almost periodic in t uniformly in x ⊂ K , K compact in RN . If each equa-
tion ẋ = g(t, x), g ∈ H(f ) (where H(f ) is the hull of f ) has a unique solution on R belonging
to K , then these solutions are almost periodic.

Assume α(t) is an almost periodic function and β(t) is a continuously differentiable almost
periodic function. Furthermore, β̇(t) is uniformly continuous on R with inft∈R{1 − β̇(t)} > 0.
Obviously, β̇(t) is also a continuously almost periodic function.

Lemma 3.5. (See [17] or [29].) Suppose (α∗(t), β∗(t)) ∈ H(α(t), β(t)) and σ−1(t), σ ∗−1(t) is
the inverse of σ(t) = t − β(t), σ ∗(t) = t − β∗(t), respectively. Then we have

(a) If there exists a sequence {tn} such that α(t + tn) → α∗(t), β(t + tn) → β∗(t) uniformly on R

as n → ∞, then α(σ−1(t + tn)) → α∗(σ ∗−1(t)) uniformly on R.
(b) α(σ−1(t)), α∗(σ ∗−1(t)) are all almost periodic and α∗(σ ∗−1(t)) ∈ H(α(σ−1(t))).

Theorem 3.1. In addition to (H1)–(H4), if the initial value problem (1.1)–(2.1) also satisfies the
following conditions:

(H5) αii � maxj {αji}.
(H6) There exist positive constants θi (i = 1,2, . . . ,N), d (0 < d < m) and ς such that

mint∈R{ϕi(t), i = 1,2, . . . ,N} > ς , where

ϕi(t) = θi

(
dαii aii(t) +

N∑
j=1

cij (t)d
αii mαij

)
−

(
N∑

j=1, j �=i

θj d
αji aji(t)

+
N∑

j=1

dαji
bji(ψ

−1
ji (t))

1 − τ̇j i (ψ
−1
ji (t))

+
N∑

j=1

cji(t)d
αji Mαjj

)
.

Then the initial value problem (1.1)–(2.1) has a unique positive bounded solution x(t) which is
globally attractive.
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Proof. In order to show the global attractivity of the bounded solution x(t) of system (1.1),
we shall show that the bounded solution u(t) = (u1(t), . . . , uN(t)) of system (3.1) is globally
attractive. Let v(t) = (v1(t), . . . , vN(t)) be any other solution of system (3.1). By Lemma 3.2
and 0 < d < m, there exists T 0 > 0 such that 1 < m

d
� ui(t), vi(t) � M

d
, for all t � T 0. Consider

the following Lyapunov functional:

W(t) =
N∑

i=1

θi

[∣∣lnui(t) − lnvi(t)
∣∣ +

N∑
i=1

t∫
t−τij (t)

bij (ψ
−1
ij (s))

1 − τ̇ij (ψ
−1
ij (s))

∣∣uαij

i (s) − v
αij

i (s)
∣∣ds

]
.

(3.3)

Calculating the upper right derivative D+W(t) of W(t) along the solution of (3.1), by simplify-
ing, we get

D+W(t) � −
N∑

i=1

θiaii(t)d
αii

∣∣uαii

i (t) − v
αii

i (t)
∣∣

+
N∑

i=1

N∑
j=1, j �=i

θj aij (t)d
αij

∣∣uαij

j (t) − v
αij

j (t)
∣∣

+
N∑

i=1

N∑
j=1, j �=i

θj d
αij

bij (ψ
−1
ij (t))

1 − τ̇ij (ψ
−1
ij (t))

∣∣uαij

j (t) − v
αij

j (t)
∣∣

−
N∑

i=1

N∑
j=1

θj cij (t)d
αii mαij

∣∣uαii

i (t) − v
αii

i (t)
∣∣

+
N∑

i=1

N∑
j=1

θj cij (t)d
αij Mαii

∣∣uαij

j (t) − v
αij

j (t)
∣∣

= −
N∑

i=1

{
θi

(
dαii aii(t) +

N∑
j=1

cij (t)d
αii mαij

)∣∣uαii

i (t) − v
αii

i (t)
∣∣

−
(

N∑
j=1, j �=i

θj d
αji aji(t) +

N∑
j=1

dαji
bji(ψ

−1
ji (t))

1 − τ̇j i (ψ
−1
ji (t))

+
N∑

j=1

cji(t)d
αji Mαjj

)∣∣uαji

i (t) − v
αji

i (t)
∣∣}. (3.4)

Note that the function y = |ax − bx | is increasing when a, b > 1. It follows from Lemma 3.2
and 0 < d < m that ui(t), vi(t) � m

d
> 1, for all t � T 0. This, together with (H5), implies that∣∣uαji

i (t) − v
αji

i (t)
∣∣ �

∣∣uαii

i (t) − v
αii

i (t)
∣∣, for all t � T 0. (3.5)

Therefore, for t � T 0, it follows from (3.4) and (3.5) that

D+W(t) � −
N∑{[

θi

(
dαii aii(t) +

N∑
cij (t)d

αii mαij

)∣∣uαii

i (t) − v
αii

i (t)
∣∣
i=1 j=1
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−
(

N∑
j=1, j �=i

θj d
αji aji(t) +

N∑
j=1

dαji
bji(ψ

−1
ji (t))

1 − τ̇j i (ψ
−1
ji (t))

+
N∑

j=1

cji(t)d
αji Mαjj

)]∣∣uαii

i (t) − v
αii

i (t)
∣∣}

� −ς

N∑
i=1

∣∣uαii

i (t) − v
αii

i (t)
∣∣ < 0. (3.6)

An integration of (3.6) over [T 0, t], we obtain that

t∫
T 0

ς

[
N∑

i=1

∣∣uαii

i (s) − v
αii

i (s)
∣∣]ds < W

(
T 0) − W(t), for all t � T 0.

Therefore, we have

lim sup
t→+∞

t∫
T 0

[
N∑

i=1

∣∣uαii

i (s) − v
αii

i (s)
∣∣]ds <

W(T 0)

ς
< +∞, for all t � T 0. (3.7)

By Lemma 3.3, from (3.7), one can easily deduce that

lim
t→∞

∣∣ui(t) − vi(t)
∣∣ → 0, i = 1,2, . . . ,N,

which implies the global attractivity of system (3.1). By using the equivalence between (3.1)
and (1.1), it follows that the bounded solution x(t) of system (1.1) is also globally attractive.
This completes the proof of Theorem 3.1. �

Now consider the hull system

ẋi (t) = xi(t)

[
r∗
i (t) −

N∑
j=1

a∗
ij (t)x

αij

j (t) −
N∑

j=1

b∗
ij (t)x

αij

j

(
t − τ ∗

ij (t)
)

−
N∑

j=1

c∗
ij (t)x

αii

i (t)x
αij

j (t)

]
, i = 1,2, . . . ,N, (3.8)

where, for some sequence {tn} with tn → ∞ as n → ∞,

ri(t + tn) → r∗
i (t), aij (t + tn) → a∗

ij (t), bij (t + tn) → b∗
ij (t), cij (t + tn) → c∗

ij (t),

τij (t + tn) → τ ∗
ij (t), X∗

i (t + tn) → X∗
i (t), uniformly for all t ∈ R as n → ∞.

From Lemma 3.5, it follows that

lim
k→∞

{
ri(t + tn) −

N∑
j=1, j �=i

[
aij (t + tn) + bij (ψ

−1
ij (t + tn))

1 − τ̇ij (ψ
−1
ij (t + tn))

]
X

αij

j (t + tn)

}

= r∗
i (t) −

N∑ [
a∗
ij (t) + bij∗(ψ∗−1

ij (t))

1 − τ̇ ∗
ij (ψ

∗−1
ij (t))

]
X

∗αij

j (t); (3.9)

j=1, j �=i
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lim
n→∞ϕi(t + tn) = lim

n→∞

{
θi

(
dαii aii(t + tn) +

N∑
j=1

cij (t)d
αii mαij

)

−
(

N∑
j=1, j �=i

θj d
αji aji(t + tn) +

N∑
j=1

dαji
bji(ψ

−1
ji (t + tn))

1 − τ̇j i (ψ
−1
ji (t + tn))

+
N∑

j=1

cji(t + tn)d
αji Mαjj

)}

= θi

(
dαii a∗

ii (t) +
N∑

j=1

c∗
ij (t)d

αii mαij

)

−
(

N∑
j=1, j �=i

θj d
αji a∗

ji(t) +
N∑

j=1

dαji
b∗
ji(ψ

∗−1
ji (t))

1 − τ̇ ∗
ji(ψ

∗−1
ji (t))

+
N∑

j=1

c∗
ji(t)d

αji Mαjj

)
:= ϕ∗

i (t). (3.10)

Note that r∗
i (t), a∗

ij (t), b
∗
ij (t), c

∗
ij (t), τ

∗
ij (t),X

∗
i (t) and r∗

i (t)−∑N
j=1, j �=i[a∗

ij (t)+ bij∗ (ψ∗−1
ij (t))

1−τ̇∗
ij (ψ∗−1

ij (t))
],

X
∗αij

j (t) are also almost periodic in t .

Lemma 3.6. Suppose the conditions in Theorem 3.1 hold, then the hull system (3.8) has a unique
bounded solution x∗(t) = (x∗

1 (t), x∗
2 (t), . . . , x∗

N(t)) ⊂ K on R, which is globally attractive.

Proof. By the definition of mean value and the assumptions (H1)–(H2), together with (3.9)
and (3.10), it is easy to prove that m(r∗

i (t)) = m(ri(t)) > 0,

m

(
r∗
i (t) −

N∑
j=1, j �=i

[
a∗
ij (t) + b∗

ij (ψ
∗−1
ij (t))

1 − τ̇ ∗
ij (ψ

∗−1
ij (t))

]
X

∗αij

j (t)

)

= m

(
ri(t) −

N∑
j=1, j �=i

[
aij (t) + bij (ψ

−1
ij (t))

1 − τ̇ij (ψ
−1
ij (t))

]
X

αij

j (t)

)
> 0

and mint∈R{ϕ∗
i (t), i = 1,2, . . . ,N} > ς̃ for some positive constant ς̃ � ς . These imply that

corresponding to (3.8), all the requirements in Theorem 3.1 are satisfied. Then applying The-
orem 3.1 to the hull system (3.8), we obtain that system (3.8) has a unique positive bounded
solution x∗(t) ⊂ K on R, which is globally attractive. This completes the proof Lemma 3.6. �

By Lemma 3.6, it follows that for each g(t,X) ∈ H(f (t,X)), the hull equation

ẋ = h(t,X)

has a unique bounded solution on R with value in K . Hence, from Lemma 3.4, this unique
solutions are all almost periodic. By the global attractivity, x(t) is the unique almost periodic
solution of system (1.1) contained in K . Thus, our main results follows
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Theorem 3.2. Suppose the conditions in Theorem 3.1 hold, then the initial value prob-
lem (1.1)–(2.1) has a unique positive (componentwise) almost periodic solution x(t) =
(x1(t), . . . , xN(t)) ⊂ K on R, which is globally attractive.

When we consider system (1.1) in periodic environment, i.e., ri(t), aij (t), bij (t), cij (t), τij (t)

are all ω-periodic. We have

Theorem 3.3. Suppose the coefficients of system (1.1) are all ω-periodic and all the conditions
in Theorem 3.1 hold, then the initial value problem (1.1)–(2.1) has a unique positive (component-
wise) ω-periodic solution x(t) = (x1(t), . . . , xN(t)) ⊂ K on R, which is globally attractive.

Proof. Let x(t) be the unique positive almost periodic solution of (1.1)–(2.1), but in the periodic
case, ri(t), aij (t), bij (t), cij (t), τij (t) are all ω-periodic, therefore, x(t + ω) is also an almost
periodic solution of (1.1)–(2.1). By the uniqueness of almost periodic solution, it follows that
x(t) = x(t + ω), for all t ∈ R. This completes the proof of Theorem 3.3. �
4. Applications

To illustrate the generality of our results, we shall apply the results (Theorems 2.2, 3.2, 3.3)
obtained in Sections 2 and 3 to some particular competition system, which have been studied
extensively in the existed literature. The following two applications will show that our easily
verifiable sufficient conditions are more general and weaker than those available in the literature.

Application 4.1. Consider the competition system without delays, that is,

ẋi (t) = xi(t)

[
ri(t) −

N∑
j=1

aij (t)x
αij

j (t)

]
, i = 1,2, . . . ,N, (4.1)

where system (4.1) is supplemented with the initial condition xi(0) = xi0.

Applying Theorems 2.1, 3.1–3.3 to system (4.1), we have

Theorem 4.1. In addition to (H1), (H3), if further assume that

(H7) m(ri(t) − ∑N
j=1, j �=i aij (t)X

αij

j (t)) > 0, where Xj(t) is defined in Theorem 2.2.

Then the system (4.1) is persistent.

Theorem 4.2. In addition to (H1), (H3), (H5) and (H7), if system (4.1) also satisfies the following
conditions:

(H8) There exist positive constants θi (i = 1,2, . . . ,N), d (0 < d < m) and ς such that
mint∈R{ψi(t), i = 1,2, . . . ,N} > ς , where

ψi(t) = θid
αii aii(t) −

N∑
j=1, j �=i

θj d
αji aji(t).

Then system (4.1) has a unique positive bounded solution x(t) which is globally attractive.
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Theorem 4.3. Suppose the conditions in Theorem 4.2 hold, then system (4.1) has a unique pos-
itive (componentwise) almost periodic solution x(t) = (x1(t), . . . , xN(t)) ⊂ K on R, which is
globally attractive.

Theorem 4.4. Suppose the coefficients of system (4.1) are all ω-periodic and all the conditions in
Theorem 4.2 hold, then system (4.1) has a unique positive (componentwise) ω-periodic solution
x(t) = (x1(t), . . . , xN(t)) ⊂ K on R, which is globally attractive.

Remark 4.1. Obviously, Theorems 4.1 and 4.2 generalize the results of Theorem 2.1 in [26].
Take αij = 1, we also generalize the results of Theorem 2.1 in [13].

In order to obtain more easily verified results, we need the following lemmas.

Lemma 4.1. (See [34, Lemma 2.2].) If a > 0, b > 0 and dx(t)
dt

� x(t)[b − ax(t)], when t � 0
and x(0) > 0, we have x(t) � b

a
[1 + ( b

ax(0)
− 1)e−bt ]−1. Moreover, if 0 < x(0) � b

a
, then 0 <

x(t) � b
a

.

To the contrary, if a > 0, b > 0 and dx(t)
dt

� x(t)[b − ax(t)], t � 0, we have x(t) � b
a
[1 +

( b
ax(0)

− 1)e−bt ]−1. Moreover, if x(0) � b
a

> 0, then x(t) � b
a

> 0.

Lemma 4.2. If a > 0, b > 0 and dx(t)
dt

� x(t)[b − axα(t)], when t � 0 and x(0) > 0, we have

x(t) � ( b
a
)

1
α [1 + ( b

ax−α(0)
− 1)e−bαt ]− 1

α . Moreover, if 0 < x(0) � ( b
a
)

1
α , then 0 < x(t) � ( b

a
)

1
α .

To the contrary, if a > 0, b > 0 and dx(t)
dt

� x(t)[b − axα(t)], t � 0 and x(0) > 0, we have

x(t) � ( b
a
)

1
α [1 + ( b

ax−α(0)
− 1)e−bαt ]− 1

α . Moreover, if x(0) � ( b
a
)

1
α > 0, then x(t) � ( b

a
)

1
α > 0.

Proof. We give a proof of Lemma 4.2. From dx(t)
dt

� x(t)[b − axα(t)], we have

dx−α(t)

dt
� aα − bαx−α(t).

From Lemma 4.1 and the above inequality, we have

x−α(t) � a

b

[
1 +

(
b

ax−α(0)
− 1

)
e−bαt

]−1

, t � 0.

Therefore, we obtain

x(t) �
(

b

a

) 1
α
[

1 +
(

b

ax−α(0)
− 1

)
e−bαt

]− 1
α

, t � 0.

Then it is not difficult to derive that if 0 < x(0) � ( b
a
)

1
α , then 0 < x(t) � ( b

a
)

1
α . This completes

the proof of Lemma 4.2. �
Applying Lemma 4.2 to system (4.1), it is easy to obtain that the values m = mini qi , M =

maxi pi . Then, we have the following four theorems which are much easier to be verified.
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Theorem 4.5. In addition to (H1), if further assume that

(H9) ri >
ri−∑

j=1, j �=i aij p
αij
j

aii
.

Then the system (4.1) is persistent.

Proof. Since m(ri) � ri > 0, from the discussion in Section 2, Xi(t) � pi , t � 0. This implies

m

(
ri(t) −

N∑
j=1, j �=i

aij (t)X
αij

j (t)

)
� ri − ri − ∑

j=1, j �=i aijp
αij

j

aii

> 0.

By Theorem 4.1, Theorem 4.5 holds. �
Theorem 4.6. If system (4.1) satisfies (H1), (H8) and (H9), then system (4.1) has a unique
positive bounded solution x(t) which is globally attractive.

Theorem 4.7. Suppose the conditions in Theorem 4.6 hold, then system (4.1) has a unique pos-
itive (componentwise) almost periodic solution x(t) = (x1(t), . . . , xN(t)) ⊂ K on R, which is
globally attractive.

Theorem 4.8. Suppose the coefficients of system (4.1) are all ω-periodic and all the conditions in
Theorem 4.6 hold, then system (4.1) has a unique positive (componentwise) ω-periodic solution
x(t) = (x1(t), . . . , xN(t)) ⊂ K on R, which is globally attractive.

Application 4.2. Take αij = 1, then system (4.1) reduces to the famous Lotka–Volterra compe-
tition system [9,10,13,14]

ẋi (t) = xi(t)

[
ri(t) −

N∑
j=1

aij (t)xj (t)

]
, i = 1, . . . ,N, (4.2)

where bi(t), aij (t) ∈ C(R, [0,+∞)) are all almost periodic for all t ∈ R with aii > 0.

Now apply the results obtained in Application 4.1 to system (4.2), we recover the following
results.

Corollary 4.1. (See Xia et al. [31, Theorem 4.1].) If system (4.2) satisfies

(i) m(ri) > 0 and m(ri(t) − ∑N
j=1, j �=i aij (t)Xj (t)) > 0 (Xi(t) defined in Section 2);

(ii) there exist strictly positive constants si and ε such that

siaii(t) >

N∑
j=1, j �=i

sj aji(t) + ε,

then system (4.2) has a unique positive almost periodic solution which is globally attractive.

In Corollary 4.1, take si ≡ 1, i = 1, . . . , n, we have
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Corollary 4.2. (See He [16, Theorem 4].) If system (4.1) satisfies

(iii) m(ri) > 0 and m(ri(t) − ∑N
j=1, j �=i aij (t)Xj (t)) > 0;

(iv) there exist strictly positive constants si and ε such that

aii(t) >

N∑
j=1, j �=i

aji(t) + ε,

then system (4.2) has a unique positive almost periodic solution which is globally attractive.

Corollary 4.3. (See Xia et al. [31, Theorem 4.2].) Suppose ri(t), aij (t) are nonnegative ω-
periodic functions defined for t ∈ [0,ω]. If system (4.2) satisfies

(v)
∫ ω

0 bi(t) dt > 0,
∫ ω

0 (bi(t) − ∑N
j=1, j �=i aij (t)Xj (t)) dt > 0;

(vi) there exist strictly positive constants si such that

siaii(t) >

N∑
j=1, j �=i

sj aji(t),

then system (4.2) has a unique positive ω-periodic solution which is globally attractive.

Take si ≡ 1, we have

Corollary 4.4. (See Zhao [18, Theorem 3].) Suppose ri(t), aij (t) are nonnegative ω-periodic
functions defined for t ∈ [0,ω]. In addition to (v), if system (4.2) satisfies

aii(t) >

N∑
j=1, j �=i

aji(t),

then system (4.2) has a unique positive ω-periodic solution which is globally attractive.

Through the similar proof as Theorem 4.4, one can obtain

Corollary 4.5. (See Gopalsamy [10, Theorem 3.1].) Assume that

ri > 0, aii > 0, ri >

N∑
j=1, j �=i

aij

rj

ajj

and min
t∈R

aii(t) >

N∑
j=1, j �=i

max
t∈R

aji(t).

Then system (4.2) has a unique positive almost periodic solution which is globally attractive.

Remark 4.2. When N = 2, Corollary 4.5 reduces to Theorem 2 in Ahmad [6].

Corollary 4.6. (See Gopalsamy [9, Theorem 3.1].) Suppose ri(t), aij (t) are nonnegative ω-
periodic functions defined on t ∈ [0,ω]. If the conditions in Corollary 4.5 hold, then system (4.2)

has a unique positive ω-periodic solution which is globally attractive.
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Remark 4.3. Obviously, the results in [6,9,10,16,18,31] are special cases of Theorems 4.2
and 4.3. So our results are fresh and more general. Hence, we generalize and improve the main
results in [6,9,10,16,18,31].

5. Example and simulations

Example 5.1. Consider a two-species competition system with almost periodic coefficients:⎧⎨
⎩

ẋ1(t) = x1(t)
[
4 − (2 + cos

√
2t)x2

1(t) − x2(t)
]
,

ẋ2(t) = x2(t)
[
3 − x

2
3
1 (t) − (2 + sin

√
3t)x2(t)

]
.

(5.1)

In this case, r1(t) = 4, r2(t) = 3a11(t) = 2 + cos
√

2t , a22(t) = 2 + sin
√

3t , a12(t) =
a21(t) = 1, α11 = 2, α12 = 1, α21 = 2

3 , α22 = 1. The corresponding generalized Logistic equa-
tions of (5.1) is as follows:

ẋ1(t) = x1(t)
[
4 − (2 + cos

√
2t)x2

1(t)
]
, (5.2)

ẋ2(t) = x2(t)
[
3 − (2 + sin

√
3t)x2(t)

]
. (5.3)

Obviously, m(r1) = 4 > 0 and m(r2) = 3 > 0. By using (2.3), (2.5) and Theorem 2.1, we know
that system (5.2) has a unique globally attractive positive almost periodic solution which can be
represented as

X1(t) =
[ t∫

−∞
8 exp

(
−

t∫
s

2(2 + cos
√

2u)du

)
ds

]− 1
2

. (5.4)

Also we know that system (5.3) has a unique globally attractive positive almost periodic solution
which can be represented as

X2(t) =
[ t∫

−∞
3 exp

(
−

t∫
s

(2 + sin
√

3u)du

)
ds

]−1

. (5.5)

By amplifying, it follows from (5.5) and (5.6) that X1(t) �
√

3
2 and X2(t) � 1. This leads to

m
(
r2(t) − a21(t)X

2
3
1 (t)

) = m
(
3 − X

2
3
1 (t)

)
� 3 −

(√
3

2

) 2
3

> 0 (5.6)

and

m
(
r1(t) − a12(t)X2(t)

) = m
(
4 − X2(t)

)
� 3 − 1 > 0. (5.7)

The above inequalities show that conditions (H4) of Theorem 2.2 hold, thus, system (5.1) is
persistent. Figure 1 shows the dynamics behavior of system (5.1).

Now further take θ1 = ( 2
3 )− 5

3 , θ2 = 1, ς < min{( 2
3 )

1
3 − ( 2

3 )
2
3 , ( 2

3 )− 2
3 − ( 2

3 )2} and d = 2
3 , it is

easy to verify that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψ1(t) = θ1d
2a11(t) − θ2d

2
3 a21(t) �

(
2

3

) 1
3 −

(
2

3

) 2
3

> ς,

ψ2(t) = θ2da22(t) − θ1d
2a12(t) �

(
2
)− 2

3 −
(

2
)2

> ς.

3 3
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Fig. 1. Persistence of system (5.1) with initial values (x1(0), x2(0)) = (1,0.5) and t ∈ [0,25]. The blue curve denotes
the species of x1 and the green one denotes the species of x2. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 2. Dynamics of system (5.1) with initial values (x1(0), x2(0)) = (0.2,0.1), (0.6,0.3), (1,0.5), (1.5,0.7), (2,0.8),
(2.5,1.2), respectively, and t ∈ [0,25]. The curves in different colors denote different initial value conditions, respec-
tively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

The above inequality shows that conditions (H8) of Theorem 4.2 hold. Moreover, the inequal-
ities (5.7) and (5.8) show that the other conditions of Theorem 4.2 also hold. Therefore, by
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Fig. 3. ‘Phase portrait’ of system (5.1) with initial values (x1(0), x2(0)) = (1,0.5) and t ∈ [0,25]. The blue curve denotes
the ‘Phase portrait’ of system (5.1). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Theorem 4.3, then system (5.1) has a unique positive (componentwise) almost periodic solution
x0(t) = (x0

1(t), x0
2(t)) on R, which is globally attractive. Figure 2 shows that for different initial

conditions x(t) = (x1(t), x2(t)) globally asymptotic to x0(t) = (x0
1(t), x0

2(t)); Fig. 3 shows the
‘phase portrait’ of system (5.1).
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