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Synthetic peptide array technology was first developed in the early 1990s by Ronald Frank. Since
then the technique has become a powerful tool for high throughput approaches in biology and bio-
chemistry. Here, we focus on peptide arrays applied to investigate the binding specificity of protein
interaction domains such as WW, SH3, and PDZ domains. We describe array-based methods used to
reveal domain networks in yeast, and briefly review rules as well as ideas about the synthesis and
application of peptide arrays. We also provide initial results of a study designed to investigate the
nature and evolution of SH3 domain interaction networks in eukaryotes.

� 2012 Federation of European Biochemical Societies. Published by Elsevier B.V.
1. Protein interaction networks

Living systems are organized by complex, dynamic networks of
molecular interactions where proteins are the central network
components. Since they can bind not only to other proteins, but
also to phospholipids, nucleic acids and small molecules, they link
diverse physiological functions of the cell. It is tempting to suggest
that a molecular recognition code rules such dynamic networks
[1]. In analogy to human language, one could formulate a hierar-
chical organization, starting from linear sequences of polypeptide
chains, then simple three dimensional fold elements and complex
structural motifs, up to protein complexes [2–4]. In fact, structural
modules and motifs may have isolated functional ‘‘meaning’’ like
words in human language [5,6].

To pursue this analogy, we can think of cellular wiring as a mas-
terpiece of evolutionary tinkering, with structural elements used
many times in different protein contexts, and trial and error creat-
ing some rules of interconnectivity to achieve a favorable feature
or message [7]. Therefore, it is not surprising that the idea of
independent protein ‘‘linguistics’’ arose in the protein–protein
al Societies. Published by Elsevier

.

interaction community [8]. Many believe that a complete under-
standing of the protein–protein interaction network will enable
researchers to break the protein recognition code or predict cellu-
lar responses, or even positively interfere with the molecular basis
of diseases.

The yeast two-hybrid technique [9] was the first method ap-
plied in a high-throughput manner to reveal the protein interac-
tion network of a model organism [10,11]. Shortly afterwards,
the classical pull-down in combination with mass spectrometry
was the next high-throughput strategy to reveal the interactome
in the same species [12,13]. The low intra- and inter-technique
overlaps between the resulting networks (10–20%) indicate that
these experimental approaches suffer from false positives and false
negatives. In addition, graphical representation of such interaction
networks is hard to understand. Recently Gianni Cesareni’s inter-
esting analogy described such a network as a complete road map
of a large city, but without any information on traffic flow or which
routes represent large traffic arteries and which represent narrow
one-way alleys [14].

A further aspect limits interpretation of experimentally
obtained networks. The real networks have a so-called scale-free
topology, meaning more proteins than expected interact with
many partner proteins at a time [15]. It is hard to say how many
partners these ‘‘hub’’ proteins can contact at the same time;
B.V. Open access under CC BY-NC-ND license. 
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consequently it is nearly impossible to predict the composition of
multiprotein complexes. Fortunately, the modular architecture of
proteins can help solve the problem of assignment. A protein is
composed of single domains (modules) separated on discrete se-
quence patterns, which in turn comprise folding motifs. In general,
isolated protein modules have the same globular folding as in the
whole protein, and therefore a reductionist approach can be ap-
plied in practice [16,17].

Protein alignments indicate that even unrelated proteins fre-
quently share sections of sequence similarity [18–20] and these re-
gions often function as independently folded modules or domains
of autonomous functionality. It would be more informative if the
protein interactome could be split at each protein (node) into cova-
lently linked domains, whereby each domain can interact with sev-
eral proteins, but only one at a time [14]. In other words, if an
existing protein interaction network is supported by a domain net-
work, this might provide enough information about the topology of
protein–protein interactions.

2. Protein interaction domains

Structural analysis of functional protein complexes suggests at
least two classes of protein–protein interactions [21–23]. In the
first class, which reflects the majority of protein–protein interac-
tions, the complementary surfaces of both interacting partners
are extensive. This means that the residues involved in each inter-
acting surface only come together upon protein folding (discontin-
uous binding sites). The second class comprises asymmetric
interactions, where a modular protein domain may dock with a
short linear sequence motive on the partner protein. Such a mod-
ular protein domain is called a protein interaction domain (PID).

Mapping discontinuous binding sites is a challenge; however,
the concept of hot spots [24,25] shows the feasibility of interfering
with interactions mediated by extensive surfaces. In contrast, PID
binding determinants may be mapped to short linear motifs
matching the sequence of the ligand peptide. The importance of
small protein recognition domains in forming protein complexes
that involve binding to short linear peptides was demonstrated
in the late 1980s and early 1990s (reviewed in the excellent book
[20]).

Such domains preferentially bind to peptides possessing spe-
cific sequence or structure characteristics. For example, Sudol
and Bork demonstrated that WW domains bind proline-rich pep-
tides sharing a PPxY motif, and folded into a proline type II helix
[26]. However, two factors should be noted: firstly, PID interac-
tions are dynamic with affinities mostly in the middle to high
micromolar range, and secondly, one has to carefully define the do-
main borderlines. The first factor often hampers complete charac-
terization of a domain-interacting network when using pull-down
based experiments. The second factor is important since domain
borderlines are generally defined by bioinformatic methods such
as multiple protein alignments without any information about
structural data. Therefore, preparing a domain according to the gi-
ven borderlines might yield an unstructured shape with no func-
tion. This is known for the TCERG1 WW-3 domain where
extending the bioinformatically defined borderline from a 43-
mer up to a 53-mer sequence proved essential for generating a
properly folded domain (PDB ID code 2dk7) [27].

3. Phage display

Over the past decade two predominant experimental ap-
proaches have been used to investigate PID recognition specificity,
namely phage display and SPOT synthesis; both have high
throughput potential and can reveal domain interaction networks
with information on the stoichiometry of domain-peptide interac-
tions. Phage display is a powerful biological library comprising
109–1010 peptides of random sequence displayed on bacteriophage
capsids. After the pioneering work of Sparks et al. [28] and Rickles
et al. [29] many groups have applied this approach to determine
the recognition specificity of several domains such as SH3, WW,
PDZ, and GYF domains [20,30,31]. Due to the impressive record
of successful studies mapping PID recognition specificities, phage
display has become the first choice for determining the recognition
specificity of new domains in the absence of any a priori
information.

Among the first to expand the study of peptide recognition
modules to a genome-wide scale were Tong et al. [32]. They com-
bined phage display and yeast two-hybrid to elucidate the peptide
ligand consensus of 20 SH3 domains of Saccharomyces cerevisiae
and draw up an SH3 domain network. Besides the impressive
experimental results, some general conclusions could be drawn
from this study. An overlap of about 25% interactions in common
suggests that both methods lead to over-prediction, whereby a
significant part of the interactome remains undiscovered. Interest-
ingly, we notice that exploring the same protein–protein interac-
tion space with orthogonal approaches removes false positives. In
contrast to Tong et al., the interactome scanning study of Landgraf
et al. [33] combined phage display with a semi-quantitative anal-
ysis achieved using SPOT synthesis technology. This study allowed
the first comparative interpretation of the yeast SH3 domain inter-
actome: in the devised diagram lines of different thickness corre-
late with binding strength.

4. SPOT synthesis and synthetic peptide arrays

Array technologies, especially protein arrays, arrived late in the
field of protein–protein interactions due to critical factors such as
native folding stability or functionality [34,35]. Peptides, in con-
trast, are easier to handle and retain partial features of protein
function. The fact that PIDs recognize short linear peptides per-
fectly corresponds to the scope of synthetic peptide arrays. Thus,
peptide arrays are predestined to support PID recognition studies
such as revealing binding specificity, screening for cellular interac-
tion partners, or developing selective PID inhibitors.

Two techniques for chemically synthesizing peptide arrays
were published almost simultaneously: Frank presented the SPOT
synthesis technique [36], while Fodor and co-workers [37] de-
scribed the concept of light-directed, spatially addressable chemi-
cal synthesis. The latter was only used by the group that originally
developed the method. In contrast, the majority of peptide arrays
reported to date have been produced using the SPOT synthesis con-
cept. This is due to the fact that SPOT synthesis is a very simple but
extremely robust method for highly parallel synthesis of peptides
on planar surfaces. The method itself has been reviewed several
times, e.g. [38,39] and over a period of 20 years the method has be-
come a widespread and essential tool in biology and biochemistry,
with a literature base of more than 400 original, peer-reviewed
papers.

Nowadays, we are in the comfortable situation that a diverse
collection of SPOT technology methods are available, permitting
the application of peptide arrays to a broad spectrum of targets
[39]. SPOT technology simplified the chemical synthesis of pep-
tide arrays to the addressable deposition of reagents on a planar
cellulose membrane (filter paper). Moreover, chemical synthesis
allows one to incorporate phosphorylated [40], methylated or
acetylated amino acids [41,42], use non-natural building blocks
[43,44], prepare branched and cyclic structures [45] and
label with chromophores or short biological tags such as biotin
[46,47].
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SPOT synthesis can be performed fully automatically with a
MultiPep synthesizer (Intavis AG, Köln, Germany) in an analytical
or preparative mode. The latter enables parallel synthesis of up
to 1000 peptides at amounts of approximately 50–100 nmol of
cleaved material, achieved by producing spots with a diameter of
8 mm dispensed in droplets of up to 1 ll. The preparative SPOT
synthesis mode has been used mostly for cell-based screening as-
says [48,49] but also for quality control of spot synthesized pep-
tides. The analytical mode enables the synthesis of about 6000
cellulose membrane-bound peptides by producing spots with a
diameter of �1 mm. Down-sizing the spot diameter below 1 mm
failed due to the capillary effect of cellulose membranes. In both
cases we use membranes with a dimension of 18.3 � 28.5 cm for
a special platform with the fully automated MultiPep synthesizer
that allows four coupling steps per day. Fig. 1 summarizes the prin-
Fig. 1. The principals of SPOT synthesis. The analytical SPOT synthesis mode enables
especially for on-support binding studies (left). On the other hand, high numbers of solub
synthesis mode suitable for several kinds of solution- and cell-based assays as well as
carbodiimide, NMI = N-methylimidazole, Ac2O = acetic anhydride, DIEA = N,N-diisopropy
cipal steps of both the analytical and preparative SPOT synthesis
mode.

5. Qualitative explorative investigations and quantitative
analytical studies

In general, synthetic peptide arrays (prepared by the analytical
synthesis mode) can be used for either qualitative exploratory
investigations or quantitative analytical studies; the initial choices
of array content and assay design often depend on which kind of
analysis is required. Qualitative exploratory investigations may in-
volve either simple or comparative functional assays.

In a simple functional assay the non-covalent binding interac-
tions between a single sample and a set of immobilized peptides
(probes) are analyzed in parallel to obtain relative peptide-binding
the synthesis of thousands of immobilized cellulose membrane-bound peptides
le peptides can be generated in sufficient quality and yield by the preparative SPOT
for quality control (right). Fmoc = fluorenylmethyloxycarbonyl, DIC = diisopropyl-
lethylamine, Opfp = pentafluorphenyl ester.



Fig. 2. Evolutionary SH3 domain fingerprints. Four uniform peptide arrays are
synthesized on one cellulose membrane. The membrane is cut to yield individual
arrays which were then individually probed with Abp1-1 SH3 domains of four yeast
species: Saccharomyces cerevisiae (Sc, upper left), Ashbya gossypii (Ag, upper right),
Candida albicans (Ca, lower left) and Schizosaccharomyces pombe (Sp, lower left).
Domain concentrations are adjusted and equal assay conditions are applied. In a
first glance an individual peptide-binding interaction finger print of each SH3
domain is yielded reflected by the differences in reactive spots. At the upper left,
upper right and lower right corner five control spots are placed for better
orientation. These spots could not be used for array quality control.
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preferences for the sample. For instance, the sample could be a
purified PID, which is challenged with relevant peptide probes col-
lected in a peptide array. These peptides are defined by some
shared characteristics, e.g. the targets of a consensus in a sequence
data bank such as an array of 12-mer human PPxY sequences
[50,51] or an array of human C-terminal protein sequences (‘‘Hum-
lib’’) [52]. Further systematic sets of peptides for simple functional
assays applied for mapping protein binding are scans of overlap-
ping peptides [53,54], amino acid substitution scans such as the
alanine scanning approach [55,56], or (complete) substitution
analyses. Here, each amino acid of the original sequence is replaced
by all other 19 genetically encoded amino acids. This approach has
been used in peptide array technology since the beginning (for
more references see [39,57]).

For a simple functional assay, previous knowledge about abso-
lute binding affinity is not required. After performing protein bind-
ing experiments by challenging a peptide array with a single
protein domain the spot intensities can be measured to yield
non-dimensional numerical magnitudes: for instance, in ‘‘Boehrin-
ger light units’’ using chemiluminescence as a readout [33] or as
non-dimensional values if using densitometry [58]. Comparing in-
tra-array spot signal intensities results in ranking peptide-binding
preferences (good binders, medium binders, non-binders) towards
a single sample. Unfortunately, no quantitative affinity information
is available from a simple functional assay; peptide binding could
be in the range of nanomolar, micromolar or even millimolar affin-
ity. However, an impression of affinity can be gained if the binding
affinities of selected peptides are quantitatively determined in fol-
low-up studies such as surface plasmon resonance or fluorescence
polarization studies. Spot signal intensities can then be correlated
to the measured binding affinities, yielding a semi-quantitative
binding assay. This approach has been demonstrated with the
yeast SH3 interactome [33] and for the CAL PDZ domain interaction
[59]. Such follow-up studies are important if peptide arrays are
used to develop effective inhibitors or assess the biological rele-
vance of the observed binding events (specific versus unspecific).
However, these methods are time consuming and costly since se-
lected peptides must be synthesized by standard solid-phase pep-
tide synthesis before performing exact affinity measurements.

Comparative functional assays are based on inter-array compar-
ison. For example, two peptide arrays with identical content are
challenged with two related proteins, e.g. a wild type and related
mutant version. Spot signal intensities can then be compared when
proteins are applied at identical concentrations and arrays are of
equal synthetic quality. The quality of SPOT-synthesized peptides
has been investigated by several groups. Takahashi and co-workers
[60] reported peptide purity higher than 92%, while Kramer and
co-workers [61] reported lower purities. An extended HPLC analy-
sis showed that purities of SPOT-synthesized short peptides of up
to 15 amino acids are similar to those synthesized by solid-phase
methods in reactors [62]. Ay and co-workers analyzed a huge num-
ber of SPOT-synthesized cytomegalovirus deduced non-americ
peptides by HPLC/MS and found peptide purity in the range of
50–85% [48]. This is in good agreement with Molina and co-work-
ers reporting peptide purity in the range of 74.4–91.3% [63]. Even
longer peptides such as the 34-meric FBP28 WW domain could
be SPOT-synthesized with a high quality of 65% purity [64]. Besides
the high synthetic peptide quality, equivalent peptide array quality
is achieved by applying identical chemical conditions during array
synthesis. For this reason we use a special platform for the spot
synthesizer, and we strongly recommend taking peptide arrays
from the same cellulose membrane (intra-membrane arrays). As
far as possible, this ensures generating spots with similar peptide
density (peptide concentration in a spot).

Recently, we used such a comparative functional assay to chal-
lenge the PQBP WW domain and its Y65C missense mutant with
peptide arrays of potential human WW domain binding sequences
in order to understand the molecular basis of the Goalbi–Ito–Hall
syndrome (GIH) [50]. The two identical peptide arrays were syn-
thesized in parallel on one cellulose membrane. A standard b-ala-
nine membrane [36,62] was used and residues were coupled as
amino acid OPfp ester derivatives (triple coupling) since this sim-
plifies the synthesis process, particularly when using SPOT robots.
After cleaving the side chain protection groups the peptide arrays
were separated by cutting the cellulose membrane. One array
was probed with the wild type PQBP1 WW domain, and the other
with the Y65C missense mutant (both at identical concentrations).

The inter-array comparison revealed that both PQBP1 WW do-
mains recognize the same peptides, but with different binding
strengths: peptide binding of the Y65C mutant was lower than that
of wild type. As a conclusion, the GIH syndrome is apparently not
ruled by a loss or gain of function but by lower binding affinity of
the mutant.

Another comparative functional assay approach is being used to
investigate the nature and evolution of SH3 domain interaction
networks in the eukaryotes Schizosaccharomyces pombe, Candida
albicans, Ashbya gossypii and S. cerevisiae. A total of 109 SH3 do-
mains have been investigated so far. Uniform arrays from the same
cellulose membrane were used to probe a family of SH3 domains
across the four yeast species, and the concentrations of the do-
mains were adjusted accordingly. However, some questions still
remain: the low member peptide array used in this study was opti-
mized while investigating the S. cerevisiae SH3 domain interaction
network [33,65] and it is not clear whether it will also work with
the other yeast species; the displayed peptides (proteins) were de-
duced from the S. cerevisiae proteome without knowing whether
orthologs, or paralogs exist in the three other yeast species; and fi-
nally little is known about the evolution of the deduced peptide
(proteins). A preliminary result of this study provided evolutionary
domain fingerprints of each SH3 domain, for example as shown for
the Abp1-1 SH3 domains of the four yeast species (Fig. 2). Finally, it
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should be mentioned that while intra-membrane arrays are a good
choice for repeating simple functional assays, such comparative as-
says are inadequate for directly calculating quantitative affinity
values.

As mentioned above, semi-quantitative binding can be assessed
if spot signal intensities can be correlated to measured binding
affinities obtained from follow-up studies. However, since such fol-
low-up studies are costly and time consuming an alternative ap-
proach would be advantageous. Analytical peptide arrays could
perhaps pave the way as real quantitative binding assays. In anal-
ogy to a classical ELISA approach, intra-membrane peptide arrays
with identical content are probed in parallel with different concen-
trations of a protein sample. The principle of such an approach is
demonstrated using uniform intra-membrane peptide arrays chal-
lenged with different concentrations of WW domains and then
measuring spot signal intensities (Fig. 3). Plotting spot signal inten-
sities against the applied protein concentrations resulted in sig-
moid graphs from which EC50 (half effective concentration)
values could be calculated for each array peptide (Fig. 3B).

As good laboratory practice the peptide arrays should contain
repeated sequences in order to obtain reliable error bars. This
has been demonstrated in preliminary work by Weiser et al. [66]
where the standard deviation of spot signal intensities measured
for several peptide replicas on one membrane varied from 8% to
22%. However, the obtained EC50 values were calculated based on
the following assumptions: Immobilized peptides were all of the
Fig. 3. Principle of an analytical assay. (A) Uniform peptide arrays synthesized in
multiple copies on one cellulose membrane. The membrane is cut to yield
individual arrays, which are then individually assayed. Here six peptide arrays
are shown each displaying the same set of WW domain binding peptides. Left
column: arrays were assayed with different concentrations of the wild type (wt)
PQBP1 WW domain. Right column: arrays were probed with different concentra-
tions of the PQBP1 Y65C WW domain mutant. Spot signal intensities are measured
and as shown spot signal intensities are proportional to the concentration of both
WW domains. (B) Exemplarily, calculation of binding affinity is shown for a peptide
depict by the red circle. The obtained spot signal intensities (SI) are plotted against
domain concentrations and sigmoid graphs for the wild type (solid line) as well as
for the Y65C mutant domain (dashed line) are resulted. At the inflection point the
binding affinity could be calculated as EC50 (half effective concentration) values. As
shown by the curve shift of the Y65C mutant the assigned binding affinity is
significantly reduced (higher EC50 value) compared to the wild type domain.
same quality, peptide concentrations were identical at each spot,
peptide accessibility was the same for each spot, protein tags did
not influence protein-peptide binding, and the measured protein
concentration was the effective assay concentration. Obviously,
this will never be the case in practice, and strictly speaking, the
quantitative EC50 values obtained reflect the true dissociation con-
stants (KD), depending on knowing the quality and concentration
of peptides in each spot, as well as the effective concentration of
the protein. Nevertheless, as demonstrated above, high peptide
synthesis quality, equal peptide density of intra-membrane pep-
tide arrays and the possibility to adjust protein concentration en-
ables calculating EC50 values reflecting a binding affinity at a
realistic order of magnitude.

Clearly the analytic approach is still under investigation, but we
hope our discussion here will encourage others to apply the prin-
ciple of analytical peptide arrays. At the protein level (protein
microarrays) such an approach has been applied to construct a
quantitative protein interaction network linking a human proteo-
mic set of SH2 and PTB domains and phosphorylated peptides from
ErbB receptor tyrosine kinases [67]. Especially for proteomic ap-
proaches, EC50 values are extremely helpful for creating quantita-
tive protein interaction networks, and for filling in ‘‘the traffic
flow information’’ in Gianni Cesareni’s road map of protein
interactions.
6. Cellulose membrane modifications and inverted peptide
arrays with free C-termini

Cellulose membranes of the ester type [36,62], especially b-ala-
nine and glycine membranes, are standard membranes for SPOT
synthesis. Historically, five years after the first report of classical
ester-type cellulose membranes, the first amino functionalized
ether-type membrane described in 1997 was a cellulose-amino-
propyl ether membrane (called CAPE membrane) [68]. CAPE mem-
branes have been predominantly and successfully used for
studying SH3 domain interactions [33,54,65,69,70]. They are dis-
tinguished by an excellent signal-to-noise ratio during on-support
assays due to the extremely low background signal of the mem-
brane itself.

In addition to the membrane type, peptide density is crucial for
probing peptide arrays with a protein of interest, and several
groups have worked on adjusting amino functionality in order to
optimize synthesis or screening [61,71–74]. As a rule of thumb,
WW, GYF or BROMO domain interaction studies should be per-
formed on low loaded b-alanine membranes with amino-capacities
of 30–120 nmol/cm2 whereas SH3 domain interaction studies
work well on low loaded CAPE membranes.

One kind of protein interaction domain, namely the family of
PDZ domains, requires a very special kind of synthetic peptide ar-
ray. PDZ domains generally recognize the C-terminal four to seven
residues of their protein binding partner and require a free C-ter-
minus for ligand recognition. In other words, PDZ domains
recognize short linear peptides containing a free C-terminus.
Unfortunately, standard SPOT-synthesized peptides lack free C-ter-
mini due to their coupling to the cellulose support. The first reli-
able and robust SPOT synthesis concept for synthesizing inverted
peptide arrays with free C-termini was published in 2004 by the
Volkmer lab, and the approach was recently improved [52,75].
Such an inverted peptide array requires a special, ether-type cellu-
lose membrane called N-CAPE membrane [76] with amino-loading
capacities of 200–800 nmol/cm2.

More recently, cystic fibrosis research focused on finding a
selective CAL PDZ inhibitory peptide by applying an integrated
synthetic peptide array approach designed for PDZ domain screen-
ing [59]. The screening discovered a peptide that selectively inhib-
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its the CAL PDZ domain, which in turn extends the half-life of the
DF508-CFTR protein responsible for cystic fibrosis. Such an inhib-
iting peptide might act as a drug or lead structure for drug devel-
opment, and hence therapy to reduce the adverse effects of cystic
fibrosis [77].

7. Combining phage display and SPOT synthesis

A new approach combines the relative strength of selective
phage display with the quantitative analysis achieved by SPOT syn-
thesis. Initially, Landgraf et al. [33] applied a strategy to reveal all
the peptides in the yeast proteome that have the potential to bind
to any domain of interest. Based on the strict consensus sequences
identified by phage display, they designed a relaxed consensus; for
example the strict consensus sequence of the yeast SH3 domain
Rvs167 defined as RxFPRxP was relaxed to R/KxxPxxP. Subse-
quently, all sequences within the yeast proteome matching a re-
laxed consensus of a given SH3 domain were identified by
computational methods, synthesized on a cellulose membrane,
and probed with the SH3 domain of interest. This approach was re-
peated for eight yeast SH3 domains, readily identifying peptide
binding to each domain, and leading to predicting protein partners.

More recently, this approach was extended to the complete SH3
domain interactome of yeast [65]. A consortium comprising the
Cesareni, Volkmer, Drubin, Kim, Sidhu, and Boone labs applied a
combined approach of orthogonal experimental proteomic tools,
such as phage display, yeast two-hybrid and SPOT technology,
linked to sophisticated computational and mathematical tools.
The results from the three complementary experimental tech-
niques were integrated using a Bayesian algorithm to generate a
high confidence yeast SH3 domain interaction map.
8. Concluding remarks

Why have synthetic peptide arrays prepared by SPOT synthesis
become so attractive for biologists and the protein domain com-
munity? We believe it is due to the robustness, flexibility and sim-
plicity of the economical synthesis method, along with a broad
spectrum of well-established and highly sensitive assays (binding
affinities detected down to the millimolar range) combined with
a semi-quantitative readout of binding affinities. Further good
arguments are the opportunities to develop a novel analytical pep-
tide array approach, the high quality of SPOT-synthesized peptides
(50–91% purity), a variety of cellulose membranes with diverse
physical properties suitable for nearly any kind of binding assay,
as well as commercially available membranes (AIMS Scientific
Products, Braunschweig, Germany) and equipment (Intavis, Köln,
Germany).

However, SPOT technology is limited by the number of peptides
that can be synthesized on a membrane of reasonable size, and by
the fact that regenerating peptide arrays generally fails. The latter
is a severe limitation of SPOT technology, especially for experimen-
tal proteomics. Ideally, one would wish to screen a given peptide
array several times without any loss of quality, e.g. with different
representatives from a protein domain family. One solution could
be to use peptide microarrays that could be prepared for a multi-
tude of replicas. Pre-synthesized soluble peptides have been
immobilized on glass slides using several methods [78–81]. How-
ever, the peptide microarray technique requires expensive equip-
ment and special laboratory conditions. Producing peptide
microarrays involves highly parallel and high throughput peptide
synthesis, as well as robotic-supported immobilization of pre-syn-
thesized peptide derivatives on glass slides. Hence, SPOT synthesis
(preparative mode) is essential for preparing peptide microarrays.
Recently peptide microarrays were used for the first time to inves-
tigate the protein interaction network mediated by human SH3 do-
mains [82].

The in situ synthesis of high-density peptide microarrays is still
a great challenge, and interestingly, the concept of light-directed,
spatially addressable synthesis of peptides [37] is once again
attractive. The group of Klaus-Peter Stengele at Roche NimbleGen
has developed a novel strategy for photolithographic in situ syn-
thesis of thousands of peptides per cm2 on a glass surface. Finally,
to complete the picture, Stadler and co-workers have used a mod-
ified color laser printer to ‘‘print’’ the 20 amino acids in the form of
solid amino acid toner particles at defined positions on a glass sup-
port [83].
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