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Age-related macular degeneration (AMD) is a common disease that can result in severe visual impairment.
Abnormal regulation of the complement system has been implicated in its pathogenesis, and CFH poly-
morphisms contribute substantially to risk. How these polymorphisms exert their effects is poorly
understood. We performed enzyme-linked immunosorbent assay (ELISA) analysis on young, aged, and AMD
choroids to determine the abundance of the membrane attack complex (MAC) and performed immunoflu-
orescence studies on eyes from 117 donors to evaluate the MAC in aging, early AMD, and advanced AMD.
Morphometric studies were performed on eyes with high- or low-risk CFH genotypes. ELISA confirmed that
MAC increases significantly with aging and with AMD. MAC was localized to Bruch’s membrane and the
choriocapillaris and was detectable at low levels as early as 5 years of age. Hard drusen were labeled with
anti-MAC antibody, but large or confluent drusen and basal deposits were generally unlabeled. Labeling of
retinal pigment epithelium was observed in some cases of advanced AMD, but not in early disease. Eyes
homozygous for the high-risk CFH genotype had thinner choroids than low-risk homozygotes (P < 0.05).
These findings suggest that increased complement activation in AMD and in high-risk genotypes can lead to
loss of endothelial cells in early AMD. Treatments to protect the choriocapillaris in early AMD are needed.
(Am J Pathol 2014, 184: 3142e3153; http://dx.doi.org/10.1016/j.ajpath.2014.07.017)
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Age-related macular degeneration (AMD) is a complex dis-
ease that frequently results in loss of visual acuity. AMD, the
most common cause of irreversible blindness in the elderly, is
projected to affect 3 million Americans by 2020.1,2 Clini-
cally, the early stages of AMD are characterized by structural
abnormalities in the posterior pole that include an abnormal
appearance of the retinal pigment epithelium (RPE) and the
presence of drusen, which are extracellular deposits that form
between the RPE and its blood supply, the choriocapillaris.3

Although for most patients early AMD does not progress to
severe end-stage disease, a subset of patients will develop
extensive degeneration of photoreceptor cells and RPE cells
in the macula, caused by either pathological invasion of new
blood vessels from the choroid into the sub-RPE or subretinal
stigative Pathology.

.

spaces [ie, choroidal neovascularization (CNV)] or by idio-
pathic loss of the macular RPE and photoreceptor cells (ie,
geographic atrophy).
Although our understanding of the pathophysiology of

AMD is incomplete, recent genome-wide association studies
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Table 1 Characteristics of Donor Eyes Used in Enzyme-Linked Immunosorbent Assay Study

Donor
Donor age
(years)

MAC concentration
(ng/mL) Cause of death

DeP time
(hours)

Allele

Y402H V62I

Young (<50 years of age)
1 23 2.75 Methane asphyxia 6.75 HY VV
2 48 18.68 Cancer 6.5 HY VV
3 45 15.67 Respiratory failure 6.5 HY VV
4 21 30.71 Hodgkin lymphoma 6 HY VV
5 34 26.78 Intercranial hemorrhage 6.5 HY VV
6 46 4.46 Cardiopulmonary arrest <8 YY IV
7 46 45.34 Pneumonia 2.75 YY II
8 43 34.19 Lung cancer, renal failure 5.25 HY IV
9 46 19.97 Renal disease 6.5 HY VV
10 45 1.64 Pneumonia 6.75 YY IV

Aged control, without AMD
11 77 38.77 Pulmonary embolism 5.5 YY VV
12 71 28.72 Intracerebral hemorrhage 7 HY IV
13 82 83.68 Heart failure 5.5 YY II
14 83 68.07 Respiratory failure 5.75 YY IV
15 96 30.16 Respiratory failure 7 HY IV
16 85 47.80 Metastatic bladder cancer 4.75 HY VV
17 79 52.29 Congestive heart failure 5.25 HY IV
18 95 43.95 Stroke 7 YY VV
19 82 49.05 NA 6 YY II
20 78 43.72 Lung cancer 6 YY IV

Aged AMD
21 89 185.44 NA 4.5 HH VV
22 88 221.13 Myocardial infarction 6 HH VV
23 99 26.96 Stroke 5.75 YY IV
24 78 113.91 Respiratory failure 5 HH VV
25* 77 89.88 NA 6 HH VV
26* 85 114.65 Acute coronary syndrome 7 HY VV
27 82 40.67 Stroke 5.5 HY IV
28 93 165.16 Urosepsis 5.5 HY VV
29 89 70.34 Congestive heart failure 7.25 HY VV
30 91 77.24 Perforated bowel 5.5 HY IV

*Earlier punches from these donor eyes were analyzed in a previous study.10

AMD, age-related macular degeneration; DeP time, maximum time between death and preservation of eye in liquid nitrogen; NA, not available; sC5B-9,
soluble terminal complement complex.

Membrane Attack Complex in AMD
and candidate gene approaches have led to the identification
of various polymorphisms that affect the risk of AMD at all
stages. These include single-nucleotide polymorphisms in a
number of genes encoding members and regulators of the
complement pathway, including C3, CFI, C2 and/or CFB,
and CFH (recently reviewed by Khandhadia et al4). One
polymorphism in the CFH gene (rs1061170) increases risk of
AMD by approximately twofold to sevenfold, depending on
the population studied.5e8 This variant results in the substi-
tution of histidine for tyrosine at amino acid residue 402. The
effect of this polymorphism in the human eye is not well
understood, although adults harboring the Y402H poly-
morphism show increased choroidal C-reactive protein9 and
increased membrane attack complex (MAC).10

Formation of the MAC is the final event in the terminal
portion of the complement cascade and results from the
binding of C5b to plasma complement proteins C6, C7, C8,
and multiple molecules of C9. MAC forms transmembrane
The American Journal of Pathology - ajp.amjpathol.org
channels that lead to cell lysis and death. The MAC has
been found in drusen of older eyes with AMD.11 However,
the relative abundance and distribution of MAC in aging,
early AMD, and advanced AMD have not been compre-
hensively studied. Inhibition of MAC components such as
C6 can inhibit CNV,12 and other complement pathway in-
hibitors are in active clinical trials for the treatment of
AMD.13 Because it is the ultimate downstream effector of
the complement pathway, understanding the role of the
MAC in the pathophysiology of AMD is important for the
development of new therapies.

We evaluated the MAC in a large series of donor eyes.
MAC was present in Bruch’s membrane and choriocapillaris
in very young eyes, but the concentration increased with age;
we observed the highest levels in eyes with AMD.We further
evaluated the MAC in a series of eyes from young and old
donors, and from donors with early and advanced AMD.
Although in early AMD the MAC is associated exclusively
3143
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Table 2 Characteristics of Donor Eyes Used for Immunohistochemistry

Donor ID Age (years) AMD Dx Cause of death DeP time (hours)

1 0 None Cardiac arrest 7:00

2 1 None Cardiac arrest 7:00
3 5 None Myelogenous leukemia 8:06

4 21 None Hemorrhagic pancreatitis/leukemia 5:23
5 21 None Hodgkin lymphoma 6:03

6 28 None Metastatic carcinoma 4:12

7 41 None Ovarian cancer 4:50
8 42 None Anaplastic T-cell lymphoma/sepsis 4:12

9 48 None Septic shock 5:53
10 50 None Adenocarcinoma/respiratory failure 7:35

11 53 None Cardiac arrest 6:30
12 57 None Cardiogenic shock/heart disease 5:50

13 59 None Lymphoma 4:59
14 60 None Sepsis 7:45

15 62 None Cardiac arrest 7:18
16 63 None Myocardial infarction 5:06

17 65 None Renal failure 4:56
18 66 None Unknown 6:32

19 67 None Lung cancer 4:22
20 67 None Sepsis 5:50

21 68 AMD: OS GA NA 6:48
22 68 None Acute leukemia 6:57

23 69 AMD: OU dry Respiratory failure 7:22
24 70 AMD: OU wet NA 3:54

25 70 None Acute respiratory failure 5:57
26 70 AMD: OD CNV Cardiac arrest 7:50

27 71 None Sepsis 7:02
28 72 None Perforated bowel 5:03

29 73 None Throat cancer 5:45
30 74 None Ovarian cancer 7:25

31 75 None NA 5:15
32 76 AMD: OU dry Subdural hematoma 4:44

33 76 AMD: OU dry Basal ganglion bleed 6:01
34 76 None NA 7:38

35 76 AMD: OU dry NA 8:03
36 77 None Brain tumor 5:07

37 77 AMD: OD wet, OS dry NA 5:58
38 77 AMD: OU dry Sepsis 6:35

39 77 None Aortic valve stenosis/congestive heart failure 6:41

40 78 AMD: OD dry Respiratory failure 2 COPD 4:07
41 78 AMD Respiratory failure 4:56

42 78 AMD: OU dry Subarachnoid hemorrhage 5:34
43 78 None Sepsis 5:47

44 79 None Metastatic lung cancer 4:50
45 79 None NA 5:32

46 79 None Bladder cancer 5:52
47 79 None NA 6:26

48 79 AMD: OU dry NA 6:47
49 79 AMD: OD dry, OS wet Lymphoma 7:55

50 79 AMD: OU dry NA NA
51 80 None NA 4:51

52 80 AMD: OD dry COPD 4:53
53 80 None NA 5:34

54 80 None Hemorrhagic shock 8:00
55 81 None Cancer 4:44

56 81 None NA 6:02
57 81 None Renal failure 6:30

58 82 None Respiratory failure 5:12
59 82 AMD: OU GA Respiratory failure 6:04

(table continues)
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3144 ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


Table 2 (continued )

Donor ID Age (years) AMD Dx Cause of death DeP time (hours)

60 82 None Perforated bowel 6:52

61 82 None Multisystem cancer 8:20
62 83 AMD: OU GA NA 5:24

63 83 AMD: OU dry Motor vehicle collision 5:55
64 83 None NA 6:32

65 83 AMD: OU wet Myocardial infarction 8:40
66 84 AMD: OU dry Respiratory failure 4:16

67 84 None Hypoxia due to congestive heart failure 5:43
68 85 None NA 6:56

69 86 AMD: OU dry NA 3:13
70 86 AMD: OS dry Small bowel obstruction/renal insufficiency 3:35

71 86 None Heart disease 6:05
72 86 AMD: OU dry Myocardial infarction 6:54

73 86 AMD: OU wet Colon cancer 7:20
74 87 AMD: OD GA, OS wet Heart and respiratory failure 4:37

75 87 None NA 5:26
76 87 None Stroke 5:30

77 87 AMD: OU dry Motor vehicle accident with head injury 5:42
78 87 AMD: OU wet Myocardial infarction 5:45

79 87 AMD: OU GA Prostate cancer 8:50

80 88 None NA 2:35
81 88 AMD: OU dry GI bleed 4:12

82 88 None Respiratory failure 5:35
83 88 None Complications after a fall 5:37

84 88 None NA 5:56
85 88 AMD: OD GA, OS wet Heart failure 6:43

86 88 None Respiratory failure/sepsis 8:10
87 88 None Cardiogenic shock 9:15

88 88 AMD: OU dry Cerebrovascular accident NA
89 89 None NA 4:20

90 89 None Stroke 5:08
91 89 AMD: OU dry Congestive heart failure 7:10

92 90 None Cardiac arrest 4:27
93 90 AMD: OD wet, OS dry Cerebrovascular accident 5:30

94 90 None Cerebrovascular accident 6:46
95 90 None NA 8:50

96 91 None Cerebrovascular accident 5:06
97 91 AMD: OD wet, OS early dry NA 5:10

98 91 None NA 5:32
99 91 AMD: OU dry Aspiration pneumonia 7:48

100 91 AMD: OU wet Intracerebral hemorrhage NA
101 92 AMD: OU dry Acute myocardial infarction 4:25

102 92 AMD: OU dry Lung cancer 5:25
103 92 AMD: OU dry Cardiac arrest 7:49

104 93 None Respiratory failure 5:50
105 93 AMD: OU dry Renal insufficiency 6:30

106 94 None Congestive heart failure 5:34
107 94 None Respiratory failure 5:34

108 94 AMD: OU dry Cardiac arrest 5:46
109 94 AMD: OU dry Cardiac arrest 7:40

110 95 AMD: OD GA Stroke/atrial fibrillation 6:20
111 95 AMD: OU dry Heart and renal failure 6:35

112 96 AMD: OU dry NA 5:00
113 98 None NA 5:41

114 98 AMD: OU dry COPD 6:14

115 98 AMD: OU dry Multisystem organ failure/renal failure 6:17
116 99 AMD: OD GA NA 1:42

117 100 AMD: OD dry Found unresponsive 5:55

CNV, choroidal neovascularization; COPD, chronic obstructive pulmonary disease; DeP, maximum time between death and preservation in liquid nitrogen or
fixative; Dx, diagnosis; GA, geographic atrophy; GI, gastrointestinal tract; NA, not available; OD, right eye; OS, left eye; OU, both eyes.

Membrane Attack Complex in AMD
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Figure 1 Enzyme-linked immunosorbent assay analysis of soluble C5b-9
MAC in young eyes, aged eyes without AMD (control), and eyes with
atrophic AMD. Increased MAC levels were related to increased age
(***P < 0.001) and to diagnosis of AMD (*P < 0.05). Data are expressed
as box-and-whisker plots, indicating median, interquartile range, and
minimum and maximum values; any outliers are indicated by individual
symbols. n Z 10 per group. AMD, age-related macular degeneration; Ctl,
control; MAC, membrane attack complex.

Mullins et al
with the choriocapillaris, in advanced AMD the RPE may be
exposed as well. Morphometric experiments suggest that
high-risk CFH genotypes may contribute to thinning or at-
rophy of the choroid. Overall, these studies suggest that
choroidal endothelial cells are targets of the MAC and that
approaches to prevent their injury from complement-
mediated lysis may be useful in the treatment of AMD.

Materials and Methods

Human Donor Eyes

Whole globes from human donors were obtained from the
Iowa Lions Eye Bank (Iowa City, IA). Full consent for
research was obtained from the donor’s next of kin in all
cases, and all experiments were performed in accordance
with the Declaration of Helsinki.

Eyes were processed within 9.5 hours of death (range, 1
hour 42 minutes to 9 hours 15 minutes). For biochemical
studies, a 6-mm juxtamacular, inferotemporal punch was
acquired. Neural retina and RPEechoroid layers were
collected separately and snap-frozen in liquid nitrogen,
before long-term storage at �80�C. Macular punches and/
or superotemporal wedges were collected from each eye
and preserved in 4% paraformaldehyde in phosphate-
buffered saline within 8 hours of death. After 2 hours of
fixation, eyes were washed in phosphate-buffered saline
and then were cryoprotected in sucrose and embedded
in sucroseeoptimal cutting temperature medium, as
described by Barthel and Raymond.14

Quantification of Soluble C5b-9/MAC

Samples were chosen for MAC quantification from a
collection of frozen juxtamacular punches of RPEechoroid,
centered approximately 7 mm temporal to the fovea. Ten
RPEechoroid samples were selected from each of three
groups: young (mean age, 39.6 years; range, 21 to 48 years);
aged, with a clinical and/or histological diagnosis of dry
AMD (mean age, 87.1 years; range, 77 to 99 years); and
age-matched control, without AMD (mean age, 82.8 years;
range, 71 to 96 years) (Table 1). Of the 30 samples studied,
2 samples in the AMD group were new punches from donor
eyes reported previously.10 Samples were homogenized for
90 seconds using a Kontes disposable pestle (Thermo Fisher
Scientific, Waltham, MA) and motorized tissue grinder
(Sigma-Aldrich, St. Louis, MO) in 30 mL of phosphate-
buffered saline with 1% Triton X-100 and protease in-
hibitors (cOmplete kit; Roche Diagnostics, Indianapolis,
IN). Total protein concentration was determined using the
Lowry method (Bio-Rad Laboratories, Hercules, CA); 30
mg of each sample was loaded in duplicate wells into a
MAC enzyme-linked immunosorbent assay (ELISA) plate
(MicroVue SC5b-9 Plus enzyme immunoassay kit; Quidel,
San Diego, CA), and MAC levels were determined ac-
cording to the manufacturer’s instructions.
3146
Immunohistochemistry

Sections were collected on a cryostat and dual-labeled with
antibodies directed against a neoepitope present in activated
complement C9 that is exposed during formation of the MAC
(antieC5b-9 complex; Dako, Carpinteria, CA) and the
vascular marker Ulex europaeus agglutinin I (UEA-I; Vector
Laboratories, Burlingame, CA), which labels fucosylated
glycoconjugates on viable human endothelial cells. MAC and
endothelial cells were detected using Alexa Fluor
488econjugated goat anti-mouse IgG (Life Technologies,
Carlsbad, CA) and avidineTexas Red (Vector Laboratories),
respectively. Immunohistochemistry and lectin histochemistry
were performed as described previously.9,15 Eyes from 117
donors were evaluated (Table 2).
Genotyping

Genotyping for the Y402H allele (rs1061170) and the V62I
allele (rs800292) of the CFH gene was performed on DNA
from subsets of donor eyes using a microfluidics station
(Fluidigm, South San Francisco, CA) with TaqMan (Life
Technologies) reagents. DNA was isolated either from whole
blood, collected during enucleation, or from extraocular
muscle, using a DNeasy kit (Qiagen, Valencia, CA). Geno-
typing assays were performed as described previously.4,10
Morphometry of Choroidal Thickness

Eyes from 100 donors genotyped at the Y402H risk allele of
CFH were used for quantitative analyses. The distribution
was 43 donors homozygous for the low-risk allele (YY), 25
donors homozygous for the high-risk allele, and 32 donors
ajp.amjpathol.org - The American Journal of Pathology
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Membrane Attack Complex in AMD
heterozygous (HY). Cryostat sections were collected and
assigned a random identifier by a masked observer.
Choroidal thickness (measured from the outer edge of
Bruch’s membrane to the inner surface of the sclera16) was
quantified in sections from all donors using ImageJ software
version 1.60_65 (NIH, Bethesda, MD). At least five mea-
surements were taken from each section, and a single mean
value was determined for each eye. Data were analyzed
using linear regression in the R version 3.0.3 statistical
computing environment.

Results

ELISA Analysis

The concentration of MAC was quantified in a series of
punches of RPEechoroid from donor eyes. Standards
included in the kit, ranging from 15 to 172 ng/mL, showed
excellent correlation between concentration and absorbance
Figure 2 Localization of the membrane attack complex (MAC) in young (<50 y
years (E and F), 32 years (G and H), 41 years (I and J), and 62 years (K and L). S
lectin (red) (A, B, D, E, G, I, and K); the primary antibody and lectin were omitt
(GeL) indicates age-related lipofuscin accumulation. AeC: Eyes from a newborn
immunoreactivity was observed in the ganglion cell layer (B, asterisks; C, negat
months of age, very minor labeling was observed as puncta (arrows) between th
Y402H variant, considerable MAC labeling (arrows) in Bruch’s membrane extende
older eyes. Note the lack of choriocapillaris labeling and the constitutive RPE
processed identically. Scale bar Z 50 mm. CC, choriocapillaris; CH, outer choroid;
RPE, retinal pigment epithelium.

The American Journal of Pathology - ajp.amjpathol.org
(r2 > 0.99). For RPEechoroid samples, duplicate wells
showed very good reproducibility (r2 > 0.989).

Samples from young donors had relatively low levels of
MAC, and these levels were significantly lower than those
in the aged control non-AMD group (P < 0.001) (Figure 1).
Samples from those with AMD had variable but signifi-
cantly higher levels of MAC than either age-matched con-
trol eyes (P < 0.05) or young eyes (P < 0.01). In both older
age groups, MAC levels were significantly higher in eyes
with one or more risk alleles (P < 0.05, Student’s t-test), as
we have reported previously.10

MAC Immunofluorescence

We evaluated a series of eyes from 117 human donors
(Table 2). Consistent with previous report,17 MAC in aging
maculae was predominantly localized to the outer aspect of
Bruch’s membrane and in extracellular domains sur-
rounding the choriocapillaris (Figure 2). The eye of one
ears) and aged donor eyes without AMD: newborn (AeC), 16 months (D), 5
ections were dual-labeled with anti-C5b-9 MAC antibody (green) and UEA-I
ed for negative control (C, F, H, J, and L). Orange fluorescence of the RPE
infant showed no MAC labeling in Bruch’s membrane or choroid (A). Minor
ive control) of this newborn, but in none of the older specimens. D: At 16
e RPE and choriocapillaris. E: In a 5-year-old donor heterozygous for the
d around the choriocapillaris. GeL: More robust labeling was observed in
autofluorescence in the negative controls (H, J, and L). All images were
GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer;

3147
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Figure 3 Localization of the MAC in eyes with early AMD. A: MAC was
localized to solitary, hard drusen (asterisk). C: By contrast, basal deposits
characteristic of early AMD19 were generally unreactive with anti-MAC
antibody (arrowheads). E: Modest punctate immunoreactivity was observed
where drusen were confluent (asterisks). Note immunoreactive extracellular
material extending into the outer choroid. B, D, and F: Secondary antibody
controls from adjacent sections. Scale bar Z 100 mm.

Figure 4 Localization of the MAC in the choriocapillaris of eyes with
geographic atrophy. The choroid is thinner in eyes with advanced dry AMD
than in control eyes.16 Shown are areas outside (AeC), within (D and F),
and at the junction (E) of the central atrophy. A: Drusen deposits (as-
terisks), extensive MAC in the choriocapillaris layer, and vascular atrophy
with loss of endothelium (ghost vessels) in an 83-year-old donor eye. B:
Choriocapillaris atrophy, with nonreactive basal deposits, in an 82-year-old
donor eye. C: An area of atrophy in an 89-year-old donor eye, with some
thinning and attenuation of the ONL and shortening of the innereouter
segment. D: An area of central atrophy, with loss of the RPE, in an 87-year-
old donor eye. Note the modest amount of RPE lipofuscin in a gliotic scar.
MAC immunoreactivity was still present in the largely atrophied chorioca-
pillaris. E and F: The atrophic interface (E) and the central atrophic zone
(F) of an eye from a 68-year-old donor homozygous for the high-risk Y402H
allele. Note localization of MAC to RPE cells near the interface (E, arrow)
and persistence of MAC in the degenerated choroid in the area of central
atrophy. Scale bar Z 100 mm. CC, choriocapillaris; CH, outer choroid; GCL,
ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer; RPE,
retinal pigment epithelium.

Mullins et al
very young donor, a newborn, showed lack of labeling
(Figure 2, AeC); this eye was also notable (compared with
older donors) for lack of RPE lipofuscin. Interestingly, in
this individual, robust MAC was detected in the inner
retina, consistent with the proposed role of complement in
developmental axon pruning.18 Bruch’s membrane and
choriocapillaris from a 16-montheold donor (Figure 2D)
showed tiny puncta of labeling, but were generally negative
for MAC. Labeling in the eye of a 5-year-old donor who
died of myelogenous leukemia showed modest MAC
labeling, in a pattern that was predominantly on the inner
aspect of Bruch’s membrane and did not wrap around the
choriocapillaris endothelium (Figure 2, E and F). By 21
years of age, lipofuscin in the RPE was frequently already
remarkable (data not shown). Donors in the third and fourth
decade of life had detectable MAC both in Bruch’s mem-
brane and around the outer aspect of the choriocapillaris
(Figure 2, G and H). This distribution was also observed in
the fifth decade (Figure 2, I and J), as well as in older donors
without AMD (Figure 2, K and L).

In eyes with early AMD, consistent with previous
report,11,17,20 small, hard drusen were almost invariably
labeled with anti-MAC antibody (Figure 3, A and B),
whereas basal deposits and large confluent drusen were
generally negative (Figure 3, C and D). Some large macular
drusen showed punctate immunoreactivity (Figure 3, E and
F). In contrast to younger eyes and aged control eyes,
extension of the MAC-reactive domain often extended into
the outer choroid (Figure 3A). Extramacular drusen were
invariably positive for MAC, consistent with previous
report.11,21

Eyes with advancedAMDwere also evaluated. In eyes with
geographic atrophy (nZ 15 eyes from 11 donors), MAC was
3148
present outside of areas of RPE and photoreceptor loss in a
pattern similar to that seen in early AMD (ie, choriocapillaris)
(Figure 4, AeC), although reactivity on outer vessel walls was
more notable in eyes with geographic atrophy (Figure 4A). In
areas of extensive atrophy (Figure 4, D and F) the intensity of
immunoreactivity at the choroiocapillariseBruch’s membrane
interface was lower than elsewhere, although a moderate level
of anti-MAC labeling was found to persist when RPE,
photoreceptor, and choriocapillaris loss was complete
(Figure 4F). In one case, near the interface of the healthy RPE
and geographic atrophy,MAC deposition was observed on the
RPE (Figure 4E).
In addition, eyes from 11 donors with CNV were eval-

uated. Choroidal neovascular membranes, with or without
subretinal fibrosis, were identified in eyes with RPE
degeneration (Figure 5, AeD) or between the outer layers
of Bruch’s membrane and an intact layer of RPE (type I or
occult CNV) (Figure 5, EeH). Eyes with CNV showed
persistent labeling of MAC at the level of the chorioca-
pillaris even after degeneration of the endothelium was
complete (Figure 5A). Eyes with CNV frequently show a
detached layer of basal laminar deposits.22,23 Interestingly,
in one donor with neovascularization, the MAC was
ajp.amjpathol.org - The American Journal of Pathology
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Membrane Attack Complex in AMD
present on or near the RPE (Figure 5, G and H), as well as in
the outer aspect of the basal laminar deposits.24 This la-
beling of RPE with anti-MAC antibody was not observed in
early AMD.

Genotype and Choroidal Thickness

We hypothesized that the Y402H variant in CFH affects
morphological features of the macula. Choroidal thickness
measurementswere collected in themacula in amasked fashion.
The CFH high-risk H allele was associated with thinner cho-
roids (Figure 6). Comparedwith eyes fromdonors homozygous
Figure 5 Localization of MAC in eyes with choroidal neovascularization unde
labeling lectin UEA-I (red). Sections were incubated with primary and secondary
controls (B, D, F, and H). Bruch’s membrane is indicated by arrowheads. A and
extensive atrophy. MAC was also present in some choroidal neovascular membran
labeling could also be observed in subretinal fibrosis and beneath the RPE that res
occult CNVM, MAC labeling of the RPE was robust (arrows). Scale bars: 50 mm (G a
neovascularization; CNVM, choroidal neovascular membrane; INL, inner nuclear la

The American Journal of Pathology - ajp.amjpathol.org
for the low-risk Y allele, eyes from donors homozygous for the
Y402H single-nucleotide polymorphism were 23.6% thinner
(P < 0.05 for HH versus YY). Linear regression indicated a
significant association between choroidal thickness and the
number of copies of the H allele (PZ 0.019).
Discussion

The complement system comprises an interacting set of
evolutionarily ancient proteins, with members represented
in animal phyla as far removed from humans and other
r dual labeling with anti-C9 neoepitope antibody (green) and the vascular-
antibody (A, C, E, and G); adjacent unlabeled sections served as negative
C: MAC persisted in domains surrounding the choriocapillaris even after
es in association with dedifferentiated RPE cells (C, arrows). E: Punctate
ided on the surface of these fibrotic membranes. G: In an eye with type I or
nd H); 75 mm (AeF). CC, choriocapillaris; CH, outer choroid; CNV, choroidal
yer; RPE, retinal pigment epithelium.
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Figure 6 Choroidal thickness in donor eyes of the three Y402H CFH
genotypes. Measurements of choroidal thickness were performed as
described previously,16 and genotypes were determined for the Y402H
allele (rs1061170). Eyes from donors homozygous for the high-risk H
allele had thinner choroids than eyes from donors heterozygous or ho-
mozygous for the low-risk Y allele. Eyes homozygous for the H allele had
significantly thinner choroids than those homozygous for the Y allele
(P < 0.05), and there was a significant association (P Z 0.019) between
choroidal thickness and the number of copies of the H allele. Data are
expressed as box-and-whisker plots, indicating median, interquartile
range, and minimum and maximum values. n Z 43 (YY); n Z 32 (HY); n
Z 25 (HH). *P < 0.05.

Mullins et al
vertebrates (Chordata) as the Cnidaria and Echino-
dermata.25 Metazoan species lacking complement genes
(eg, Drosophila) are thought to have undergone selective
loss of genes that were present in a shared ancestor.26

Although antimicrobial protection is the principal role for
complement, roles for this system in tissue repair and
regeneration have also been described.27 Although the
complement system is a critical component of innate im-
munity, abnormal activation can lead to bystander injury of
resident cells.28

The striking abundance of the MAC of complement in the
human macular choriocapillaris has been reproducibly
observed.8,17 Seth et al17 previously evaluated MAC semi-
quantitatively in aging eyes and found an increase in MAC
abundance in aging. Hageman et al8 reported that MAC
increases with aging and that its localization is predomi-
nantly in the macular region. Our immunofluorescence and
ELISA results are in accord with these findings, although in
fixed frozen sections using immunofluorescence we detec-
ted MAC at a much younger age and consistently in older
eyes. Although the youngest donor eye in our cohort
showed little or no labeling, we observed MAC as early as 2
years of age, with modest labeling by age 5 and striking
accumulation by age 21. Thus, choriocapillaris endothelial
cells are potentially exposed to some level of MAC for
decades before any development of drusen or vision loss.

Given the role of the MAC in cell lysis and opsonization,
its high concentration in the delicate tissues of the macula
seems surprising, especially in eyes much too young to
develop AMD and preceding the appearance of RPE
lipofuscin. One possible explanation for complement acti-
vation in Bruch’s membrane and the choriocapillaris is that
some beneficial role for this state of MAC formation offsets
3150
its risks for bystander injury, especially at younger ages.
The photoreceptoreRPEechoriocapillaris interface is
physiologically unusual. Photoreceptor cells, or at least rod
cells, completely renew their outer segments approximately
every 10 days, and thus 1/10 of the entire outer surface of
the retina is phagocytosed and processed every day. Each
RPE cell is responsible for the maintenance and phagocy-
tosis of 12 to 40 photoreceptor outer segments.29 Assuming
that the outer segment is 25 mm long and 1 mm wide, the
RPE must remove and lyse a volume of approximately 2
mm3 per photoreceptor cell per day; at some eccentricities,
this amounts to approximately as one red blood cell per RPE
cell per day. That the RPE is able to perform this function,
in addition to pumping fluid out of the retina, participating
in retinal adhesion, and directing the visual cycle, suggests a
highly efficient process.30,31 It is conceivable that the
complement activation in Bruch’s membrane is an adaptive
response to help opsonize and remove incompletely diges-
ted cellular debris. In this context, is notable that, in an
in vitro model of RPE deposition of material into a porous
substrate, the MAC was found to opsonize the debris.32 A
similar event in vivo may facilitate clearance of Bruch’s
membrane. The age-related accumulation coincides with
other structural and molecular changes in Bruch’s mem-
brane, including accumulation of lipids and advanced
glycation end products.19,33e36

Moreover, the photoreceptor cells of the retina have long
chain and very long chain fatty acid molecules with a
restricted distribution.37 Docosahexaenoic acid, for
example, can be metabolized into neuroprotective38,39 or
pathogenic40,41 derivatives. Carboxyethylpyrrole-modified
macromolecules are targets of autoantibodies in AMD,
and lead to activation of the complement system in mouse.42

In light of the enrichment of docosahexaenoic acid in the
retina, and its metabolism by the RPE, this pathway may
explain the abundant complement activation in the aging
macular choriocapillaris.
Unlike the major allele, CFH molecules harboring a

histidine at residue 402 have an altered affinity for C-reac-
tive protein (itself increased in the choroid of donors ho-
mozygous for the risk allele9), altered behavior in the
presence of zinc,43 and impaired binding to glycosamino-
glycans in Bruch’s membrane.44,45 In addition, the 402H
form of CFH has a reduced affinity for Bruch’s membrane
malondialdehyde.46 Moreover, eyes homozygous for the
Y402H polymorphism have increased deposition of
MAC.10 In light of the observed MAC assembly on RPE
cells in advanced AMD in the present study, it is also of
interest that cultured RPE cells harboring protective haplo-
types are more resistant to MAC injury, compared with RPE
cells with high-risk haplotypes.47

We also addressed the question of whether the increased
MAC found in eyes with high-risk genotypes is associated with
morphological changes in the macula. Masked studies of
choroidal thickness showed evidence for choroidal atrophy
associated with homozygosity for the Y402H polymorphism.
ajp.amjpathol.org - The American Journal of Pathology
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The finding that eyes with high-risk genotypes show
loss of endothelial cells supports the notion that changes
occur in the choroidal vasculature early in AMD patho-
genesis. In previous gene expression studies with AMD
and age-matched RPEechoroids using unbiased gene set
enrichment criteria, we found that, as a group, endothelial
celleassociated transcripts decline in eyes with early non-
neovascular AMD,48 a finding that is consistent with
proteomic,49 histopathologic,15,50e52 novel imaging,53,54

and blood flow55,56 studies.
The combined elements of localization of MAC to the

choriocapillaris, increased choroidal MAC in high-risk
genotypes,10 and evidence for the loss of vasculature in
eyes with high-risk genotypes suggest a mechanism by which
CFH risk alleles may contribute to AMD. By increasing the
overall level of complement activation, CFH polymorphisms
that result in impaired function or localization of the protein
may allow for an increased level of MAC formation that is
additive to the high complement activation of normal aging,
which in turn leads to injury of the choriocapillaris endo-
thelium in early AMD. Morphometric,15,57 biochemical,49

and gene expression48 studies support early loss of vascular
endothelial cells in the choroid in early AMD.

The finding of robust MAC in small hard drusen, but less
abundant or undetectable MAC in confluent drusen or basal
deposits, suggests that complement may have the opportunity
to stress the RPE overlying a druse early in its development,
but that other, non-MACemediated responses are more
important during drusen growth. Moreover, if MAC injury to
the RPE up-regulates expression of drusen-associated gene
products, as has been shown in vitro,58 this response is more
likely in small hard drusen than in confluent drusen. We
recently reported that MAC is present in the unusual lami-
nated drusen-like deposits in an eye with Malattia Leventi-
nese and suggested that these deposits have features of both
hard drusen and basal deposits.20

Overall, the histological findings from our studies and
those of others suggest that the choriocapillaris endothelium
experiences more substantive challenge by the MAC than
does the RPE. MAC was not observed on the RPE surface
in either early AMD or age-matched control eyes, but
exposure of RPE to MAC was observed in some cases of
advanced AMD. An example of robust deposition of MAC
on the RPE in an eye with neovascular AMD is shown in
Figure 5G. A number of investigators have shown a
requirement for complement activation, as well as a pro-
tective effect of complement deficiency or inhibition, in the
development of experimental CNV in mice. Various mouse
studies using cobra venom factor,12 targeted deletion of
specific complement genes,59e61 and virally delivered62,63

or pharmaceutical64,65 complement inhibitors have all
shown impaired formation of choroidal neovascular mem-
branes, compared with controls. Moreover, cultured RPE
cells respond to sublytic complement attack by increased
synthesis of proinflammatory and proangiogenic molecules
that may exacerbate the progression of AMD.58,66
The American Journal of Pathology - ajp.amjpathol.org
In summary, aging and the high-risk H allele CFH
genotypes are associated with increased MAC deposition at
the level of the choriocapillaris. Eyes with AMD exhibit
increased C-reactive protein and decreased complement fac-
tor H, consistent with a choroidal AMD microenvironment
that favors complement activation.67 Choriocapillaris
degeneration, whether due to MAC or some other source of
injury, is notable in eyes with early AMD,15 and morpho-
metric studies support a role for the CFH genotype in
choroidal atrophy. Treatments that protect the choriocapillaris
in early AMD, and the RPE in advanced AMD, would be
beneficial in addressing this blinding disease.
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