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where the additive order p(F) of the multiplicative identity of F
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if n=2 and a; + a; = 0. In this paper we prove this conjecture of
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1. Introduction

A basic objective in the active field of additive combinatorial number theory is the sumset of finite
subsets A1, ..., Ay of a field F given by

A+ +An={xX1+--+X: X1 €A1, ..., Xp € Ap).
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(See, e.g., [16] and [24].) The well-known Cauchy-Davenport theorem asserts that
|A1 4 -+ Apl > min{p(F), |A1| + -+ |Agl —n+ 1},

where p(F) is the additive order of the multiplicative identity of F (which is the characteristic of F if
F is of a prime characteristic, and the positive infinity if F is of characteristic zero). When n =2 and
F =7/pZ with p a prime, this gives the original form of the Cauchy-Davenport theorem.

In 1964 P. Erdés and H. Heilbronn [10] conjectured that if p is a prime and A is a subset of Z/pZ
then

|{x+y: x,y € Aand x # y}| > min{p, 2|A| —3}.
This challenging conjecture was finally solved by J.A. Dias da Silva and Y.0. Hamidoune [8] in 1994
who employed exterior algebras to show that for any subset A of a field F we have

[{(x1 + - +xa: xi € A, X #x;if i # j}| > min{p(F), n|A| —n® +1}.

Recently P. Balister and J.P. Wheeler [5] extended the Erdés-Heilbronn conjecture to any finite group.
In 1995-1996 N. Alon, M.B. Nathanson and 1.Z. Ruzsa [2,3] used the so-called polynomial method
rooted in [4] to prove that if Aq,..., Ap are finite subsets of a field F with 0 < |A1| <--- <|Ay| then

n
[{X1+ - +x0: x; € Ay, x; #xjifi # j} >min{p(F), Z(|A,~| —i)~|—l}.
i=1

The polynomial method was further refined by Alon [1] in 1999, who presented the following useful
principle.

Combinatorial Nullstellensatz. (See Alon [1].) Let A1, ..., A, be finite subsets of a field F with |A;| > k;

foralli=1,...,n wherekq,...,kn e N=1{0,1,2,...}. Suppose that P(x1,...,X,) is a polynomial over F
with [x’1<1 --~x5§”]P(x1, ..., Xn) (the coefficient of the monomial x’{l -~-x’,§” in the polynomial P(x1,...,Xn))
nonzero and ky + - - - + k, = deg P. Then there are X1 € A1, ..., Xp € Ap such that P(x1,...,%;) #0.

The Combinatorial Nullstellensatz has been applied to investigate some sumsets with polynomial
restrictions by various authors, see [7,13,15,17,20,23,14,22].
Throughout this paper, for a predicate P we let

1 if P holds
Pl = { ds,
gl 0 otherwise.
For a,b € Z we define [a,b] ={m € Z: a <m < b}. For a field F we let F* be the multiplicative group
of all nonzero elements of F. As usual the symmetric group on {1, ...,n} is denoted by S;. For o € S,

we use sgn(o) to stand for the sign of the permutation o. We also set (x)o =1 and (x), = 1‘['};(1) x—J)
forn=1,2,3,....

Recently Z.W. Sun made the following conjecture (cf. [21]) which can be viewed as the linear
extension of the Erdés-Heilbronn conjecture.

Conjecture 1.1 (Sun). Let A be a finite subset of a field F and let aq, ..., a, € F* = F \ {0}. Provided p(F) #
n+ 1 we have

{a1x1 4 -+ anxn: X1,....xq € A, and x; #x; if i # j}|
>min{p(F) —[n=2&a; =—az]l. n(|Al—n)+1}. (1.1)

Example 1.1. Let p be an odd prime and let k be a positive integer relatively prime to p — 1. As
k=0 (mod p — 1), we have erFp x¥ =0 where Fp =Z/pZ. For any distinct x, y € F, we cannot

have x¥ = y¥ since ku + (p — 1)v =1 for some u, v € Z. Thus

‘{x’{+---+x’l‘,_2+2x’;_1: X1,...,Xp_1 € Fp are distinct}| = ]F;“ =p—1.
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In the case k=1 and p € {5, 7}, this was noted by Mr. Wen-Long Zhang (at Nanjing University) in
Feb. 2011 via computation under the guidance of the first author.

All known proofs of the Erdés-Heilbronn conjecture (including the recent one given by S. Guo and
Sun [12] based on Tao’s harmonic analysis method) cannot be modified easily to confirm the above
conjecture. New ideas are needed!

Concerning Conjecture 1.1 we are able to establish the following result.

Theorem 1.1. Let A be a finite subset of a field F and let ay,...,a, € F*. Then (1.1) holds if p(F) >
n(3n—5)/2.

We obtain Theorem 1.1 by combining our next two theorems.

Theorem 1.2. Let n be a positive integer, and let F be a field with p(F) > (n — 1)2. Let a1, ..., a, € F*, and
suppose that A; C F and |A;| >2n —2 fori=1,...,n. Then, for the set

C={aix1 + - +anXn: X1 € A1,..., Xy € Ap, and x; # xj if i # j} (1.2)
we have
IC| > min{p(F) — [n=2&ay +az =0, |A1]|+---+ |An| —n® +1}. (13)

Theorem 1.2 has the following consequence.

Corollary 1.1. Let p > 7 be a prime and let A C F, = 7Z/pZ with |A| > /4p —7. Let n = ||A|/2]

and ai,...,ap € F;. Then every element of F, can be written in the linear form aix1 + - -- 4 anx, with
X1, ...,Xn € A distinct.
Remark 1.1. In the case a1 =--- =a, =1, Corollary 1.1 is a refinement of a conjecture of Erdds proved

by da Silva and Hamidoune [8] via exterior algebras.

By Theorem 1.1, Conjecture 1.1 is valid for n = 2. Now we explain why Conjecture 1.1 holds in the
case n = 3. Let A be a finite subset of a field F and let aj,ay, a3 € F*. Clearly (1.1) holds if |A| <n.
Below we assume |A| > n = 3. By Theorem 1.1, (1.1) with n =3 holds if p(F) >33 x3 —-5)/2=6.
When p(F) =5, we have (1.1) by Theorem 1.2. If p(F) =2 and c1, 2, c3, c4 are four distinct elements
of A, then

[{a1x1 + a2xz 4+ asx3: X1, X2, x3 € A and X1, X2, x3 are distinct} |

> |{a1c1 + azc + azcs, ajcy + azcz + ascq)
=2=min{p(F), 3(|A| —3) +1}.

In the case p(F) =3, for some 1< s <t <3 we have as + a; # 0, hence for any c € A we have

[{a1x1 + a2xz 4+ asx3: X1, X2, x3 € A and X1, X2, x3 are distinct} |
> |{asxs +agxe: X5, X € A\ {c} and x; # X}
> min{p(F), 2(|]A\{c}| —2) +1} (by Theorem 1.1 withn =2)
=3=min{p(F), 3(|A| - 3) +1}.

In this paper we also apply the Combinatorial Nullstellensatz twice to deduce the following result
on sumsets with general polynomial restrictions.
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Theorem 1.3. Let P(xq, ..., X;) be a polynomial over a field F. Suppose that k1, ..., k, are nonnegative inte-
gers withkq + --- + k, = deg P and [x’]<1 .- ~x’,§"]P(x1, ..., Xy) #0. Let A1, ..., A, be finite subsets of F with
|Aj| > ki fori=1,...,n. Then, for the restricted sumset

C={x14+ - +x: X1 €A1,....Xs € A, and P(x1, ..., Xy) # 0}, (1.4)
we have

IC| > min{p(F) —degP, |A1|+---+ |As| —n —2degP +1}. (1.5)
Remark 1.2. Theorem 1.3 in the case P(xq,...,xp) =1 gives the Cauchy-Davenport theorem. When F

is of characteristic zero (i.e., p(F) = 4+00), Theorem 1.3 extends a result of Sun [19, Theorem 1.1] on
sums of subsets of Z with various linear restrictions.

The following example shows that the lower bound in Theorem 1.3 is essentially best possible.

Example 1.2. Let p be a prime and let Fj be the finite field Z/pZ.
(i) Let

P(X1,...,Xn):1_[(xl +o K —5)
sesS
where S is a nonempty subset of Fp. Then

{x14 - +xn: x1,..., %€ Fpand P(xq,..., x,) #0}|
=|Fp\ S| =I|Fp| —|S|=p —degP.

(ii) Let A={r=r+pZ: re[0,m—1]} € F, with n <m < p, where n is a positive integer. If
p >n(m—n) + 1, then

|{X1+ -+ X x1,.... X € A, and x; # x; if i # j}|
=|{fref0+---+m—-1), m-n)+---+m-1]}|

=n(m—n)+1=n|A| —n—2deg 1_[ (xj—xi) +1.
1<i<j<n

Here are some consequences of Theorem 1.3.

Corollary 1.2. Let A be a finite subset of a field F, and let aq, ..., a, € F*.
(i) For any f(x) € F[x] with deg f =m > 0, we have

Ha1x1 4+ 4 anxa: x1, ..., %0 € A, and f(x;) # f(x)) ifi # j}|
>min{p(F) —m(S), n(|Al—1—m@—1) +1}. (16)
(ii) Let Sij € F with |S;j| <2m —1 forall 1 <i < j <n. Then

[{a1x1 + -+ 4 anxn: X1,....%, € A, and x; — x; & Sj if i < j}|

> min{p(F) —(2m- 1)<g>, n(JAl—1—m-1@n—1)+1 } (1.7)

Remark 1.3. In the case m =1, each of the two parts in Corollary 1.2 yields the inequality

{a1x1 4+ 4 anXn: X1,.... %, € A, and x; # x; if i # j}|

>min[p(F)— (Z) n(|A|—n)+l}. (1.8)
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Let mq,...,my, € N. When we expand ngi,jgn, #j(l —Xi/xj)™ as a Laurent polynomial (with
negative exponents allowed), the constant term was conjectured to be the multinomial coefficient
o ymp!/[Tie;mi! by EJ. Dyson [9] in 1962. A simple proof of Dyson's conjecture given by L.
Good [11] employs the Lagrange interpolation formula. Using Dyson’s conjecture we can deduce the
following result from Theorem 1.3.

Corollary 1.3. Let A1, ..., Ay (n > 1) be finite nonempty subsets of a field F, and let S;; (1 <i# j<n) be
subsets of F with |S;j| < (|Aj] = 1)/(n — 1). Then, forany ay, ..., an € F*, we have

{a1x1 4 - 4 anxn: X1 € A1, ..., Xp € An, and x; — X & Sij if i # j}|

n

> min{p(F) —=1 "mi. Y (|Al-1)=20-1)) m +1}, (1.9)

i=1 i=1 i=1
where mj = maXje,n\(i) [Sijl fori=1,...,n.

In the next section we will prove Theorem 1.2 with the help of several lemmas. Section 3 is
devoted to the proof of Theorem 1.3. Theorem 1.1 and Corollaries 1.1-1.3 will be shown in Section 4.
Finally, in Section 5 we deduce a further extension of Theorem 1.3.

2. Proof of Theorem 1.2
Lemma 2.1. Let ay, ..., a, be nonzero elements in a field F with p(F) # 2. Then, for some o € S, we have

In
Uy 2i—1) + Aoiy 0 forall0 <i< \jJ —8(ar,...,an),

where §(ay, ..., an) € {0, 1} takes the value 1 if and only if there exists a € F* such that {a;, ..., a,} = {a, —a}
and

(1<i<n:gi=a}|=|{1<i<n: g;=—a}| =1 (mod 2). (2.1)

Proof. We use induction on n.

The case n € {1, 2} is trivial.

Now let n > 2 and assume the desired result for smaller values of n.

In the case §(ay,...,a,) =1, there is an element a € F* such that {ay,...,a,} = {a, —a} and (2.1)
holds; thus the desired result follows immediately since a +a # 0 and —a + (—a) #0.

Below we let §(aq,...,a;) =0. If a; +ay =ay +asz =ay +asz =0, then a; =ay; = a3 =0 which
contradicts the condition ay, ..., a; € F*. So for some 1 <s <t <n we have as + a; # 0. Without loss
of generality we simply suppose that a,_1 + a, # 0. By the induction hypothesis, for some o € S;_»
we have

. n—2
Uoi-1) + o) 70 forall0<i< — |- s(ay,...,an-2).
If 8(ay,...,an—3) =0, then it suffices to set 0 (2[n/2] —1)=n—1 and o (2|n/2]) =n.
Now let §(aq, ...,ap—2) = 1. Then for some a € F* we have both {ay,...,a,-2} ={a, —a} and
(1<i<n—2:g=a}|=[{1<i<n-2:q;=-a}|=1(mod?2).

Case 1. {a, —a} N{ap—1, an} = 0.
In this case, a +ay—1 # 0 and —a 4 a, # 0. Thus there exists o € S, such that a50i—1) =ds(2i) €
{a,—a} for all 0 <i < |(n—2)/2], and also

ds (2| (n-2)/2]-1) =4, o (2 (n—2)/2]) = n—1
and

Ao (2|n/2]-1) = —4a, (s (2|n/2]) = n-
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Case 2. {a, —a} N{ap—1, an} # 9.

Without loss of generality we assume that a,_1 =a. As §(ay,...,a,) =0 we cannot have a,_1 =
an € {a, —a}. Thus a; #a. Now a+ap—1 =2a#0 and —a + a, # 0. As in Case 1 there exists o € Sy,
such that ay2i—1) =ag2i) € {a, —a} for all 0 <i < [n/2].

So far we have proved the desired result by induction. O

Lemma 2.2. Let k1, ..., k; e Nanday, ...,a, € F*, where F is a field with p(F) # 2. Set

n
H—1
fa,.x) =Y sgn() [ [kj— Xj)a(j)—la(;(]) (2.2)
oE€eS, j=1
and let §(ay, ..., ay) be as in Lemma 2.1. Provided the following (i) or (ii), there are my,...,m, € N not

exceeding max{2n — 3, 0} such thatmy + - -- +my = (3) and f(my, ..., my) #0.

(i) 8(a1,...,an) =0.
(ii) 8(a1,...,an) =1, and for some 1 <s <t <n we have as + a; = 0 and ks + k; # 1 (mod p(F)). (A con-
gruence modulo oo refers to the correspondmg equality.)

Proof. We use induction on n.

When n =1, obviously we can take m; =---=m; =0 to meet the requirement.

In the case n =2, we have f(x1,x2) =ax(ka —x2) —ai(kq —xq). Clearly f(1,0) — f(0,1) =a; +ax.
If f(1,0) = f(0, 1), then ay+a, =0, §(a1,a2) =1 and f(0,1) =ax(ky —1)—ai1k; =ax(k1 +k,—1) #0
by condition (ii). Anyway, we have f(mi,my) # 0 for some my € {0,1} and my =1 —m;.

Below we let n > 3 and assume the desired result for smaller values of n. In case (ii), clearly

8(as,...,ap) =0, and we may simply assume that s =1 and t =2 without loss of generality. By
Lemma 2.1, there is a rearrangement aj, ...,a; of ai,...,a, such thata,_,. , +a; , 0 for all 0 <
i<|[n/2] —é&(a1,...,ay), and a] =a; and @), =ay in case (ii). Suppose that a; =a;) fori=1,...,n,

where 7 € Sy, and t(1) =1 and 7(2) =2 in case (ii). Set k; =k¢i fori=1,...,n. Then

FQa, ..., %) = Z sgn(c)l_[(k,(,) — Xz (i)ot(i)— 1( )Ur(l) !

0€Sy i=1

= sgn(7) Z sgn(ﬂ)l_[ —Xz(i)) n(i)—  (a)

TESy

m(i)—1

Hence f(mq,...,my)#0 for some mq,...,my € [0, 2n — 3] if and only if

Z sgn(n)l_[ 77(1) 1( )”(l) 17&0

TeSy

for some m, ..., my € [0,2n — 3]. Without loss of generality, below we simply assume that a; = g;
and kj =k; foralli=1,...,n

By the induction hypothesis, there are my,...,myp_» € [0, 2n — 3] such that Z'};f mj= (”;2) and

n—2
Y= Z sgn(o) 1_[(,(]‘ — mj)g(j),1a?(’)_l £0.
o€eSH—2 j=1
Define
n
g(X)=f(m1,...,mn_z,x, (2> —X—my —"'—mn—2>
n—2

H—1 —1)—1
= Z sgn(o) H(kj - mj)a(j)fla(jj(]) x (kn—1 —X)a(n—l)—mﬂn] )
o€eSy j=1
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n—2
n _
x(kn—<2>+x+ E mj> ag™-1,
=1

o(n)—1

Foro e S,, ifoc(1)—1+(6(2)—1)=2n—-3 then {6 (1),0(2)} = {n —1,n}. Thus

n—2
— i -1
[ 3]gx) = > sen(0) [ kj —mj)ojy-1a]"
oeS, j=1

{o(n—1),0 (m}={n—1.n}

« (_an_oo(n—l)—]ag(n)fl
n—2
H—1
= Z sgn(a) l—l(kj — mj)g(j)_m?(])
o€SH_o j=1

x ((—ap—1)"2al" = (—ap_1)""'al?)
= (=1)"(@n—1an)""?(@n—1 +an) T #0.

Since deg g(x) =2n — 3, there is an integer m,_1 € [0, 2n — 3] such that g(m,_1) # 0. Set
n nl n n—2
e ()- B () () rermcsoms

f@my,...,my) =g(mu_1) #0.

This concludes the induction step and we are done. 0O

Then

Lemma 2.3. Let F be a field with p(F) # 2, and let a1, ...,a, (n > 4) be nonzero elements of F with
8(aq, ...,an) = 1. Suppose that p(F) > 22:1 kj— n%4+n+1whereky, ..., ky are integers not smaller than
2n — 3. Thenthereare 1 <s <t < nsuch thatas+as = 0and ks +k: % 1 (mod p(F)), unless n = 4 and there
is a permutation o € S4 such that ag 1y = Ao 2) = o 3), ko (1) = ko) =ko3) =5 and ks 4y = p(F) — 4.

Proof. For any 1 <s <t <n we have

p(F)—(ks+ke—1)> D kj—n*+n+2
1<j<n
i#s.t
>M—-2)2n—3)—n>+n+2=mn—-2)(n—4)

and hence

ks + ke =1 (mod p(F))
< ki+ki—1=p(F), ki=2n-3forie[1,n]\{s,t}, andn=4.

Since §(aj,...,ap) =1, for some 1 <s<t<n we have a; +a; = 0; also ks + k; %1 (mod p(F)) if
n > 4. This proves the desired result for n > 4.

Now assume n =4. By §(ay, az, a3, aq) =1, there is a permutation o € S4 such that a51) =ds(2) =
(g (3) = —0g(4). Clearly a5 () +ag4) =0 for any i =1, 2, 3. Suppose that ks (i) + ko) =1 (mod p(F))
for all i =1,2,3. By the above, ks (i) + ko) — 1= p(F) for i =1,2,3, and ks1) =ks2) =ko3) =
2n — 3 = 5. It follows that ks 4y = p(F) — 4.

The proof of Lemma 2.3 is now complete. O
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Lemma 24. Let F be a field of prime characteristic with p(F) =p > 7 and let ay = a, = a3 =a € F* and
aq = —a. Letky =ky = k3 =5 and kg = p — 4. Then there are my, my, m3, my4 € [0, 3] such that m; + my +
ms+my = (‘21) =6and

4
Z sgn(o) l_[(kj —mj)a(j)_m?(”_] £0.

0€Sy j=1

Proof. Set my =0, my =2, m3 =3 and m4 = 1. Then

4
Y sen(e) [ tkj —mj)o(jy-aa] 7!

o€Sy j=1
3
=Y sgn() [ [6=mpo(j1 X (—4 = Ma)g@ay-1(—1)7 D710 1H+243

0€Sy j=1
= —480a° £ 0

since p does not divide 480. We are done. 0O

Proof of Theorem 1.2. Set A} =a;A; = {a;x;: x; € A;} and a} = ai’1 fori=1,...,n. Then

C={yi+ - +yny1€Al,....yne A, and ajy; #d;y; if i # j}.
In the case n =1, clearly
ICl=|A}| = |A1] > min{p(F), |A1] — 1% +1}.
When n =2, we have
ICl=|{y1+y2: y1 € Al y2 € Ay and y1 — (;) ' ahy2 #0}]
> min{p(F) — [[d} =a,]], |A}| + |A5| =3} (by[17, Corollary 3])
=min{p(F) — [a1 = azl, |A1] + |A2| — 22 + 1}.

Below we let n > 2. Clearly p(F) > (n — 1) > 2. Define
n
N=>Y |Aj|—n’ (2.3)
j=1

We want to show that |C| > min{p(F), N+ 1}.
Let's first assume that p(F) > N. Note that p(F) > (4—1)2 > 7 if n > 4. In view of Lemmas 2.1-2.4,

there are my,...,my €[0,2n — 3] such that my +---+m, = (S) and
n .
s=Y sen() [1(145] = 1-mj),;_, (@)”" " #0. (24)
o0€Sy j=1
Clearly it suffices to deduce a contradiction under the assumption that |C| < N. Let P(x1,...,X;) be

the polynomial

H (a/jxj —apx;) x

1<i<j<gn j

x4 +x—0) x (a a1

n
=1 xeC
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Then degP =Y}, (IA] = 1), since

|A71-1 \A\ 1
[x " Xn JPx1, ... xn)

|:l—[ Sl i| > sgn(o*)l—[(a/jxj)a(j)f1 x (X1 4+ x)N

o€Sy j=1

0(]) 1

:]:

N!
= Ugﬂ SgI'l(O') l—[J 1(|A/ G(]))'

J=1
(7(j)<\A/j-\—mj for je[1,n]

and hence
n
TT045 =1 =my)tx [ Py, . xe) = NS 0,
j=1

Thus, by the Combinatorial Nullstellensatz there are y1 € A}, ..., yn € A} such that P(y1,...,yn) #0
which contradicts the definition of C.

Now we handle the case p(F) < N. Since n(2n —2) —n® < p(F) — 1 < Z’}zl [Aj| — n%, we can
choose Bj € Aj with |Bj| >2n—2 so that M = 2?21 |Bj] —n?=p(F)—1.As p(F) > M, by the above
we have

IC| = |{a1x1 + -+ + anXn: X1 € By, ..., Xn € By, and x; #x; if i # j}]|
>M +1=min{p(F),N}.

The proof of Theorem 1.2 is now complete. O
3. Proof of Theorem 1.3

The inequality (1.5) holds trivially if p(F) < degP or Z?:] |Aij] <n+ 2degP. Below we assume
that p(F) > degP and Y | |Aj| >n+2degP.

Write
P(X1,...,%) = Z Cipo jnx{l x,]," withcj, . j, €F, (3.1)
J1sesjin 20
J1+e+jn<deg P
and define
POt uxa)= Y Gy (), € FIX, - Xl (32)

jl ----- jn?o

It is easy to see that

[ X P (xr. o xn) = [4) X P (X1 ) # 0.

To distinguish from the integer 1, we use e to denote the multiplicative identity of the field F. For
eachi=1,...,n, clearly the set

Bi ={me: me[|A;i| —ki —1,]A;| — 1]}

has cardinality k; + 1 since k; < deg P < p(F). Thus, by the Combinatorial Nullstellensatz, there are

my € [|A1l —ki —1,[A1] = 1], ..., my € [|An] —kn — 1, |An| — 1] (3.3)
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such that

P*(mye, ..., mpe) #0.
Define

M=mq+---+my—degP.
Clearly

n

n
M > (|Ail—ki—1) —degP =) |Ai|—n—2degP >0.

i=1 im1
Observe that
[ x| P(x1, e X)) (X1 4 x)M
M!
= Z . | N 'le .... jn
(my — Jl)(mn _]n).

and thus
m m M
myl-mp![X]7 x| P, X)) (X1 4 Xn)
=M! > (me)j, -+~ (Mne) i, Cjy.....jn
J1oeein>0
Jittja=deg P
= M!P*(mye, ..., mye).

In the case |C| < M < p(F), with the help of (3.4) we have

[ X P ) e x)M T+ =0

ceC

=[P, X)) (- x)M #£0,

hence by the Combinatorial Nullstellensatz there are x; € A1, ..., x5 € A, such that

P&, x4+ x)M T Joa + -+ — 0 #0

ceC
which is impossible by the definition of C. Therefore, either

n

P(F)<M< Y (JAil —1) —degP
i=1
or

n
ICI>M+1>) |Aj|—n—2degP +1.
i=1
If p(F) > > ;(|Ail — 1) — deg P, then (3.6) fails and hence

n
ICI > Al —n—2degP +1
i=1

n
:min{p(F) —degP, Z|Ai| —n—2degP+1}.

i=1

373

(3.7)
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In the case p(F) < Yi(|Ai|—1)—degP, as Y i, ki = deg P there are A} C A1,..., A, C Ap such
that

|A/]|>k1,.‘.,

and ) (|Aj| - 1) —degP = p(F)— 1< p(F),
i=1

therefore

ICl = |{x1+ - +xa: x1 €AY, ..., Xa € Ay, and P(xq, ..., xy) # 0}

n
>min{p(F)—degP, Z|A:| —n—2degP+1]
i—1

n
=p(F)—degP=min{p(F)—degP, Z|A,~| —n—2degP+l}.
i=1
This concludes the proof. O

4. Proofs of Corollaries 1.1-1.3 and Theorem 1.1

Proof of Corollary 1.1. As A has a subset of cardinality [+/4p — 71, it suffices to consider the case
|A| =[+/4p —7].Since n—1< |A]/2—1 < /p and (n—A|/2)? < |A]?/4—p+1, applying Theorem 1.2
we get

{a1x1 + -+ anXp: X1,...,Xp € Aand x; # x; if i # j} = F).
This concludes the proof. O

Proof of Corollary 1.2. Both (1.6) and (1.7) are trivial in the case |A| <m(n — 1). Below we assume
that |[A| > m(n — 1), and put A; ={ajx: x€ A} fori=1,
(i) Set b; = [x’"]f(x)a]’”1 for j € [1,n], and define

P(X1,...,%) = 1_[ (f(ajflxj)—f(ai’]xi)).

1<i<j<n
Note that
i—1
1—[ (bjx]m—bix;ﬁ):det((bjx]m) )1gi,jgn
1<i<j<n
_ i—1 (1 Hm
Z Sgn(g)nba(l) o)
oeS,
Therefore

n n
|:l_[xi(l_1)m:|P(x1,...,xn)7éO and > (i—1)m=degP.
i=1 i=1
In view of Theorem 1.3,
[{arxs + -+ anxn: X1,....x0 € A, and f(x;) # f(x)) if i  j}|
=|{y1+ - +yny1€Ar.....yn€An and P(y1, ..., yn) #0}|
>min{p(F) —degP, |A1|+ -+ |Ap| —n—2degP + 1}

. n
:mm{p(F) —m<2>, n(JA]—1) —mn(n — 1) +1}.

So we have (1.6).
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(ii) Let P(x1,...,xp) be the polynomial
— -1 2m—1—1S;j| -1 —
H ((aj]xj—ai Xi) i H(aj Xj — ]xi—i—s)).
1<i<jsn S€Sjj

By [23, (2.8)],

n
[nxgm_l)("_”ﬂ_]} P(ax1, ..., anXy)

i=1
n
—1D(n-1)+i—-1 — -H(®
i=1 1<i<j<n

where N = (mn)!/(m!"n!) e ZT ={1,2,3,...}. Clearly N=1 if m=1 or n= 1. If min{m,n} > 2 and
mn > p(F), then

p(F) — (2m—1)(g) <mn-—1-— <m— %)n(n— 1)

=n(m—(m—%>(n—1)>—1<0.

So (1.7) holds trivially if mn > p(F).
Below we handle the case mn < p(F), thus Ne # 0. Note that

n
[]‘[xfm‘”("‘”“‘]} P(x1,...,xn) £0.

i=1
Clearly i ((m —1)(n — 1) +i — 1) = 2m — 1)(3) = deg P. Observe that |A;| = |A] >m(n — 1) >
m—1)(n—-1)+i—1 for all i € [1,n]. Applying Theorem 1.3 we get
[{a1x1 + - 4 anxp: X1,...,%, € A, and x; — x; ¢ Sy if i < j}|
>|{yi+- 4y y1€Ar ..., yn€An, and P(y1, ..., yn) #0}]
>min{p(F) —degP, |A1|+---+|Ap| —n—2degP + 1}

min{p(F) - (2m— 1)(2), n(JAl—=1)—@m—Dnn—1)+1 }

This proves (1.7).
So far we have completed the proof of Corollary 1.2. O

The Dyson conjecture mentioned in Section 1 can be restated as follows: For any mq,...,mp € N
we have
-1 —1 . .
[x']ﬂl("l ) "'ern(n )] l_[ (xi — Xj)m'+ml
1<i<j<n
(mq + -+ +mp)!

= (- X U=Dm; (41)
mq!---my!
A combinatorial proof of this was given by D. Zeilberger [26] in 1982. Below we use (4.1) to prove

Corollary 1.3.

Proof of Corollary 1.3. We only need to consider the nontrivial case ) | ;m; < p(F). Similar to the
proof of Corollary 1.2, it suffices to note that the coefficient of the monomial I—[?:1 x'i”"("fl) in the

polynomial H1<i<j<n(xi — xj)™Mi*™M; over F does not vanish by (4.1) and ZZ:] my <p(F). O
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Proof of Theorem 1.1. If p(F) — (}) >n|A| —n? + 1, then (1.1) follows from (1.8).
Now assume that p(F) — () <n|A| —n?. Then

32 —51 n?—n
2 2

n 2 2_ 5.2
n|A|l > p(F) — 5 +n°> +n“=2n"—-2n

and hence |A| > 2n — 2. Note also that if n > 1 then p(F) >n(3n — 5)/2 > (n — 1)2. Thus, by applying
Theorem 1.2 we obtain the desired result. O

5. A further extension of Theorem 1.3

Recently Z.W. Sun [21] employed the Combinatorial Nullstellensatz to establish the following result
on value sets of polynomials.

Theorem 5.1. (See Sun [21].) Let A1, ..., A, be finite nonempty subsets of a field F, and let

f(x1,...,xn)=a1x’1<+'-~+anxf§+g(x1,...,xn)eF[xl,...,xn] (5.1)
with

keZ*, ai,...,ay € F¥ and degg <k. (5.2)
(i) We have

n
. |Ai| -1
X1,...,Xn): X1 €A1, ...,Xp € Apt| > min F), R — 1¢.
{61, 30 € Ar o € | {pmg =1y
(ii) Ifk >nand |A;j| Zifori=1,...,n,then

@1, ... %) x1 € A, ... xq € Ay, and x; # x; if i # ji}|
. | A =i
>m1n[p(F),§{ X J—l—l}.

Remark 5.1. Let aq,...,a, be nonzero elements of a finite field F and let k be a positive integer.
Concerning lower bounds for |{a1x’1< + .- +akx’,§: X1,...,Xn € F}|, the reader may consult [6] and [25]
for earlier results.

Motivated by a concrete example, Sun [21] actually raised the following extension of Conjecture 1.1.

Conjecture 5.1. (See Sun [21].) Let f(x1,...,Xn) be a polynomial over a field F given by (5.1) and (5.2).
Provided that p(F) #n+ 1 and n > k, for any finite subset A of F we have

{1 %) X1, ..., % € A, and x; # x; if i # j}|

n(|A| —n) —I{n}k{IAI — Nk +1},
K

> min{p(F) —[n=2&a; =—az],
where we use {m}, to denote the least nonnegative residue of an integer m modulo k.

Sun [21] proved the last inequality with the lower bound replaced by min{p(F), |A| —n+ 1}.
Theorem 1.3 on restricted sumsets can be extended to the following general result on restricted
value sets.
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Theorem 5.2. Let F be a field, and let f(x1,...,X5) € F[X1,...,xn] be given by (5.1) and (5.2). Let

P(x1,...,Xn) be a polynomial over F with [xk1 . -x’ﬁ"]P(xl, ..., Xp) # 0, where kq, ..., ky are nonnegative
integers wzth ki+4---+ky,=degP. Let A1, ..., Ay be finite subsets of F with |A;| > k; fori =1, ...,n. Then,
for the restricted value set

V={f(®1,....%): X1 €A1,....Xq € An, and P(x1, ..., x,) #0}, (5.3)

we have

|V|>min:p(F)—§L%J, g(L%J—{%DH} (54)

Proof. It suffices to consider the nontrivial case

-] S [

For i=1,...,n let r; be the least nonnegative residue of k; modulo k. Write P(xq,...,X;) in the
form (3.1) and consider the polynomial
5 k
P(X], ---7xn)= Z C'l ----- Jn Ha(n i (xl)(lx_rz)/k
jieri+kN for i=1,....,n i=1

j1+-+jn=degP
Clearly

n n
— Z Citomin l_[a(rl ]1)/’< |:1_[Xilki/kJ:| l_l(xl‘)(]'ifri)/k
i=1 i=1

Jji€ki+kN for i=1,....,n
Z?—l ji:Z?—l ki

i=1
Fori=1,...,n let B ={me: m € I;} where

2 ) 25

Clearly |B;| = |ki/k] + 1 since |k;/k] < p(F). Note also that

|[Ail —1i—1 S ki—ri | ki—ri &
k Lok 1 kT Lk]

In light of the Combinatorial Nullstellensatz, there are q1 € I1, ..., qn € I, such that

P(qie, ..., qne) #0. (55)
Set mj =kq; +r; fori=1,...,n. Then

M=Z?:1m;<—degP Zml_kl=§< L J)

i=1

SEESINITS
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and
(X" x [P ) F X )
[ 4T P koo, k\M
=[] Xn" |P(X1, ... %) (@1X] + -+ + anXy)
Mm! ik
= > le ..... Jn o — ,nai"~
jiem;—kN for i=1,..., ni:l((m'_]')/k)'izl
Jj1t++in= degP
So we have
qrlqu! X7 X P ) f(xa x)M
= M! Z C'l ----- Jn l_la(ml Ik (q e)Ux/kJ
jiem;—kN for i=1,..., i=1

J1+-Fin= degP
=M!al'---al"P(qe, ..., qne).
If |V| <M < p(F), then by (5.5) and the above we have

(X P x) f )MV T (L xa) = v)

veV
=[x PG ) f(xa x)M £,
hence by the Combinatorial Nullstellensatz there are x; € Aq, ..., Xn € Ay such that
P&, x) f & x)T VT T (Fa o xn) = v) #0

veV

which contradicts (5.3). Therefore, either

wneu-So 2§12 )£
= R

or

If p(F) > 2?21 L(JAi] — ki — 1) /k], then we have

o ([ | o
:mjn{p(F)—iiL%J’ Xn;q%J - V%J) +1},

1

In the case p(F) < Y1 L(IAil — ki — 1)/k], as Y_|_; ki = deg P there are A} C Ay,..., A}, C Ay
such that

|A/]|>k1,..

and ZL'A' J=p(F)—1<p<F>,
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therefore
IVI=[{%1+ +xa: x1 € A}, ..., X € A, and P(xq, ..., X,) # 0}

> min{p(F) - X;‘U%J X;(LWJ - U%J) +1>

n

=p(F) — ZU‘?J

i=1

-l S 5] 5| 5|5 o

i=

We are done. O
Here is a consequence of Theorem 5.2.

Corollary 5.1. Let F be a field and let f(x1,...,%;) € F[x1,...,X,] be givenby (5.1) and (5.2). Let A1, ..., A

be finite subsets of F with |A;| >1i fori=1,...,n. Then, for the restricted value set
V={f(X1,....%): X1 € A1,....Xq € An, and xq, ..., x, are distinct}, (5.6)
we have

V| + A, k) > mm{p(F) Z{'M J+1>, (5.7)

where

A(n, k) = L%J (n—kLn/kZ¢>. (5.8)

Proof. We apply Theorem 5.2 with

P(x1,...,%) = 1_[ (xj —xi) = det("ﬂ'_l)lgi,jgn'

1<i<j<n

Note that [[TL; x::_1]P(x1, ...,X) =1+#0. By Theorem 5.2,

|V|+ZL J min P(F),'X:l'AiL_iJ—l—l}.

So it suffices to observe that
\n/k]—1 k

Al n
|

Bl

q=0

Ln/k] n nl

This concludes the proof. O
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Lemma 5.1. Let k and n be positive integers. Then, for any m € Z we have

T m—i n m-—n k|n n
Z{ . szwﬂn}{ . J—id(M+1>+{m}k[[{m}k<{n}k]]. (5.9)

i=1

Proof. Let f(m) and g(m) denote the left-hand side and the right-hand side of (5.9) respectively. We
first prove that f(n) = g(n). In fact, by the proof of Corollary 5.1,

n—-1, .

fay = Zm — A k) = g(n).

j=0
Next we show that f(m+ 1) — f(m) =g(@m+ 1) — g(m) for any m € Z. Observe that

f(m+1)—f(m)=2nj<vl+k1 _iJ B {mk_lD

i—1
=|{1<i<n:i=m+1 (modk)}|

=|{qgeN: {m} +kq <n}| = 1 + [[{m} < {n}])-
k

Also,

gm+1) — g(m) — m

={n}[[m+1=nmod k)] + {m + 1} [[{m + 1}k < (n}]] — (mhe[[{im}k < (n}]]
= {m+ 1 [[im + 1h < {nl]] = (ml[[{me < {n}]]
= [{m} < {n}]].

So far we have proved (5.9) forallmeZ. 0O
The following result partially resolves Conjecture 5.1.

Corollary 5.2. Let F be afield and let f (x1,...,Xn) € F[X1,...,Xy] begivenby (5.1) and (5.2). Let A1, ..., A

be finite subsets of F with |A1| = --- = |An| = m > n. Then, for the restricted value set V in (5.6) we have
V> min{p(F) — Ak, M=) _I{cn}"{m il " Temn + 1 } (5.10)
where
Temn = {mye[[{mh < ki ]]. (5.11)
Remark 5.2. In the special case a; =--- =ay,, H. Pan and Sun [18] proved (5.10) with A(n, k) omitted.

Proof of Corollary 5.2. By Lemma 5.1,

"lm—i n m-—n
Z{ J—A(n,k) (m—n)H +{n};{ J+rk,m,n
k k k

i=1
n(m—n) m-—n
. — {nk + {ﬂ}l{
k k

_ n(m—n) — {nk{m —nj
= X + Tkmn-

So, the desired result follows from Corollary 5.1. O

m-—n
k

J + Tkmn
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