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Abstract

We analyse different” = 4 supergravities coupled to six vector multiplets corresponding to low-energy descriptions of the
bulk sector ofTg/Zo orientifolds with p-brane in [IB (p odd) and in IIA (p even) superstrings. When fluxes are turned on,
a gauging emerges corresponding to some non-semisimple Lie algebra related to nilpotent suballgebsas, 6), with
dimensionth =15+ (p —3)(9— p). The non-metric axions have Stueckelberg couplings that induce a spontaneous breaking
of gauge symmetries. In four cases the gauge algebra is non-Abelian with a non-commutative structure of the compactification
torus, due to fluxes of NS—-NS and R-R forms.
0 2004 Elsevier B.VOpen access under CC BY license.

1. Introduction of a scalar potential, such change of basis is no longer
allowed, and different gaugings describe genuinely

Effective four-dimensional supergravity theories différentvacua [2-4].

obtained by superstring compactifications on certain 1 he Simplest manifestation of this phenomenon is
six-dimensional manifolds are not only distinct by Perhaps given by two different g?UQ'nQSM =8
the number of supersymmetries preserved by the four-dimensional supergravity [2]: the $8) gaug-

background, but also by the duality symmetries which N9 [5], corresponding to M-theory ofd; x S7, and
act linearly on the vector fields. Although in general, e~/ = 8 spontaneously broken supergravity dimen-

theories with the same amount of supersymmetries Sionally reduced ala Scherk-Schwarz [6].@f x T7.

are related by a (non-local) symplectic change of the In the formercase_ th_e gauge algebrais a subalgebra of
duality basis acting on the electric and magnetic field SI(&: R)ycerz, while in the latter example the “flat al-
strengths [1], after some isometries are gauged, that in 96Pra” is a subalgebra oés + so(1, 1)) + T27 C €7.7

theories with.#” > 1 also amounts to the generation 1 . i i i
Similar manifestations also appear.i’ = 4 su-

pergravities describin@s/Z, orientifolds, where the
E-mail address: carlo.angelantonj@cern.ch (C. Angelantonj). ~ Z2 projection is a combination of the world-sheet par-
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ity £2 and geometric inversions of-9 p directions of the gauge algebras emerging from IIA orientifolgs (
the compactification six-torus [8—12]. Indeed, in the even). Finally, in Section 4 our conclusions are drawn.
two extremal cases of IIB orientifolds with = 3 and

p =9 one is led to completely different low-energy

supergravities. In the former case the fifteen Peccei- 2, The gaugealgebraof 11B orientifoldswith

Quinn symmetries of the&®yypo R-R scalars do  fluxes

not rotate the twelve vector8,; andC,;, and thus

can be gauged [13-16] yielding a twelve-dimensional e recall here the gauge algebras of IIB orien-
Abelian gauge algebra. On the other hand,the 9 +ifo|ds with p = 7 andp = 5, first exploited in [17]. To

case corresponds to thg reduction of the /" =1 fix the notation, it is convenient to split the six-torus as
ten-dimensional type | superstring. The fifteen Peccei—
Quinn symmetries of th€' ),y R-R scalars now rotate 75 — Tp—3 x To_p, (3)

the twelve vectorg/} andC,,; o . .
with indicesi, j =1, ..., p — 3 labelling coordinates

8Cui = gij%/, 1) along theT),_3 subtorus, and indices b=1,...,9—

p labelling the coordinates ifib— ,. TheZ, symmetry

we are implementing is a combination of world-sheet
parity §2 and inversiondg_,, of the 9— p coordinates

y¢ of To_,. As a result, only the subgroup Gh —

3) x GL(9 — p) of the isometries of the six-torus is
perturbatively realised in the orientifold models we are
interested in, and thus the decomposition (3) turns out
to be the natural one.

and no gauging is thus possible. The other orientifolds
with 3 < p < 9 appear as intermediate cases of these
two, with the twelve vectors originating in part by the
metricG ywv, in part by the NS-N$B-field, and in part

by the R—-RC-forms [17].

When fluxes are turned on [18-30] (see [31] for a
comprehensive review), a very rich structure emerges
depending onp. In particular, for 4< p < 9, the
p—3 graviphotoni{i always gauge “non-Abelian”
isometries when théf -flux of the B-field strength is
non-vanishing. This is a new manifestation of a non- ] i
commutative structure of the compactification torusin N this model the bulk gauge fields and the non-
the presence of a non-trivial NS—NS background. For metric axions, invariant under thie I, projection, are:
each case, there is a non-injective homomorphism g c Ci ik
between the gauge grodfy, under which the gauge w Ppas pa, Ly =€ ks
fields transform in the adjoint representation, and its Co, Bijs, Cia. Cijap = Cij€ab, Cijie- (4)
realisation, in terms of isometries of the scalar
manifold, which is fixed by the scalar—vector minimal Ve shall focus on the effect of the fluxes

couplings:
Fija, Hija, Gijkab, (%)

! /
Gy — G, CIsOM(Mscal, where Fij,, Hij, are the R-R and NS-NS three-
%g’ =9,/ Ker(t), with Ker(:) # @. (2) form fluxes whileG;jiap is the flux of the five-form
field strength, whose effect was not considered in
our previous analysis [17]. For our purposes it is
convenient to collect th,,, andC,, vectors as well

2.1. The T4 x T> model

Elements in Ket) are central charges in the gauge
algebraG, of 4, whose action is trivial on the scalar
fields, and amounts to a pugauge transformation
on the vector fields. In some cases, the closurgjof 2> th(SaB"“za;dC"“ scalars and the quAerin angF"-/j{
requires additional conditions on the fluxes. into SQ2,2) covarlaht quantitiesAy,, ®;* and H;;
The structure of the gauge algebras for the 1B ori- (A =1.....4). TheC], vectors decouple completely
entifolds withp = 7 andp = 5, originally outlined in SO that the active gauge algeba of ¢, is eight-
[17], where also the salient features of the underlying dimensional with connection
(ungauged) supergravities were exposed, is here sum- ; N
marised in Section 2. Section 3 contains new results on $2¢ = Xi%, + X4 A}, (6)
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and with the following structure constants Also in this case th&,; decouple, so that the active

A gauge algebra is ten-dimensional, with connection
[Xi, Xj1=HjXa,

[Xi. Xal=[X4,X5]=0. @ 2e=9Xi+ Bau X" +C Xa. (13)
On the other hand, there are +%p —3)(9— p) We shall consider only the effect of the NS-NS and

(twenty-three in this case) scalar axions, whose asso- R three-form fluxest;;, = €;; H, and Fiqp. They

ciated solvable subalgebra [32—-35] of8®) is [17] appear as structure constants in the gauge algebra
[TO, TA]Z%AA,TA/, [Xi’Xj]ZeinaXa,
[T4. T =nanT" ® XeX= Fi* Xy, (14)

) A/ - )

with the remaining commutators vanishihg.

Turning to the scalar sector, the generafbrg ¢,
T! andT“ of the twenty-three-dimensional solvable
algebra N5 associated to the relevant axionic non-
metric scalars obey the commutation relations

[Tia’ Tbc] — Eabché"
[T, T]] = €55 (15)
One is thus led to the following identifications

with the remaining commutators vanishing. The real-
isation% of the gauge algebra in terms of isometries
of the scalar manifold is achieved through the follow-
ing identification of its generators:

Xj=—H/}Ty + GijrapT'*,
X'A=3HATY. 9)

Notice that the presence of the five-form flG;iqs

does not affect the structure of the gauge algebra
but amounts to an additional term in the covariant x/ = —F,-”bTab+HaT,-”,
derivative ofC;;:

X, =—H,T,
D, Cij = 8,Cij — 5HijaAl} = 9 Guijab X'*=FT), (16)
+ %%H,{E@jm- (10) of the gauge generators with the isometries of the

In general, the identification of the gauge genera- Solvable algebra. However, they reproduce now only
tors with isometries does not guarantee automatically & contracted version db, as given in (14). Ir)deed,
that the gauge algebf@, be compatible withG,. In- as we have already stated, the grogpsand<, are
deed, in the case at hand, one can show that the ex-'€¢lated by the non-injective homomorphism (2), where
pressions (9) for the generators®f, reproduces the ~ NOW Ker) Is gen(?rated by the three central charges
structure (7) ofG, only if the following condition on X« Orthogonal tox.

the fluxes is fulfilled: Moreover, no further constraints are to be imposed
. on the fluxes, that however satisfifz A F3 =0
H,-;»‘HX =0. (11) identically, at all consistent with the fact that the model

would now include D5-branes. Also this model can be

This is consistent with the fact that the theory contains
lifted to a gauged4” = 8 theory [36].

seven-branesy(= 7). Interestingly enough, this con-
dition also allows a lift of the#” = 4 theory to a trun-
cation of a4 = 8 gauge algebra [36].

galige &g [36] 3. TypellA orientifolds
2.2. The To x T4 model .

We now turn to the description of gauge algebras
of IIA orientifolds with fluxes, for the three different
casesp = 8, 6 and 4. Their spectra and ungauged
low-energy supergravities have already been discussed
in[17].

In this example [17] the twelve vector fields and
the non-metric axions which are invariant under the
orientifold projection are:
gi

bed
ne Bua, C/Ll’ Cﬂ = ea “ C/Lbcdv

Cap, Bia, Cf= el Cipea, Cw, Cij. (12) 1 Indices are lowered and raised with te ande,c, tensors.
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3.1. The Ts x T1 model scalar manifold suggests the identifications
' H..oT" ) — G::raT I
Aside from the four-dimensional gravitas,,,, and Xi H”gT_' GijkoT ™,
. . /
the geometric moduli;; and ggg of T5 x Ti, the X' = H;joT", (23)
massless bosonic spectrum consists of that reproduce the structure (19) once we set to zero
the central charges.
The generators (23) induce then the following

vector fields: % Ciou, Cu, Bgy, (A7) transformations on the scalars

scalars (axionic): C;, Bjo, Cijo, Cug,

while only the H;;9 and G;j9 fluxes for the NS-NS 86,'1'9 =—&H;jo — ékG,'jkg + Eka[[‘QCj],
B-field and R—-R three-form potential are allowed by i
. . . . dBig=§ H]lg’
the orientifold projection.
The gauge groufy, is generated by the algebra 8Ci =0,
G = {X;, X, X'®, X9}, with connection 8Cun9 =0, (24)

(18) where we have found convenient to define the scalar
Cij9 — Cijo = Cijo — C|; Bjj9. As a result, the corre-

When fluxes are turned on, they appear as structuresponding covariant derivatives read

constants in the commutators

Q28 =9 X + CuX + Cigu X' + Bo, X°.

D, Cijo=9,Cijo+ CyHijo

9
[Xi, X]=—HijoX'~, + 9 Gijro — 9 HiitoC .
9 k9
[Xi, Xj1 = Hijo X"+ Gijro X", (19 D, Big=8.Bio — ¥ Hurs.
from which we deduce that the generat¢ks’, X9} D, Ci =3,C;. (25)

are central charges. The form of the algebra (19) then
suggests that the field strength of the vector fields 3.2. The T3 x 73 model
present non-Abelian couplings

, . , The next model we shall describe, is thg x
Ty =Y, — 09, T3/Zy orientifold of the 11A superstring. Its massless
Figuy = 3, Cioy — 8,Cigu + %CCVHM spectrum comprises, aside from the four-dimensional

N o metricg,,,, the vector fields
— 9, CyHkio — 9,9, Graio,

gi’ C 3 B 3 C 3 26
Fup = 8,Cy — 8,Cp, o T Bap b (26)

the dilaton, the geometric modudi,, and g;; of the
Hoyuw = 3y Boy — 3 Boy — 9,9, Hieo, (20) six-torus in itsT3?< T3 decompos?t%ijon, andgtée axionic
as is confirmed by a supergravity inspection. scalars{C®, Bia, Ciab, Ckuv = Cij, Ciji}. These lat-
Turning to the scalar sector, we have shown in [17] ter, aside fronC;j, parametrise a twenty-four-dimen-
that the solvable algebra parametrised by the (non- sional solvable subalgebra

metric) axionic scalars is generated by Ne = {BiaTm +CT,, + C?T; + CijTij}’ 27)

Ng={BioT'' + C;T" + CyjoT"}, (21)  whose structure is encoded in the non-vanishing com-

. _— . mutators
with the only non-vanishing commutator given by

[Tup, T] = T, 85,
[Tie, T/ =T"s{. (28)

The active gauge grouf¥, is generated by the
algebraG, = {X;, X“, X“*} with connection

[T, 177]=T". (22)
The group¥, of gauge transformations on the
axionic scalars is now generated by the algéb{gaz
{X], X'}, since in this case Ken = {X°, X°}. The ‘
realisation ofG, in the terms of isometries of the £2¢=9X; + Capp X% 4 Byyp X°. (29)
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We shall consider the effect of the fluxes that generate the minimal couplings
1_abe
Fia, Hija, Gijab, (30) D, Cf =9, C}' — 7€ By, Fic
_loabegj.., _loabcqip. B.
which determine a non-Abelian gauge algebra, with 2€ gM_Gf’b‘ 2€""" Y FjaBic,
commutators DyCo=8,Ca+ 39, Fia,
R . _ @Gy,
[Xi. Xj1= Hija X" + Gijap X", DuBia = 0Bia = % Hjia,
(X% Xi]= 3 FipX. (31) D, Cij = 3, Cij — 5€"* Cabp Hije
— 3€"”BuyGijbe + 9 Higi1a CY).- (37)

As a result the field strengths of the vector fields read

i i 3.3. The Ty x T5 model
jﬁzuv = 8;LBav - 81/Ba/1, - g/igyj Hija, ! >

Fijpuy = 0, Cijv — 0 Cijp,

Fabyo = 3uCabv — 8yCabp — 9.9 Gijap
- %%LFi[aBb]v + 39, Fita Boju.

T, = 0,9, — 0,9,

Finally, we consider thg1 x Ts orientifold. The
relevant bosonic fields are

scalars (axionic): Cape,  Baa, Ca,wsz, Cy,
g1, Cu, Bap, (38)

while the allowed fluxes for the NS—NB-field and

(32) vector fields: Caap,

The group¥, of gauge transformations on the

axionic scalars is generated by the algem’gz

R-R one-form and three-form potentials &g,., F,»
andGaape.

(X!, X%, X'%P} and is realised in terms of isometries

]

The active gauge grouf, is generated by the
of the scalar manifold by the identifications gauge grouff, s g y

gauge algebr&, = {X4, X, X“} with connection
(39)

is now purely Abelian, even when fluxes are turned on.

On the other hand, the generators of the gr@i@ﬁp
are not linearly independent, and have the following
expressions

Xj=—3€" FiaThe + HijaTI* + 5Gijap T
’ 1_ab i j 1_ab i
X' = A_lea CGbCijT” + Zea “Fip T/,

X/ab — %EabCH[jCTij.

Q¢ =9 X4+ CuX + Bap X,

(33)

An explicit calculation of their commutators, then
shows that the algebr@’g reproduces the structure
(31) of Gy if the following conditions on the fluxes
are met

X}y = Gaapc T,

X = HabcTabC’

X'¢ — FbCTabc, (40)

V= e Fiy Higp =0, (34) .
in terms of the generators of the solvable algebra
that also imply the useful relation .
Na={Ba, T+ CT, + C*"Typ},
b 1
€ Fiija H jib = —3 Fra Hijb- (G5 [T, T¢] = Tius, (41)

The identifications (33) induce the following gauge
transformations on the axionic scalars

parametrised by the (non-metric) axionic scalars.
Under the action o% these scalars transformas

(Scla = %Eabcngic + %Eabcg'icjibc + %Eabcngja Bic, 3Cape = g[a Fbc] +&Hape + E4G4abc,

8Cq = —3¢' Fia, 8Baa =0,
. ~a

8Bia =&’ Hjia, 8¢ =0, (42)

8Cij = %EabcgabHijc + %EabCEaGijbc - éka[uaCj-z],

2 We have here defined the scal@f = C% — C9’B,,, as
suggested by a direct supergravity analysis.

(36)
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with the only non-trivial covariant derivative given by

Du Cape = 8ucabc - Bi[a Fbc]

- CuHabc - g:GMbc- (43)

4. Conclusions

In this Letter we have studied the algebraic struc-
ture of four-dimensiondls/Z> orientifolds, extending
the analysis in [17]. In the 1A case the active gauge
algebras have dimensions twelve, nine and seven for
p =8, 6 and 4, and their consistency implies the con-
dition F> A H3 =0 (for p # 4). While in thep =8
case it is trivially satisfied, fop = 6 it implies a con-
straint on the fluxes, in analogy with tye= 7 case in
type IIB [17].

Aside from thep = 4 orientifold, the active gauge
algebras are typically non-Abelian when fluxes are
turned on, and, forp = 8 and 5, they are central
extensions of the solvable algebras, generated
by the Peccei—Quinn symmetries of the (non-metric)
axionic scalars.

Furthermore, an interesting structure emerges as far
as the graviton gauge fieldgi are concerned. Their
generators(; do not commuteg # 3, 4, 9) whenH -
fluxes are turned on,

p=5 [X;, X;l=¢€H., X",

p=6 [Xi,X;1=HijaX" + Gijap X,

p=T7 [Xi.Xj1=H}Xu4,

p=8 [Xi,X;1=HijoX®+ GijroX*®, (44)

independently of our choices of the R-R fluxes.
Since theX; are four-dimensional remnants of torus
translations, this signals the non-commutative nature
of the torus [37,38] in the presenceBffluxes for the
NS—-NSB-field.
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