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a b s t r a c t

Gottlieb polynomials were introduced and investigated in 1938, and then have been
cited in several articles. Very recently, Khan and Akhlaq introduced and investigated
Gottlieb polynomials in two and three variables to give their generating functions.
Subsequently, Khan and Asif investigated the generating functions for the q-analogue of
Gottlieb polynomials. In this sequel, by modifying Khan and Akhlaq’s method, we show
how to generalize the Gottlieb polynomials in m variables to present two generating
functions of the generalized Gottlieb polynomials ϕm

n (·). Furthermore, it should be noted
that, since one of the two generating functions is expressed in terms of the well-developed
Lauricella series F (m)

D [·], certain interesting and (potentially) useful identities for ϕm
n (·) and

its reducible cases are shown to be easily found.
© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

Generating functions play an important role in the investigation of various useful properties of the sequences which they
generate. They are used in finding certain properties and formulas for numbers and polynomials in awide variety of research
subjects, indeed, inmodern combinatorics. For a systematic introduction to, and several interesting (and useful) applications
of the various methods of obtaining linear, bilinear, bilateral or mixed multilateral generating functions for a fairly wide
variety of sequences of special functions (and polynomials) in one, two andmore variables, amongmuch abundant literature,
we refer to the extensive work by Srivastava and Manocha [1]. While concerning some orthogonal polynomials on a
finite or enumerable set of points, Gottlieb [2] developed the following interesting polynomials (see also [3,4]; [5, p. 303];
[1, pp. 185–186]):

ϕn(x; λ) := e−nλ
n−

k=0

n
k

  x
k

 
1 − eλ

k
= e−nλ

2F1

−n, −x; 1; 1 − eλ


, (1.1)

where 2F1 denotes Gauss’s hypergeometric series whose natural generalization of an arbitrary number of p numerator and
q denominator parameters (p, q ∈ N0 := N∪{0}, and N the set of positive integers) is called and denoted by the generalized
hypergeometric series pFq defined by

pFq

[
α1, . . . , αp;

β1, . . . , βq;
z
]

=
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n=0

(α1)n · · · (αp)n

(β1)n · · · (βq)n

zn

n!

= pFq(α1, . . . , αp; β1, . . . , βq; z). (1.2)
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Here (λ)n is the Pochhammer symbol defined (for λ ∈ C) by

(λ)n :=


1 (n = 0)
λ(λ + 1) · · · (λ + n − 1) (n ∈ N)

=
0(λ + n)

0(λ)
(λ ∈ C \ Z−

0 ) (1.3)

and Z−

0 denotes the set of nonpositive integers and 0(λ) is the familiar Gamma function.
Gottlieb [2] presentedmany interesting identities for his polynomials ϕn(x; λ), which is denoted by ln(x) in [2], including

the following two generating functions (see also [3,4]; [5, p. 303]; [1, pp. 185–186]):
∞−
n=0

ϕn(x; λ)tn = (1 − t)x

1 − te−λ

−x−1
(|t| < 1); (1.4)

∞−
n=0

(µ)n

n!
ϕn(x; λ)tn =


1 − te−λ

−µ
2F1


µ, −x;

1;


1 − e−λ


t

1 − te−λ


. (1.5)

Recently Khan and Akhlaq [3] introduced and investigated Gottlieb polynomials in two and three variables to give their
generating functions. Subsequently, Khan and Asif [4] investigated the generating functions for the q-analogue of Gottlieb
polynomials. In this sequel, bymodifyingKhan andAkhlaq’smethod [3],we showhow to generalize theGottlieb polynomials
in several variables to present two generating functions of the generalized Gottlieb polynomials. Furthermore, it should be
noted that, since one of the two generating functions is expressed in terms of the well-developed Lauricella series F (m)

D [·]

defined by (2.8), certain interesting and (potentially) useful identities for the ϕm
n (·) and its reducible cases can be easily

found, for example, see Eq. (2.10).

2. Generalized Gottlieb polynomials and their generating functions

Here, we introduce a several variable analogue of the Gottlieb polynomials ϕn(x; λ) to present their generating functions.
To do this, we begin by defining a several variable analogue of the Gottlieb polynomials ϕn(x; λ) as follows.

Definition. An extension of the Gottlieb polynomials ϕn(x; λ) inm variables is defined by

ϕm
n (x1, x2, . . . , xm; λ1, λ2, . . . , λm) = exp (−nσm)

n−
r1=0

n−r1−
r2=0

n−r1−r2−
r3=0

· · ·

n−r1−r2−···−rm−1−
rm=0

×

(−n)δm ·

m∏
j=1

(−xj)rj ·
m∏
j=1


1 − eλj

rj
m∏
j=1

rj! · δm!

(n,m ∈ N), (2.1)

where, for convenience,

σm :=

m−
j=1

λj and δm :=

m−
j=1

rj. (2.2)

It is noted that the special casem = 1 of (2.1) reduces immediately to the second one of the Gottlieb polynomials ϕn(x; λ)
in (1.1).

Now, we will present two generating functions for ϕm
n (x1, x2, . . . , xm; λ1, λ2, . . . , λm).

Theorem 1. The following generating function for ϕm
n (x1, x2, . . . , xm; λ1, λ2, . . . , λm) holds true:

∞−
n=0

ϕm
n (x1, x2, . . . , xm; λ1, λ2, . . . , λm)tn =


1 − te−σm

− m∑
j=1

xj


−1

·

m∏
j=1


1 − te−λj−σm

xj
, (2.3)

where m ∈ N and σm is given in (2.2).

Proof. We begin by recalling a formal manipulation of a double series:

∞−
n=0

n−
k=0

Ak,n =

∞−
n=0

∞−
k=0

Ak,n+k. (2.4)
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Let Lmn be the left hand side of (2.3). If we apply (2.4) to the expression of taking
∑

∞

n=0 on the right hand side of (2.1), and
then multiplying by tn with k = r1, we find

Lmn =

∞−
r1=0
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n=0
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· tn+r1
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.

If we apply (2.4) to the resulting identity with k = r2, we obtain
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∞−
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n=0
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· · ·
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×
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1 − eλj
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.

By making a repeated application of (2.4) to the consecutive resulting equations with k = r3, . . . , rm, we finally have

Lmn =

∞−
r1=0
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r2=0

. . .
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rm=0
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.

If we apply the following identity

(−n − s)s = (−1)s
(n + s)!

n!
=

(−1)ss!(s + 1)n
n!

(n, s ∈ N0) (2.5)

to the first factor of the denominator of the last fraction, we get
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∞−
n=0

(δm + 1)n
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n
,

where δm is given in (2.2).
By applying the generalized binomial theorem

(1 − z)−α
=

∞−
n=0

(α)n

n!
zn (|z| < 1) (2.6)

to the last resulting equation, we obtain

Lmn =
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−1
·
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,

which is easily seen to be equal to the right hand side of (2.3). This completes the proof. �

Theorem 2. The following generating function for ϕm
n (x1, x2, . . . , xm; λ1, λ2, . . . , λm) holds true:

∞−
n=0

(µ)nϕ
m
n (x1, x2, . . . , xm; λ1, λ2, . . . , λm)
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n!
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, (2.7)
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where F (m)
D [·] denotes one of the Lauricella series in m variables (see [6, p. 33, Eq. (4)]) defined by

F (m)
D [a, b1, . . . , bm; c; x1, . . . , xm] =

∞−
r1=0,...,rm=0

(a)δm(b1)r1 · · · (bm)rm

(c)δm

xr11
r1!

· · ·
xrmm
rm!

(max {|x1|, . . . , |xm|} < 1) , (2.8)

and σm, δm are given in (2.2).

Proof. The same argument as in the proof of Theorem 1 will establish Theorem 2. �

We conclude this paper by giving some comments on the results in Theorems 1 and 2.

Remark. (a) It is easily seen that Eq. (2.3) in Theorem 1 and Eq. (2.7) in Theorem 2 when m = 1 reduce immediately to
Eqs. (1.4) and (1.5), respectively.

(b) Lauricella [7] generalized the four Appell series Fj (j = 1, 2, 3, 4) (see [6, pp. 22–23]) to the series in m variables and
defined his multiple hypergeometric series as F (m)

A [·], F (m)
B [·], F (m)

C [·], including F (m)
D [·] in (2.8). Lauricella [7] presented

several elementary properties of these series including, for example, integral representations of the Eulerian type,
transformations and reducible cases, and the systems of partial differential equations associated with them. A summary
of Lauricella’s work is given by Appell and Kampé de Fériet [8, Chapter VII, pp. 114–120]. A result of particular interest
is the following reduction formula:

F (m)
D [a, b1, . . . , bm; c; x, . . . , x] = 2F1 (a, b1 + · · · + bm; c; x) , (2.9)

which is due to Lauricella himself [7, p. 150] (see also [8, p. 116, Eq. (11)] and [6, p. 34, Eq. (6)]). Using Eq. (2.9), the
following interesting special case of (2.8) is easily seen to be given as

∞−
n=0

(µ)nϕ
m
n (x1, x2, . . . , xm; λ, . . . , λ)

tn

n!
=

1 − te−mλ

−µ
2F1


µ, −

m−
j=1

xj; 1;
t

eλ

− 1


emλ − t


. (2.10)

For another example, since F (2)
D = F1 one of the Appell series (see [6, p. 33, Eq. (5)]), the left hand side of Eq. (2.7) when

m = 2 can be easily expressed in terms of the Appell series F1.
(c) We may find certain other interesting and (potentially) useful identities for ϕm

n (·) by using already-developed formulas
and properties for the F (m)

D [·] and its reducible cases, as noted in (b).
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