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Network QoS games: stability vs optimality tradeoff
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Abstract

We study noncooperative games whose players are selfish, distributed users of a network and the game’s
broad objective is to optimize Quality of Service (QoS) provision. Our classes of games are based on
realistic microeconomic market models of QoS provision (Proceedings of the First International
Conference on Information and Computation Economics ICE’98, 1998) and have two competing
characteristics—stability and optimality. Stability refers to whether the game reaches a Nash equilibrium.
Optimality is a measure of how close a Nash equilibrium is to optimizing a given objective function defined
on game configuration. The overall goal is to determine a minimal set of static game rules based on pricing
that result in stable and efficient QoS provision. We give a new and general technique to establish stability
and demonstrate a close trade-off between stability and optimality for our game classes. We also state
several open problems and directions together with initial observations and conjectures.
r 2004 Elsevier Inc. All rights reserved.

1. Introduction

QoS provision and network resource allocation are problems relevant to Internet usage. One
approach by the networking [1,6,5,12,27,26,21] research community over the past several years is
to use a microeconomic model: treat the network as a market and its users and providers as
players of a noncooperative game [9,6,5,22]. A number of related, fundamental issues have been
isolated—in algorithmic mechanism design, computational aspects of game theory, and
complexity of distributed computing and communication—that are of interest to theoreticians
[2,16,17,19,20,25] and potentially have other applications as well.
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The overall goal of noncooperative game theoretic modeling is to design a game that permits
the users and providers of a network (or their agents) to behave like selfish and distributed players
[6,18,27], realistically and fairly, with minimal intervention by any external network manager. On
the other hand, despite this market anarchy, at natural equilibrium game configurations, this game
should result in ‘‘desirable’’ overall QoS provision and resource allocation or assignment.
To a theoretician, one valid view of noncooperative game theoretic approaches and algorithmic

mechanism design approaches to network problems is that they are simply paradigms for
designing efficient algorithms [2,17,25] for distributed optimization (or approximation) on a
network. Within this view, the game, i.e., the feasible game configurations, the players, their utility
and reward or pricing functions, their selfish moves or dominant strategies are all free to be defined
in any computationally meaningful manner.
In this paper however, we adopt the network modeler’s [6,18,27] point of view that these

definitions should— in addition—correspond to a meaningful, realistic and fair market
architecture for the users and providers of network resources.
One difficult issue is a precise definition of a ‘‘desirable’’ game configuration, which takes many

forms. One purely market-based point of view is that ‘‘a desirable outcome is simply any natural
outcome of a fair and selfish game—further interference is undesirable.’’ Once constraints are
imposed on the rules of the game (fairness, personal freedom, and efficiency of individual moves)
thereafter any equilibrium that this game naturally reaches should be accepted as desirable. The
common type of equilibria studied in this context are the so-called Nash equilibria, defined as
configurations where none of the players individually has any (selfish) reason to make a move. In
a mechanism design framework, Nash equilibria often automatically correspond to a so-called
‘‘social choice’’ function [17] that aggregates (privately known) preferences of many people into a
consistent social choice configuration. Sometimes ‘‘desirable’’ is defined as configurations that
optimize a communal welfare function, optionally subject to constraints based on equitable
distribution, collective efficiency etc. [3,8]; or as configurations that satisfy a prescribed set of
constraints arising from measures of fairness, freedom etc; or as a combination of the two:
configurations that optimize a well-defined function, subject to a set of constraints. In these cases,
the game design problem is closely related to mechanism design optimization problems: I.e., to
obtain a social choice function that in addition maps to desirable configurations [4]. In the game
context, how to guide a selfish game towards desirable configurations, i.e., to design (realistic, fair,
typically pricing based [17] incentive or reward) functions that alter the players’ personal utility
functions in such a way that their purely selfish behavior according to the altered utilities results in
(Nash) equilibria that have the desirable properties.
In this paper, we consider a simple (and commonly used [6,27]) communal welfare function

defined simply as the sum of the individual player’s utilities (volume-adjusted and minus prices);
we then design pricing incentive functions that result in Nash equilibria that (approximately)
optimize communal welfare.
Many interesting problems lend themselves to a static game approach, i.e., one defines the game by

specifying the set of feasible game configurations, individual player utility functions, pricing incentive
functions and selfish moves or strategies, and thereafter simply studies the relevant properties of Nash
equilibria. Other computational problems arise from imposing dynamic rules on (a discretized version
of the) game such as the order or frequency of player moves. This translates to interpreting the game
configurations and selfish moves as the vertices and edges of a finite game configuration graph,
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studying the lengths of particular paths in this graph, which represent game plays, or interpreting the
graph as a Markov chain with probabilities attached to the edges or moves. In the latter randomized
setting, one problem is determining the stationary probability distribution on (necessarily Nash or
terminal cycle) configurations, given a natural initial distribution, and thereby determine properties of
Nash configurations that hold with high probability. In both the randomized and deterministic
settings, a complexity issue of interest is the time taken for convergence of game plays to Nash
equilibria, terminal cycles, or to a stationary distribution.
Our approach in this paper is primarily static, although we touch upon simple (deterministic)

dynamic aspects.

Remark 1. Further interesting issues in network resource allocation and QoS provision games—
which we do not emphasize in this paper—are: game sensitivity to a small changes in total
resources, disclosure of information by players and game outcome, computational complexity of
the player utility functions, and the pricing function, etc. These and other issues have been listed in
a comprehensive DIMACS talk [28].

One issue that is however usually ignored in the literature is stability: Does the game have stable
configurations, i.e., Nash equilibria at all? Or are there only terminal cycles in the game
configuration graph. i.e., a set of at least two configurations and a cyclic sequence of moves
between them that the players are trapped into traversing indefinitely if they always choose their
selfishly optimal move. It is usually assumed [6,5,18] that Nash equilibria always exist, and that
there is a path from every game configuration to a Nash equilibrium (which ensures convergence).
One rationale for this assumption relies on a version of Brouwer’s fixed point theorem called
Kakutani’s theorem which states that if the player’s selfish moves are based on maximizing utility
functions that are quasiconcave, it follows that a Nash equilibrium—which is a type of fixed
point—always exists.
This assumption was challenged by [22], where it was shown that for a natural class of games

their realistic utility functions—based on a commonly used network model—are not quasiconcave
and result in natural QoS provision games that may not have Nash equilibria.
In this paper, we show that the stability question for practically realistic classes of QoS network

games of [22] gives rise to potentially fundamental new problems and techniques. Our main
contributions here are described in the following section.

Remark 2. We do not practically justify our base classes of QoS network games, relate them to
other commonly used classes of network games, nor provide the fundamental reason why our
games cannot be assumed to have guaranteed stability. All of these issues were discussed
extensively in [22] and have been generally accepted and cited [23,13–15,24,10,7].

2. Description of results

1. In Theorem 5 we give a simple but general technique to establish the stability of game classes
and to establish properties of the game configuration graph such as the existence of cycles and the
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existence of paths from an arbitrary configuration to a Nash configuration. In other theorems, we
apply this technique to establish the stability of various realistic classes of QoS provision games
based on [22].
We also use this theorem to classify all network games based on their stability. Later, this

classification is illustrated by concrete examples.
2. For these classes of games, we prove a series of results that demonstrate a close tradeoff

between stability and optimality. In classes of games that are stable, i.e., where Nash equilibria are
guaranteed to exist, they could be far from optimizing the communal welfare function. However,
when we systematically alter such a game class to ensure that Nash equilibria are a reasonable
approximation of the communal welfare optimum, then the games in the altered class are no
longer guaranteed to be stable, i.e., they may not have Nash equilibria at all. In particular, we
show the following:
(i) Theorem 7, and Observation 1 show that a realistic class Q of QoS provision games from [22]

(that is formally defined later and does not use pricing functions to alter user utilities) has guaranteed
stability, but Nash equilibria may be arbitrarily far from optimizing communal welfare.
(ii) Observations 2, 3 and Theorem 11 show that on expanding Q to a class of gamesPQ (and its

natural extensionSPQ) by adding a single realistic type of pricing function to all of the individual
player utilities, the new class of games is no longer guaranteed to have Nash equilibria. We
additionally give examples of cases when Nash equilibria coexist with games cycles. However,
when Nash equilibria do exist for games in class PQ; these equilibria achieve optimal communal
welfare, under certain conditions C on the parameters of the game. When the conditions C do not
hold, arbitrarily suboptimal counterexamples exist.
(iii) These conditions C have both a practical and theoretical justification. Theorem 8

demonstrates the latter: optimization of communal welfare—over all feasible network (QoS
provision) configurations—is a computational problem independent of any game-theoretic
context. This optimization problem, which we call CW is NP-complete (can be seen as a general
version of SUBSET SUM) and the set C arises as a natural set of conditions on the input
parameters for which a greedy approach gives an optimal solution.
The greedy approach however is traditionally algorithmic, i.e., it dictates a strict sequence or

order of steps that is crucial for arriving at the solution to CW : One standard interpretation of our
type of result is that our games provide a more self-organizing, less externally dictated method
that results in solutions to CW ; under the same conditions C: In other words, simply designing
the static rules of PQ games appropriately, any terminating sequence of valid game moves—no
matter what their order—in fact terminates in a solution to the optimization problem CW : I.e.,
just the static property of being a Nash equilibrium configuration of a PQ game makes it a
solution to the optimization problem CW : This could also be viewed as a type of Church-Rosser
property.
(iv) Theorem 13 and associated Observation 4 show that on restricting PQ to a classHPQ of

games by placing constraints on player moves that hurt other players, we guarantee stability again
at the cost of deteriorated communal welfare at Nash configurations.
(v) Theorems 15 and 16 show that by modifying PQ (which forces the use of a single pricing

function), to a class DPQ of games that use several carefully ordered price functions
simultaneously, we guarantee both stability and optimal communal welfare at Nash configura-
tions, under the conditions C:
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3. For all of these game classes Theorem 17 introduces simple dynamic rules that impose a
priority order in which the players take turns for moves: these guarantee fast convergence of
game-plays to the Nash configurations. Particularly for the classes PQ and DPQ under the
conditions C; these simple dynamic rules give an equally efficient but nevertheless less dictated
alternative to greedy algorithms for communal welfare optimization.
4. Finally, we state several open problems, conjectures and directions for extending our results

and motivate them by initial observations.

2.1. Organization

In Section 3 we formally define our base classes of QoS Provision network games and the
essential terminology appearing in italics in the Introduction. In Section 4, we demonstrate a
technique for proving existence of Nash equilibria. In Section 5, we prove the main results
described above. In Section 6, we state a rule that allows for a rapid convergence to Nash
equilibria. In the final Section 7, we discuss open problems, conjectures, interesting directions and
initial results.

3. Definitions

A game (instance) G in the base class of QoS provision network games is specified by the game

parameters G ¼ /n;mAN; fliARþ : 1pipng; fbi;jARþ : 1pipn; 1pjpmg; fpj : Rþ-R; 1pjp
mgS: The best way to define G is by identifying it with its finite game configuration graph
(formally defined below) which consists of a set of feasible game configurations (vertices) and the
valid or selfish game moves (oriented edges). The game G is played by n users or players each
wanting to send a traffic of li units through one of m network service classes and (for convenience
of analysis) an overflow or Dummy Class with index 0, referred to as DC. Each player i
additionally has a volume threshold bi;j (to be described below) for each class j: A price function

pjðÞ for each service class is a nonincreasing function that maps the total (traffic) volume in the
class to a unit price. (Unit price typically decreases with increasing congestion or total volume in
any service class.) The price for using DC is 0. A feasible configuration L of G is fully specified by
an allocation JL : f1;y; ng-f1;y;mg which describes which service class JLðiÞ that the user or
player i has decided to place their chunk li of traffic. This allocation JL results in a total traffic

volume qL;j ¼
P

i:1pipn4JLðiÞ¼jli in each class 1pjpm at the game configuration L: The set of
feasible game configurations F form the vertex set of the game configuration graph O:

Individual utility function UiðLÞ is a type of step function based on i’s volume threshold being
met at the configuration L; and on the unit price incurred by the player i in its class j ¼ JLðiÞ:
UiðLÞ is:
�0 if j ¼ 0 (user i is in DC)
�0 if bi;joqL;j (volume threshold exceeded)

-Equal to lið1� pjqL;jÞ otherwise.
It is assumed that the price functions are always appropriately normalized so that this quantity

is always strictly positive for all players i and their classes JLðiÞ at any configuration L: A typical
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utility function is shown in Fig. 1. We say that user i is satisfied at configuration L if UiðLÞa0;
and not satisfied otherwise. We define a function SatLðiÞ ¼ 1 if ULðiÞa0; otherwise SatLðiÞ ¼ 0:
A selfish move by user i at a configuration L1 is a reallocation of i’s volume li from a departure

class j1 (i.e. JL1ðiÞ ¼ j1), to a destination class j2 resulting in a configuration L2 (i.e., JL2ðiÞ ¼ j2Þ
that increases utility of this user, i.e. UiðL1ÞoUiðL2Þ: Each selfish move is an ordered pair of
feasible game configurations (for example ðL1;L2ÞAF 	 F ), and represents an oriented edge of the
game configuration graph O: A game play for G is a sequence of valid selfish moves in G; i.e.
ðL1;L2Þ; ðL2;L3Þ;y; ðLk�1;LkÞ; or a path in the game configuration graph O:
This concludes the static description of our base class of games.
A Nash Equilibrium or NE of a game G is a configuration L such that there is no selfish move

possible for any user i: Nash equilibria are exactly sink vertices of a game configuration graph O
that have no outgoing edges toward other vertices. A game is resource plentiful if there is a
configuration L such that all users are satisfied. For our classes of games, the communal welfare

function for configuration L is defined as SiSatLðiÞli: The feasible game configuration that has
highest value of communal welfare function is called the System Optimum or SO.

Dynamic augmentations of the games G (that we consider) contain the parameters of G and
respect the static definition of G given above, but in addition they also include a fixed linear
ordering of players which translates to a partial ordering of all the edges (selfish moves) emanating
from each vertex (game configuration) in G’s configuration graph. (All selfish moves
corresponding to the same player are given the same priority.) A valid game play in the dynamic
setting should also respect the dynamic rules.
For reasons motivated in the Introduction and detailed in Section 5 we alter the base class of

QoS games by adding or removing appropriate pricing function(s) to the individual user utilities.
More specifically, Q denotes the class of games where 8j;x; pjðxÞ ¼ 0 (or any fixed positive

constant). The class DPQ of games has strictly decreasing price functions: 8j;
pjðx1Þopjðx2Þ3x14x2; and in addition, they are strictly differentiated between classes j; i.e.,
8j; pjðNÞ4pjþ1ð0Þ: The class PQ of games satisfies both: 8j; pjðx1Þopjðx2Þ3x14x2; and in
addition, the price functions are the same for all classes, i.e., 8x; p1ðxÞ ¼ p2ðxÞ ¼ ? ¼ pmðxÞ: The
class SPQ is a modification of PQ that allows price function to be constant on predefined
intervals around points corresponding to volume thresholds. Finally,HPQ is the subclass of PQ
where selfish moves are restricted to those that do not exceed volume threshold of another player,
i.e., do not cause any other player to become dissatisfied.
Here we will give a pictorial example, Fig. 2, of some notions introduced in this section. A game

configuration graph O and configurations L of a particular game G are shown. Columns represent
classes, rectangles represent users, the size of a rectangle corresponds to volume of a user, volume
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thresholds of users are indicated on the right. In this example, the game G in class PQ has 2
classes, 2 users A and B that have equal volumes and the volume threshold of A is greater than
that of B: Game configuration graph O has 4 vertices. This game G has no Nash equilibrium. We
will use this game in Observation 2.

Remark 3. Throughout this paper we assume wlog that every player i has the same volume
threshold bi ¼ bi;1 ¼ bi;2 ¼ ?bi;m in every class j ¼ 1?m:We also assume that players are sorted
in the increasing order of their thresholds, i.e. b1pb2p?pbn: (The former assumption could be
easily generalized for all results in this paper, the latter assumption is realistic and commonly
made [22].)

Remark 4. In proofs when describing a game configuration L; we will specify values of game
parameters n and m; provide a list of users in the form User(Volume, Volume Threshold) (for
example A(5,12) means that User A has volume 5 and volume threshold 12), as well as specify
where these users are, i.e. fJLðiÞg:

4. General technique for establishing stability of network games

First we give a simple, general result that however yields a clean technique for establishing
stability in game configuration graphs.

Theorem 5. The following statements are equivalent:
(i) There is a function defined on configuration graph O that increases after every selfish move (a

so-called stability function).
(ii) In configuration graph O there is no oriented cycle C of selfish moves L1;L2;y;Lk (i.e. such

that there is an oriented edge from L1 to L2; from L2 to L3;y; from Lk to L1).
(iii) Every maximal oriented (simple) path starting from any initial vertex of O terminates at a

vertex corresponding to a Nash configuration.

Proof. (iii) ) (i) Let f ðLÞ be equal to a 2n � d; where d is the maximum oriented distance
(number of edges in the longest oriented path) from L to a Nash configuration. Because
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of (iii), f is well-defined. Let e ¼ ðL1;L2Þ be an oriented edge of O; then f ðL2Þ � f ðL1ÞX1 since
for every oriented path P from L2 to a Nash configuration L there is a longer oriented path
ððL1;L2Þ;PÞ from L1 to L: Thus f is a stability function.
(i) ) (ii) Suppose that there is an oriented cycle C: Then f will continually increase over C;

which contradicts the fact that C is a cycle and f is a function.
(ii)) (iii) Let P be a maximal, simple, oriented path. Due to finiteness, maximality, and the fact

that there are no cycles, the P must terminate at a vertex with no outgoing edges, i.e., at a Nash
configuration. &

Remark 6. Formally, a cycle mentioned in the Theorem 5 can be defined as a sequence of selfish
moves that begins and ends at the same configuration L: This cycle explicitly specifies which
player makes the first move, which makes the second move etc. There are two different types of
cycles. One is where all possible sequences of selfish moves originating at any cycle configuration
L will revisit L eventually. Such cycles are called terminal cycles. Another type of cycles is where
there is some configuration L and some sequence of selfish moves that would never visit L again.
Such cycles are called nonterminal. Note that according to the Theorem 5 a game cannot lack
both Nash equilibria and selfish cycles. In Section 5.2, we will give examples of terminal and
nonterminal cycles, as well as of all 3 other possible Nash/cycle combinations: (1) games that have
Nash equilibria and do not have any selfish cycles, (2) games that have both Nash equilibria and
selfish cycles and (3) games that have no Nash equilibria and have selfish cycles.

5. Stability vs optimality

5.1. Class Q of games with no pricing

First we consider the class of games Q where there is no pricing, i.e. pjðxÞ ¼ 0; for all classes j

and their volumes x; and users are only motivated by their desire to satisfy their volume
thresholds.
A selfish move by user i in a game GAQ is a reallocation of i’s volume from a departure Class j1

to destination Class j2a0; provided that the volume threshold of i was exceeded in Class j1 prior
to the move and it is not exceeded in Class j2 after the move.
A corollary of the following result is that all games in Q always have a Nash equilibrium.

Theorem 7. For a game in Q; any maximal sequence of selfish moves starting at an arbitrary initial

feasible configuration will terminate at a Nash configuration.

Proof. We will give two independent proofs of this theorem, one by constructing the stability
function of item (i) of Theorem 5, second by proving nonexistence of cycle of item (ii) of Theorem 5.
By construction of stability function: Suppose that players 1;y; n have thresholds

b1pb2p?pbn: Recall that SatLðiÞ ¼ 1; if in Configuration L; Player i is satisfied; otherwise

SatLðiÞ ¼ 0: Define f ðLÞ ¼
P

i2
iSatLðiÞ: Note that after every selfish move, the function f ðÞ is

increasing (since SatLðiÞ of a moving Player i changes from 0 to 1 and if SatLði0Þ changes for any
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other i0; then i0oi; and
P

i0oi 2
i0o2i). Therefore f ðÞ satisfies the criteria for being a stability

function.
Proof of nonexistence of a cycle: Assume that such a cycle C exists. Let M be the maximum

value of bi over all active players i defined as those players whose moves correspond to edges in C:
Let k be the corresponding player, i.e. bk ¼ M: Suppose that a move by Player k changes
Configuration L1 into Configuration L2 in C: By definition of selfish move, Player k must be
unsatisfied at L1 and satisfied at L2: Therefore, there must be a selfish move by some Player t that
makes k unsatisfied. However by definition of k; btpbk; hence t cannot make a move that will
dissatisfy k while satisfying t; contradiction. Thus such a cycle C cannot exist. &

Next we consider the complexity of finding a System Optimum configuration L of a game G:
This problem is in general NP-Complete. It can, however, be solved greedily for two special
subclasses of games defined by conditions we refer to collectively as C:

Theorem 8. (1) The problem of finding a System Optimum of a network game is NP-complete.
(2) A System Optimum of a network game when all players have the same volume l can be found in

time linear in the game parameters.
(3) A System Optimum of a network game when all players have superincreasing volumes li (i.e., if

b1p?pbn then li4
P

joi lj; 8i and also biX2li;8i) can be found in time linear in the game

parameters.

Proof. 1. By reduction from MAXIMUM SUBSET SUM problem (i.e. given set S ¼ fs1;y; sng
and target t; find ADS such that

P
iAA sipt and this sum is maximum). Reduction to System

Optimum of network game can be done as follows. Suppose that players 1;y; n all have same
threshold b1 ¼ b2 ¼ ?bn ¼ t; individual volumes li ¼ si and there is one non-DC class. Then
System Optimum configuration corresponds to subset A described above.
2. The greedy algorithm solves this problem (let b1p?pbn; place Player n in Class 1, place

Player n � 1 in Class 1 if bn�1X2l; otherwise place Player n � 1 in Class 2; place Player n � 2 in
Class 1 if bn�2X3l etc.).
3. The greedy algorithm solves this problem, similarly to 2. &

Remark 9. When we consider the subset of a class of games X that satisfies conditions of item 2
(resp. 3) of Theorem 8 above we will denote this subclass of games by XE (resp. XS).

We know that for games in Q; Nash equilibria always exist. The next result states how far these
Nash equilibria could be from System Optimum of their games.

Observation 1. For any l; there is a game GAQ with a Nash equilibrium L whose communal welfare

is OðOPT
l Þ where OPT is the communal welfare of G’s System Optimum, and l is one of G’s player

volumes.

Proof. Consider a configuration that has two classes plus the dummy class DC, users
A1ð1; 2lÞ;A2ð1; 2lÞ;Bðl; lÞ; lb2: Then there is a Nash equilibria L when A1 is in Class 1, A2 is
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in Class 2, B is in DC. The communal welfare of L is 2. On the other hand, the System Optimum
has A1 and A2 in Class 1, B in Class 2 and the communal welfare of System Optimum is
lþ 2: &

Theorem 10. (1) Any Nash equilibrium of any game GAQE; has communal welfare of at least a half
of that of G’s System Optimum.
(2) Any Nash equilibrium of any game GAQS; has communal welfare of at least ð1� 1=2mÞOPT

where m is the number of classes and OPT is communal welfare of G’s System Optimum.

Proof. Case of games in class QE : Let L be a Nash equilibrium when all players have the
same volume l: Consider the unsatisfied Player i that has the largest volume threshold bi: (If there
are no unsatisfied players then such a Nash equilibrium is a System Optimum). Total traffic
volume qj in every class j is strictly greater than bi � li hence communal welfare of L is greater

than or equal to mðbi � liÞ but communal welfare of System Optimum cannot be more than
2ðmðbi � liÞÞ:
Case of games in class QS: At Nash equilibria say the players n;?n � m are satisfied. Due to

conditions C; ln þ?þ ln�mXðln þ?l1Þð1� 1=2mÞ and communal welfare of System Optimum
is at most ln þ?l1: &

Classes of games with pricing functions

As we have shown so far, games without pricing may result in Nash equilibria that are
arbitrarily far from System Optima. Now we will examine effects that (nondegenerate) pricing has
on existence and optimality of Nash equilibria.
Recall that a pricing function is a pricing per unit volume (or pricing for short) function

pjðÞ : Rþ-R: This is a nonincreasing function, i.e. pjðxÞXpjðyÞ3xpy: As defined for games with
no pricing, a selfish move by user i (in games with pricing) is a reallocation of i’s volume from a
departure class j1 to destination class j2a0; that increases utility of this user. The difference is that
now utility of user i depends both on satisfaction of volume threshold of i and prices in j1 and j2:
Our motivation for introducing pricing is to increase communal welfare of the resulting Nash

equilibrium. Consider for example Fig. 3. It shows an original Nash equilibrium in a game G
without pricing and a new Nash equilibrium of a game G0 that has a pricing function (H denotes
highly demanding users, M moderately demanding and L low demanding). In this case, the new
NE clearly has greater value of community welfare function (i.e. volume of all rectangles in non-
DC classes) than the original Nash equilibrium. In the remainder of this section we will examine
various pricing schema and the effects they have on stability and optimality of the corresponding
network games.

5.2. Class PQ of games with strictly decreasing pricing function

Here we examine the class of games PQ when there is only one pricing function pðxÞ for all
classes j and this pricing function is strictly decreasing, i.e. pðxÞopðyÞ3x4y:
We first show that even under the conditions C; the existence of NE is not guaranteed.

Observation 2. There are games in PQE and in PQS that do not have Nash equilibria.
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Proof. Case of games in class PQE: Consider the game depicted in Fig. 2. This game is in the class
PQE since all players have equal volumes. Consider Configuration 1. Current utility of both
players is positive. However, Player A can improve his utility by moving into Class 2, since price
pð2lÞ; when volumes (¼ l) of A and B are combined, is lower than the price pðlÞ when A is alone,
due to the strictly decreasing nature of the pricing function pðÞ: This move by Player A to Class 2
results in a Configuration 2. Utility of Player B is now equal to 0, since his volume threshold is
exceeded. Player B can improve his utility by moving into Class 1, Player A will follow him, and so
on. This sequence of selfish moves will never terminate. Since every configuration in this game has
a selfish move leading from it, this game has no Nash equilibrium.
Case of games in class PQS: Consider the game consisting of two classes, and two users

A(100,300) and B(10,30). User A will always want to move to the class where B is, and B will
always want to move away from A; thus creating a cycle. &

The next result states however that when Nash equilibria do exist under conditions C they
optimize communal welfare.

Theorem 11. If a game G in PQE or in PQS has a Nash equilibrium L; then L is a System Optimum
of G:

Proof. Case of games in class PQE: Consider a System Optimum L1: If Player i is in DC then all
the players k such that bkobi are also in DC (otherwise i could have moved into the class where k
is increasing communal welfare, contradiction). Consider a Nash equilibria L2: If Player i is in DC
then all the players k such that bkobi are also in DC (otherwise i would move into the class where
k is). Hence any Nash equilibrium is a System Optimum.
Case of games in class PQS: We can transform any System Optimum into any Nash

equilibrium by means of either exchanging players between DC and non-DC classes or between
non-DC classes. Since all players have equal volumes the resulting Nash equilibria will have the
same communal welfare as the original System Optimum. &

Class of games SPQ
So far we have shown that introduction of strictly decreasing price function tends to cause

instability by creating cycles and destroying Nash Equilibria. Intuitively cycles are created by
higher threshold players ‘‘chasing’’ lower threshold players, as in Fig. 4.
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It was shown in Section 5.1 that if the price is a constant function then Nash equilibrium always
exists. Fig. 4 seems to indicate that if price function were constant in a small neighborhood
around volume thresholds and strictly decreasing elsewhere, as shown in Fig. 5, then Nash
equilibrium would always exist. Unfortunately, this is not the case, as results below indicate.
First we will formally define the pricing function shown in Fig. 5. Let players 1;y; n have

volume thresholds b1pb2p?pbn and volumes l1;y; ln: Define a stopping price function pðxÞ as
a function that is flat on intervals ðbi � l; bi þ lÞ; 8i; where l ¼ maxjlj; and pðxÞ is strictly
decreasing between these intervals. SPQ denotes the class of games that have stopping price
functions.

Observation 3. There is a game in SPQ where there is a cycle of selfish moves.

Proof. Consider a game with 2 non-DC classes and 12 players: A1ð1; 9Þ;A2ð1; 9Þ;A3ð1; 9Þ;
B1ð1; 6Þ;B2ð1; 6Þ;B3ð1; 6Þ;C1ð1; 3Þ;y;C6ð1; 3Þ: Initial configuration L : players C4;C5 and C6 are
in Class 2, all other players are in Class 1. First players B1;B2 and B3 move to Class 1, after that
players C1;C2;C3 move to DC; then players A1;A2 and A3 move to Class 2 and finally players
C1;C2;C3 move from DC to Class 1. Current configuration is essentially isomorphic to L; hence a
cycle has occurred. &

Remark 12. We mentioned in Section 4 that there are 3 different possibilities for Nash/cycle
existence. By now we have seen examples of all such possibilities. Any game in class Q has Nash
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equilibria and has no cycles (terminal or nonterminal). In Observation 2 we have seen an example
of a game with a (terminal) cycle and no Nash equilibria. In Observation 3 we gave an example of
a game where there is both a (nonterminal) cycle of selfish moves and a Nash equilibrium (all A
and B players in one class, three C players in another class, remaining C players in DC).

5.3. Class HPQ of games with nonhurting moves

So far we have shown that the introduction of pricing tends to cause instability by creating
cycles and destroying Nash equilibria. Now we will impose natural restrictions on types of selfish
player moves allowed. We will show that the class of games HPQ with such restrictions will be
free of instabilities. We will also examine optimality of games in HPQ:
A (selfish) nonhurting move by Player i is a reallocation of i’s volume from a departure

Class j1 to destination Class j2; changing the Configuration L1 to Configuration L2 such that
UiðL1ÞoUiðL2Þ and there is no player k such that SatL1ðkÞa0 and SatL2ðkÞ ¼ 0: In other words,
player i improves his utility without violating volume thresholds of any other players.
A corollary of the following result is that all games in HPQ always have a Nash equilibrium.

Theorem 13. For any game GAHPQ any maximal sequence of selfish nonhurting moves starting at

an arbitrary feasible configuration L will terminate at a Nash equilibrium.

Proof. We will give two proofs of this theorem, one by constructing a stability function of item (i)
of Theorem 5 and secondly proving nonexistence of cycle of item (ii) of Theorem 5.

Construction of stability function: Let f ðLÞ ¼
Pm

j¼1q
2
j (DC contributes zero). Note

that whenever a selfish move by some Player i changes Configuration L1 into a Configuration
L2 then f ðL2Þ4f ðL1Þ: This is because when Player i moves from class j1 to class j2 the following
holds:

ðqj1 � liÞ2 þ ðqj2 þ liÞ24q2j1 þ q2j2 ;

provided qj1oqj2 þ li; and when Player i moves from DC to Class j2; it holds that ðqj2 þ liÞ24q2j2 :

Finally, no player ever moves to DC.
Nonexistence of cycle: Assume that such a cycle C exists. Let M be the minimum value of pðqjÞ;

where j is taken over all destination and departure classes j2 and j1 of active players i defined as
those players whose moves correspond to edges in C: Since M is the minimum, no active player
will move away from the Class O with price M: The price M of the Class O also will not be
reduced by any active players moving into O since the function pðÞ is decreasing. Since active
players that are stuck at O will not be able to move out, there cannot be such a cycle C;
contradiction. Note that none of the players in DC can participate in such a cycle C either since no
selfish move ever causes a player to return to DC. &

How far can a Nash equilibrium of aHPQ game be away from a System Optimum of this game?
The following theorem states that it can be arbitrarily far, even when restricted by conditions C:
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Observation 4. For any n; M; there is a game GAHPQE (resp. in HPQS) that has a NE L such

that communal welfare of L is OðOPT
n
Þ (resp. OðOPT

M
Þ) where OPT is communal welfare of SO of G; n

is number of players of G; and M is the ratio of two of G’s player volumes.

Proof. Case of games in class HPQE: Consider a game that has 1 class plus DC and users
A1ðl; nlÞ;A2ðl; nlÞ;y;Anðl; nlÞ;Bðl; lÞ: Then there is a Nash equilibrium L in which B is in
Class 1 and all other users are in DC. The communal welfare of L is l: On the other hand, a
System Optimum has A1;y;An in Class 1, B in DC, communal welfare of System Optimum is nl:
Case of games in class HPQS: Consider a game that has 1 class plus DC, with users

AðM;MÞ;Bð1; 2Þ;Mb1: Then there is a Nash equilibrium L when B is in Class 1 and A is in DC,
and communal welfare of L is 1. On the other hand, a System Optimum has A in Class 1, B in DC,
and communal welfare of System Optimum is M: &

5.4. Class of games DPQ with (different) separating price functions

So far we have considered classes of games when there was one price function in effect for all
classes. Examples of the price functions we have seen would either not induce Nash equilibria or
induce suboptimal Nash equilibria. However if we were allowed to introduce special different
price functions for different classes then we can show that games in this class DPQ always
terminate at a Nash equilibrium and under conditions C; these Nash equilibria are also System
Optimal.

Definition 14. A set of strictly decreasing functions p1ðÞ;y; pmðÞ are separating price functions if
pmð0Þ4pmðNÞ4pm�1ð0Þ4pm�1ðNÞ4pm�2ð0Þ4pm�2ðNÞ4?4p1ð0Þ4p1ðNÞ: The class of
games with such pricing functions is denoted by DPQ: See Fig. 6.

A corollary of the following result is that all games in DPQ always have a Nash equilibrium.

Theorem 15. For any game GADPQ any maximal sequence of selfish moves starting at an arbitrary

initial feasible configuration will terminate at a Nash equilibrium.

Proof. We will give two proofs of this theorem, one by constructing stability function of item (i)
of Theorem 5, second by proving nonexistence of cycle of item (ii) of Theorem 5.

Construction of stability function: Let f ðLÞ ¼
P

i ðm � JLðiÞÞ22
i

where the summation is taken

over all satisfied players (i.e. those not in DC and whose volume thresholds are not exceeded). Due
to the structure of pricing functions, all selfish moves are either by currently satisfied players A to
a lower indexed class j1; or by currently unsatisfied players B to a different class j2: In the former
case, a gain in f ðÞ caused by decrease in JLðAÞ is greater than the loss in f ðÞ caused by all players
in j1 who become unsatisfied (their indexes are less than that of A). Therefore the function f ðÞ
increases. Similarly, in the later case, a gain in f ðÞ caused by adding a summation term for B is
greater than the loss in f ðÞ caused by all players in j1 who become unsatisfied. Thus the function
f ðÞ increases after every selfish step.
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Nonexistence of a cycle: Suppose that there is a cycle of selfish moves C: Let i be the highest
threshold player that participates in this cycle. Let j be the smallest numbered class that i moves
into during C: Then since price at Class j is less than price at any other class (regardless of total
volume values) Player i will never leave class j; thus cycle C cannot exist, contradiction. &

The next result states that in general, Nash equilibria of games in classDPQ can be arbitrarily far
from corresponding System Optimum.

Observation 5. For any l; there is a game GADPQ with a Nash equilibrium L whose communal

welfare is OðOPT
l Þ; where OPT is communal welfare of G’s System Optimum, and l is one of G’s

player volumes.

Proof. Similar to the proof of Observation 1. &

Under conditions C; however, Nash equilibria have the largest possible value of communal
welfare.

Theorem 16. For any game in DPQE or DPQS every Nash equilibrium is a System Optimum.

Proof. Similar to the proof of Theorem 11. &

6. Dynamics

Here we briefly examine speed of convergence to the Nash configurations for various game
classes. First we introduce simple rules that impose a priority order in which users move.
A dynamic game rule that orders user moves at any configuration proportionally to user’s

thresholds (i.e. if b1pb2p?pbn then user n has a right to move before everybody else does, then
n � 1; n � 2 etc.) is called increasing-threshold-order rule.

Theorem 17. For any game in Q; DPQ (resp in DPQS; PQS; QS) and for any initial configuration

L; every maximal increasing-threshold-order sequence of selfish moves will terminate at a Nash
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equilibrium after Oðn2Þ steps (resp after OðnÞ steps), where n is the number of players. (Note this

results holds for games in PQS provided these games actually have Nash equilibria.)

Proof. Case of games in class Q: Note that once Player n has moved, it will not move again.

Suppose by induction that there were Oððn � 1Þ2Þ moves before and after Player n has moved,

hence total time is Oðn2Þ:
Cases of games in classes QS;PQS and DPQS: Note that Player n can always move first (to

Class 1 in case ofDPQS and QS; to class where Player n � 1 resides in case ofPQS). Player n will
not move after that (unless in case of PQS volume threshold of Player n � 1 was exceeded, so
Player n � 1 would move to another class and Player n will follow him, creating a cycle. But we are
only considering cases where Nash equilibrium exists). Therefore, every player will move at most a
constant number of times, hence the total time is OðnÞ:
Case of games in class DPQ: Note that Player n can move at most n times. After Player n has

stopped moving, Player n � 1 can move at most n times etc. Therefore the total time is Oðn2Þ: &

7. Directions, conjectures, initial results

7.1. Advantages of pricing

We now argue that games with pricing in general have greater communal welfare at Nash
equilibria than similar games without pricing. Unfortunately, counterexamples such as
Observations 2 and 4 indicate the existence of unstable games and games with arbitrarily
suboptimal communal welfare at Nash equilibria for some game classes. Even Theorem 16 for
(approximate) optimal communal welfare at Nash equilibria of certain game classes relies on the
conditions C; and counterexamples such as Observation 5 indicate that these conditions are
necessary. In addition, we have the following Observation 6 that apparently questions the efficacy
of using of pricing to increase communal welfare at Nash equilibria.
In this section, we first describe Observation 6 and then conjecture that when averaged

over all games in certain classes, pricing tends to improve communal welfare at Nash equilibria.
In order to compare games with and without pricing, we need to introduce appropriate
definitions.
Let G1 be a game in class Q of games without pricing. Let L1 be a Nash equilibrium of G1: Let

G2 be a game in PQ that has the same game parameters as G1 plus a pricing function pðÞ: Let L2
be a configuration in G2 that corresponds to L1 in G1 (i.e. configurations L1 and L2 have identical
assignment of users to classes). Note that L2 may or may not be a Nash equilibrium in G2: ANash
equilibrium L3 in game G2 is said to be induced by Nash equilibrium L1 and pricing function pðÞ if
there is a game play in G2 that leads from L2 to L3: Similarly game G2 is said to be induced by G1

and pðÞ:

Observation 6. For any strictly decreasing price function pðÞ; there is a Nash equilibrium L1 of game
G1AQ such that a Nash equilibrium L3 (of a game G2APQ) induced by L1 and pðÞ has strictly
smaller communal welfare than L1:
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Proof. Consider a configuration that has two classes plus DC, and users A1ð4; 9Þ;A2ð4; 9Þ;
Bð1; 13Þ;Cð10; 11Þ;Dð6; 14Þ: A NE L1 without pricing has Users A1;A2; and B in Class 1, User C

in Class 2, User D in DC, and communal welfare equal to 19. A NE induced by L1 and any strictly
decreasing price function pðÞ has User D in Class 1, Users B and C in Class 2, Users A1 and A2 in
DC, and communal welfare = 17. See Fig. 7. &

One way to offset Observation 6 is by establishing an approximate upper bound on the possible
deterioration of communal welfare caused by the introduction of pricing. We have the following
weak conjecture and believe that significantly stronger statements should be provable.

Conjecture 18. Let L1 be a Nash equilibrium of a game without pricing. Let pðÞ be any strictly

decreasing cost function. Let L3 be a Nash equilibrium induced by L2 and pðÞ (assuming that L3
exists, which is not always guaranteed in PQ). Let l ¼ maxi li: Then communal welfare of L1 minus

communal welfare of L3p
P

j xj where xj ¼ qj � Iqj

lml; and qj denotes the total volume in Class j in

configuration L1:

Another way of offsetting Observation 6 is to use probabilistic analysis to compare communal
welfare of all Nash equilibria of the original game to communal welfare of all Nash equilibria of
the induced game. Furthermore such analysis should be applied to entire classes of games (for
example Q vs PQ) instead of specific individual games.
Here we will introduce some straightforward probability notions dealing with Markov chains,

that could allow us to compare Nash equilibria in entire classes of original and induced games.
The transition probability of a game configuration graph O ¼ ðV ;EÞ is an assignment of weights

W : E-R that has the following properties. Weight of an edge wðL1;L2Þ is equal to the
probability of a move from configuration L1 to L2: Thus weights of all the edges leaving any node
should add up to one. Nodes corresponding to Nash configurations have one outgoing looping
edge of weight one. The transition probability is uniform if weight of an edge wðL1;L2Þ is a
reciprocal of the number of edges leaving L1: The probability distribution P over the configuration
graph O ¼ ðV ;EÞ is a probability assignment P : V-Rþ such that

P
vAV PðvÞ ¼ 1: The uniform

probability distribution assigns 1=jV j to every vertex v: A sequence of probability distributions
P0;P1;y;Pi;y is induced by an initial probability distribution P0 and transition probability W if
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for all configurations L

PiðLÞ ¼
X

p

P0ðLpð1ÞÞwðLpð1Þ;Lpð2ÞÞywðLpði�1Þ;LpðiÞÞ;

where p is a game play to L of length i in O; i.e. LpðjÞ represents the jth vertex in this path and

LpðiÞ ¼ L: Wlog, we assume that initial probability distribution and transition probabilities are
uniform. The limit of induced probability distributions limi-N PiðLÞ is called the stationary
distribution and is denoted PNðLÞ: If this limit does not exist then PNðLÞ ¼ 0: The stationary

communal welfare EGðWÞ of a game G is defined as
P

LAGPNðLÞWðLÞ where WðLÞ is the
communal welfare of a configuration L: The expected value of communal welfare EAðWÞ for a
class of games A is a

EAðWÞ ¼
X

GAA

ProbðGÞ � EGðWÞ;

where Prob(G) is the probability attached to a particular game G inA (we generally assume that
G is picked uniformly from the space of game parameters m; n; bi; li).
The definitions above would allow us to compare various classes of network games.

Conjecture 19. EðDPQÞ4EðSPQÞ4EðHPQÞ4EðQÞ:

Move-correlated welfare functions
A different way of comparing various classes of games to class Q is by using move-correlated

welfare functions defined on game configurations. Intuitively a function gðÞ is an increasing (resp.
decreasing) move-correlated welfare function (for games G in class A) if gðÞ increases (resp.
decreases) on average after a selfish move in G and gðÞ is positively correlated with communal
welfare. The existence of such a function for a class of games would indicate that the Nash
equilibria of such games tend to have high communal welfare values.
One possible candidate for such a decreasing move-correlated welfare function for games in

class PQ is the volume function defined as

vðLÞ ¼
X

j

X

i:JLðiÞ¼j

ðbi � qjÞ:

Intuitively this function assigns small values to those configurations where most of the players in
any given class j have thresholds close to the total volume in j: Hence at Nash equilibria the
volume function is (inversely) correlated with communal welfare.
The volume function decreases after every selfish move for games inHPQE; since users always

move from classes with smaller total volumes to the larger ones. Unfortunately for games in PQ;
this is no longer the case, since users might move to the smaller class if their volume threshold was
exceeded in a larger class (which was explicitly disallowed in HPQE). However, we conjecture
that it is possible to amortize such moves from larger to smaller classes by the moves that caused
those thresholds to be exceeded in the first place. Since there are selfish moves that do not exceed
any player’s volume threshold and since the function vðÞ would decrease for such moves, the
overall expected change in vðÞ would be negative, motivating the following claim.
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Conjecture 20. The volume function is a decreasing move-correlated welfare function for games in

class PQ:

Remark 21. The technique described above can be extended for studying interesting functions
other than communal welfare on Nash equilibria. For example we conjecture that for games in
PQ; the volume function is highly correlated with the function that measures the number of
occupied classes, i.e. the number of classes used by at least one user.

7.2. Provider participation and price thresholds

So far, we considered network users as the only players. These users move according to their
individual preferences and fixed price functions set by a benevolent network manager. Now we
would like to extend this model, so it would include network providers as players as well. The role
of network provider is to determine the price functions that will be used by network users. During
the network game a move by a provider replaces current price function by a new price function.
There are two types of providers: selfish providers that try to choose price functions that maximize
the total amount paid by all network users and benevolent providers that try to choose price
functions that will result in a Nash equilibria that have high value of communal welfare.
In this section, we only study benevolent providers since simple counterexamples [11] show that

games with selfish providers generally are either highly unstable or have highly suboptimal Nash
equilibria. However if the provider is benevolent then we show that in fact convergence to Nash
with optimal communal welfare can be ensured for our classes of games.
Now we introduce appropriate definitions. A move by a provider replaces the current price

function by a new price function (wlog in this section we only consider the case when there is only
one price function in effect for all classes). The class of games with benevolent provider is denoted
by PRBE:

Theorem 22. Any game in PRBEE or PRBES (i.e. when provider is benevolent and users have
equal or superincreasing volumes) terminates at a Nash equilibrium which is also System Optimum.

Proof. Consider the following sequence of moves: (wlog we assume that moves are done under
increasing order threshold rule defined in Section 6) first the provider introduces a strictly
decreasing price function. Than all users move until there is a Class X that contains users n;y; k

such that
Pn

i¼k lipbk;
Pn

i¼k�1 li4bk�1: In other words, all users in class X are satisfied and of the

remaining users, the ones with the highest volume threshold cannot move into X : At this point,
provider adjusts the price function so as to prevent users n;y; k from ever leaving X again. This

is done by making pðÞ constant (¼ pð
Pn

i¼kliÞ) on ½
Pn

i¼k li;N�: The process is repeated for the
remaining users 1;y; k � 1; until Nash equilibria is reached. Proof that this Nash equilibrium is
System Optimum is similar to the proof of Theorem 11.

Remark 23. In practice there might be a limit on how much a user is willing to pay, and this
concept can be easily added to our games, resulting in the new classes of games. We also
conjecture that this concept has effect on the dynamics of the game, as is mentioned below.
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Formally, for players i we define price thresholds (in addition to the old volume thresholds) ti that
have the following property. If the price in a class exceeds player i’s price threshold, then player i
is not satisfied. We assume that bipbj iff tiXtj; i.e. users who demand better quality of service
(smaller traffic volume in their class) are willing to pay more.
We conjecture that in addition to being realistic such price thresholds also tend to improve the

speed of convergence to Nash equilibria. This is due to the game plays in games with price
thresholds spending less time looping in non-terminal cycles. We have performed a set of
computer experiments that support this conjecture, see [11].

7.3. New ways of proving existence of Nash equilibria

Our stability function technique of Theorems 7, 13 etc. is only useful in establishing existence of
Nash equilibria in the situations where no cycle is present in the game configuration graph. As was
shown in Section 5.2, there are game classes that are generally not cycle-free. Hence, we would like
to extend the stability function technique to be able to show Nash existence in games that may
have Nash equilibria coexisting with cycles. One way to do this is by using the concept of local
stability local stability functions.
Intuitively a function gðÞ is a local stability function for a subgraph A of a game configuration

graph O; if it increases after a selfish move within A; i.e. gðL1ÞogðL2Þ whenever L1;L2AA and
there is an oriented edge in A from L1 to L2: The existence of a local stability function for a
subgraph A (and a graph O) would imply existence of a Nash equilibrium in this subgraph A;
provided that A is closed under selfish moves, i.e. any edge from any vertex in A points to another
vertex in A (and not in O\A).
One example of such a local stability function for games in class PQ is the satisfied volume

function defined as

svðLÞ ¼
X

j

ðqs
j Þ
2 þ q0;

where qs
j is the total volume of all satisfied players in Class j; i.e.

qs
j ¼

X

ijJLðiÞ¼j&SatLðiÞa0
li:

Recall that q0 denotes total volume in DC: Consider a subgraph A that consists of a Nash
equilibrium L1 and all configurations L2;y;Lp that have only one outgoing edge each, and this

edge points toward L1: It is easy to see, that on such a subgraph A; the satisfied volume function
increases after every selfish move in A (due to the reasons similar to the ones used in the proof of
Theorem 13).
Note that the subgraph A above is small and more significantly defined in terms of Nash

equilibrium L1; and hence A is useless for proving the general existence of Nash equilibria. This
presents a problem when analyzing a class of games using local stability functions, since natural
local stability functions may correspond to unnatural subgraphs and vice versa.
A different approach to proving existence of Nash equilibria would be to relax the condition

that forces stability functions to increase after every selfish move. If say the average value of a
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function were shown to be increasing for any sequence of c consecutive selfish moves, for some
fixed c; then this would guarantee the existence of Nash equilibria. By constructing such functions,
it would be possible to identify and completely classify subclasses of PQ that have both cycles of
selfish moves and Nash equilibria.

References

[1] R. Cocchi, D. Estrin, S. Shenker, Pricing in computer networks: motivation, IEEE/ACM Trans. Network. 1 (6)

(1993) 614–627.

[2] J. Feigenbaum, A. Krishnamurthy, R. Sami, S. Shenker, Approximation and collusion in multicast cost sharing.

in: Proceedings of the Third Conference on Electronic Commerce, ACM Press, New York, 2001, pp. 253–255.

[3] J.M. Kleinberg, Y. Rabani, E. Tardos, Fairness in routing and load balancing, in: IEEE Symposium on

Foundations of Computer Science, 1999, pp. 568–578.

[4] Y. Korilis, A. Lazar, Why is flow control hard: optimality etc, CTR Technical Report CU/CTR/TR 332-93-11,

1992.

[5] Y.A. Korilis, A.A. Lazar, On the existence of equilibria in noncooperative optimal flow control, J. ACM 42 (3)

(1995) 584–613.

[6] Y.A. Korilis, A.A. Lazar, A. Orda, Architecting noncooperative networks, IEEE J. Selected Areas Comm. 13 (7)

(1995) 1241–1251.

[7] E. Koutsoupias, C.H. Papadimitriou, Worst-case equilibria, in: Symposium on Theoretical Aspects of Computer

Science, 1999, pp. 404–413.

[8] A. Kumar, J.M. Kleinberg, Fairness measures for resource allocation, in: IEEE Symposium on Foundations of

Computer Science, 2000, pp. 75–85.

[9] L. Libman, A. Orda, Atomic resource sharing in noncooperative networks, in: INFOCOM, 1997, pp. 1006–1013.

[10] L. Libman, A. Orda, Optimal transport strategies for best-effort traffic over priced connections, Technical Report,

Technion, 2000.

[11] A. Lomonosov, M. Sitharam, K. Park, The effect of pricing on the structure of a noncooperative networking

architecture, Technical Report, University of Florida, http://www.cise.ufl.edu/~sitharam/pub.html, 2002.

[12] S.H. Low, P. Varaiya, An algorithm for optimal service provisioning using resource pricing, in: Proceedings of

INFOCOM, 1994, pp. 368–373.

[13] G. Malewicz, A. Shvartsman, An auction-based flexible pricing scheme for renegotiated qos connections and its

evaluation, in: Seventh International Symposium on Modeling, Analysis and Simulation of Computer and

Telecommunication Systems (MASCOTS), 1999, pp. 244–251.

[14] P. Marbach, The role of pricing in differentiated services networks, Technical Report, CSRG-421, Department of

Computer Science, University of Toronto.

[15] P. Marbach, Pricing differentiated services networks: bursty traffic, in: INFOCOM, 2001.

[16] N. Nisan, Algorithms for selfish agents, in: Symposium on Theoretical Aspects of Computer Science, 1999,

pp. 1–15.

[17] N. Nisan, A. Ronen, Algorithmic mechanism design, in: Proceedings of the 31st ACM Symposium on Theory of

Computing, 1999, pp. 129–140.

[18] A. Orda, R. Rom, N. Shimkin, Competitive routing in multiuser communication networks, IEEE/ ACM Trans.

Network. 1 (5) (1993) 510–521.

[19] C. Papadimitriou, Computational aspects of organization theory, Proceedings of the 1996 European Symposium

on Algorithms, Lecture Notes in Computer Science, Springer, Berlin, 1996.

[20] C.H. Papadimitriou, algorithms, games, and the internet, in: Proceedings of STOC, 2001.

[21] K. Park, Self-organized multi-class QoS provision for ABR traffic in ATM networks, in: Proceedings of the 15th

IEEE International Phoenix Conference on Computers and Communications, 1996, pp. 446–453.

[22] K. Park, M. Sitharam, S. Chen, Quality of service provision in noncooperative networks: heterogeneous

preferences, in: Proceedings of the First International Conference on Information and Computation Economics

ICE’98, 1998.

ARTICLE IN PRESS

A. Lomonosov et al. / Journal of Computer and System Sciences 69 (2004) 281–302 301

&ast;http://www.cise.ufl.edu/~sitharam/pub.html


[23] L. Rasmusson, Agents, self-interest and electronic markets, Knowledge Eng. Rev. 14 (2) (1999) 143–150.

[24] A. Ronen, Solving optimization problems among selfish agents, Ph.D. Thesis, Hebrew University of Jerusalem,

2000.

[25] T. Roughgarden, E. Tardos, How bad is selfish routing? in: IEEE Symposium on Foundations of Computer

Science, 2000, pp. 93–102.

[26] J. Sairamesh, D. Ferguson, Y. Yemini, Optimal allocation and quality of service provisioning in high-speed

packet networks, in: Proceedings of Conference on Computer Communications, Boston, Massachusetts, 1995,

pp. 1111–1119.

[27] S. Shenker, Making greed work in networks: a game-theoretic analysis of switch service disciplines, in: SIGCOMM

Symposium on Communications Architectures and Protocols, 1994, pp. 47–57.

[28] S. Shenker, Mechanism design and the internet, in: Presentation in DIMACS Workshop on Computational Issues

in Game Theory and Mechanism Design, 2001.

ARTICLE IN PRESS

A. Lomonosov et al. / Journal of Computer and System Sciences 69 (2004) 281–302302


	Network QoS games: stability vs optimality tradeoff
	Introduction
	Description of results
	Organization

	Definitions
	General technique for establishing stability of network games
	Stability vs optimality
	Class Q of games with no pricing
	Class PQ of games with strictly decreasing pricing function
	Class HPQ of games with nonhurting moves
	Class of games DPQ with (different) separating price functions

	Dynamics
	Directions, conjectures, initial results
	Advantages of pricing
	Provider participation and price thresholds
	New ways of proving existence of Nash equilibria

	References


