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Abstract. This paper extends the direct branching algorithm of [25] for checking equivalence of 
deterministic pushdown automata. It does so by providing a technique called ‘halting’ for dealing 
with nodes with unbounded degree in the comparison tree. This may occur when a skipping step 
may be applied infinitely many times to a certain node, as a result of infinite sequences of F-moves. 

Tliis er ‘ension .~llows the algorithm to check equivalence of two deterministic pushdown 
automata \N5en none of them is real-time, but in a certain condition that properly contains a case 
~bhere one of them is real-time strict. 

I. introduction 

While the equivalence problem for deterministic context-free languages still 

remains open at the present moment, various algorithms have been devised to give 

as wide as possible partial solutions to it [l-18,20-32]. Among them, Tomita [25] 

has recently presented a new technique which can be used to check equivalence of 

two strict deterministic pushdown automata (dpda), only one of which is real-time. 
It is especially distinguished that it does not need to ‘mix’ the two languages in 

question. So, it is very direct and simple. Such an approach is also applicable to a 

pair of strict deterministic vs. LL(k) grammars, or two LL(k) grammars as well [26]. 

The aim of this paper is to extend the former result to give a more powerful 
algorithm that works for a pair of strict dpda’s provided that the pair satisfies a 

certain properly weaker condition than that of real-timeness for one of them. It also 

inherits such a property that it does not need to mix the two languages in question, 
that is, it mainly deals with only equivalence equations each of whose left-hand 

sides consists of a reachable configuration of one dpda and each of whose right-hand 

sides that of the o::ler. 

* This work was supported in part by Grants-jr-Aid for Scientific Research Nos. S7550214 and 

58550240 from the Ministry of Ecucation, Science and Culture, Japan. 
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Our equivalence checking is carried out by expanding step by step a comparison 

tree by ‘branching’ or ‘skipping’ as in [Xl. Then, the condition under which the 

algorithm works is that a skipping step is eventually applicable when it is to be 

applied. Such a condition (described in Definition 3.4) may be satisfied even if both 
dpda’s have infinite sequences of E-moves. But if this is the case, we may have an 

infinite number of ‘skipp;l:g-ends’, and consequently the comparison tree may grow 

unboundedly wide. Then, a new technique is reqllired for terminating the expansion 

of the tree. Such a technique is here named ‘halting’. 
The basic steps of branching and skipping are almost the same as in [Zj but 

ziome extensions. For the sake of completeness, however, we repeat the definitions 
and the arguments from [Z] in Section 2, and in Sections 4.1 and 4.2. Section 3 
introduces the so-called ‘segmental property’ for a pair of dpda’s for which our 

algorithm works, and shows some basic properties which are directly relevant to 

our algorithm. A new step of halting is given in Section 4.3. Then the whole algorithm 
is presented in Section 4.4, followed by an example in Section 4.5. The exact proofs 

of termination and correctness are summarized in Section 5. It is assumed in Sections 
3 through 5 that dpda’s are strict and a!! of whose reachab!e configurations are live, 

and then Section 6 explains that with such assumptions generality is not lost. 
The reader is advised that prior understanding of at least one of [2S] and [26] 

may be very helpful to read this paper. 

2. Definitions and notation 

Our dctinitions ;ind ntltatioli :\re ;~!most ;t’a9 in [ 251. 

tvhere Q is the tinite set of state<, /’ the [kite set of stack symbol\, 2’ the tinite set 

of input svmboly, 6 the finite set of transition rules as described below, q,~ Q is 

the initia! state, I(,$__ I‘ the initii.1 <rack symbof, ;tnd FC Q the set of tina! states. 

We denote ;In empty string in I ‘* or 2’:” by Y 
The set of tratzsitiot~ r&s c’i is a set of rules of the form 

that hatisties the following conditions: 

(i) I,f@, A)-:+ (y, H) with a c L L.J {F) is in 6, then si contains no rule of the form 
( p. A: -- (I; y) fey any (r. y) St (y, 8). 
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A dpda accepting by empty stack is called a strict dpda. in case the previously 

given dpda M 1s strict, we may let M = (0, I; 2, S, qo, Zo, 8). The class of strict 

dpda’s is denoted by Do, and that of real-time strict dpda’s by Ro. 

Definition 2.2. A cor$gurution (p, cu) of the dpda M is an element of Q x r*, where 

the l#tmost symbol of LY is the top symbol on the stack. In particular, (qo, &) is 
called the initial corrfiguration. 

A configuration (p, cu) is said to lx in reading mode if (Y = 4a” E 1’ ’ and 

(p, A) 5 (q, 0) is in S for some a E 2 ant lq 6) E Q x P, while it is said to be in I 3 

E-mode if a! = A&E r’ and (p, A) -% (q, F) is in S for some 4 E Q. A configuration 

(p, ACY”) in reading mode is also said to have a nondecreasing mode if (.p, A) -f: (q, 0) 

is in S for some a E C and (~7, 6) E Q x I’+. 

The height of a configuration (p, a) is /(YI. Here, for a string cy, 1~1 denotes the 

length of cy. 

Definition 2.3. The dpda M makes a move (p, Ao) 3 (q, Ow) from one \onfiguration 

to another for any I:’ E I’* if and only if 6 contains a rule (p, A) - (q, 0) with 

aESu{F}. 
A sequence of such moves tlhrough succesbiii configurations as 

(cr,f~ and ~,E~w(F} for 1 s is nl) is called a derivation, and is written as 

(p,. (Y,)~~~~‘(~,,,+,,(Y~~+,~, -~=alaz...an,, 
bf 

or simply 

(PI9 Gw,,+,r %,+d. 
.I 1 

If, in the above derivation, there exists CY”E I’” such that, for each 1 s i i m + 1, 

CY, = CY :Q” for some GUI c I’* where cu: f F for 1 s i 5: nz, then it may be written as 

uhcre ‘1’ is a metasymbol not in 1: 

By convention, we let ( p, a ) =% ( p, cy ) for any ( p, ir ) E Q x P. 
\l 
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A deriv!tion (p, (Y) * (q, /3) is also written as (p, a) s(q, p) if no such derivation 
as (q, P,) 2 (r, y) is possible for any (r, y) f (q, /3). On the other hand, a derivation 

(p, cx)-L;;‘(r, y)~ is also written as (p, a) ?(r, y) if no such derivation as 

(p, cu)$q, p)$r, Y) is possible for any (4, PI # V, Y). 

A configuration (p, cy) is said to be reachable if (qo, Z,,) + (p, a) for some u E E*. 

Definition 2.4.. Let (p, (w) be a configuration of the dpda M. 

In case acceptance by M is by final states, define 

L(p,a)={XEz* I(p,a)~(q,p)forsome(q.p)EFxI.*}. 

In case acceptance by A4 is by empty stack, i.e., M is strict, detine 

L(p,a)={.YEr* I(p, a)$tq, F)forsomeqE 0). 

In either case, the language accepted by M is L(A4) = L(q,,, Z,,). 
A configliiation ( p, N 1 is said to be live if L( p, CY) # k$. 

Definition 2.5. 111 cat: the dpda A4 is strict, let (p, a) be a configuration of IV, and 

(p, a)&(p’, a’). Then if a’= A’o!“f F with A’E f: define 
\I 

I‘or some (y, fl) 5 Q X l’“}. 

Otherwise (i.e., (Y’ = F), define 

Definition 2.6. For a conCguration (p, lr) of the dpdu M, detinc 

Definition 2.7. Let E, p, LY I be a configuration of ti dpda h4, and ( ji, [3) be a configur- 

ation of 3 dpda 31: (i = 1 or 2). If L( p, o ) = L(ji, /3), then the two configurations are 

equicalenf, and ir is written as ( p, n) = (Is, p). Such a formula is named an equivalence 

equation. 

If L( M,) = L( hf?), then the two dpda’s art: equivalent, and it is written as M, = A4,. 
Othtrrwk. M, P Al,. 
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Qefinition 2.8. For a string p( E r”) and nonnegative integers 3 and h, define 

(.A) p’ ifIPI>;RandP=P’P”withiP’I=~, 

j3 ifIflIS&, 

and 

P (11) = 
p” if l$ll> h and p = /3’/3” with lp”l-7 h, 

p iflP(Gr. 

3, Prior conditions and basic properties 

We shall consider checking equivalence of a pair of strict dpda’s M, = 

( Q,, L Is‘. a,, 9h &r, Cb( fI m, i = I, 2, which is under a certain condition described 

later (in Definition 3.4). Furthermore, we shall assume, without loss of generality, 

that all reachable configurations are live. Throughout this paper, we are only 

concerned with configurations that are reachable, and hence live. For more general 
cases. see Section 6. 

Proof. This is a direct consequence of the assumption that all reachable configur- 

ations are live (see for the details [2S, Proposition 3.1, pp. 1 W-195]). Cl 

Definition 3.2. Let ( p, nPy) E Q2 x I‘?. 

If L(qJ3)f-z’ = fl for any 9 E EM P( p, cu), then p E I’? is said to be an E-segment 

in (p, c@y). In this case, p = P, or else if we let p = p/p”, /3’k 1’; and 9% 

EMP( p, o/3’), then (y’, p”) is in p-mode (when (,9’, /I”) is live). 

Otherwise, i.e., L( 9, p 1 n Z * f c3 for some 9 E EMP( p, a), then p E 1-1 is said to 

be a reading segmerlt in ( p, upy). Moreover, a reading segment p E 1‘; in ( p, spy) 

is said to be canonical if no substring /3? E 1’: of p = ~I~~~3 (PI, p3 E r’f> is an 

F-segment in (p, copy), and both cy”’ and ” ‘y are F-segments in (p, cu/3y). In this 

case, if we let /3 = pip”, p”E I’;. then (9’, p”) is in reading mode for some 9’ E 

EMP( p, #‘). 

For(~J3)EQ@T~, if 
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where ho, A,, AZ,. . . , Al E rf$ are E-segments in (p, p) and PI, &, . . . , PI E r;’ are 

canonical reading segments in (p, /3), then we write 

Reading-Seg( p, p) = &pz . . . p,. 

That is, Reading-Seg(p, p) is the concatenation of the whole successive canonical 

readinig segments in (j5, p). 

Remark 3.3. Given a certain configuration, a sequence of the whole successive 
canonical reading segments in it uniquely exists, and can be detected easily. 

Definition 3.4. A pair of live configurations (p, ar) E Q, x f 1’ and (p, p) E Q2 X r,’ is 
said to have the segmental property if (p, a) = (p, /3) implies the following property: 

There exists a constant ;3) J 2 1, depending on only M, and M2, such that if 

(p, AlO --r, (9, +“) where cy = Ad’ with A E I’,, 
hf, 

for some x E 2“‘: and y E Q, (with L(q, cu”) f fl), then 

for some factorization of p = pip” and (&, 7,) E Qz X ft such that 

IReading-Seg( p, /3’)/ c A’. 

(That is, the corresponding derivation of M2 from (p, p’p”) can be restricted to be 

independent of /3” which is initially below a certain finite upper segment /3’. Note 
here that the total length of p’ may not be bounded when M:, has infinite saquences 

of F-moves.) 
A pair of dpda’s M, and M2 is said to have the segmental propurt_v if, in case 

M, = .412. every pair of live configurations (p, a) E Q, x 1’; and (& .B) E Qz X 1’: 

such that (y(,,, G) + t P, 4 and h, Z,,J + (p, p) for some td E E* has the 

segmental property. 
I > 

Remark 3.5. Both dpda’s may have infinite seqiuences of r-moves in Definition 3.4. 
In particular, however, if AI2 is real-time strict, tllen the above condition is necessarily 

satisfied with Reading-Seg( is, p’) = /3’ (see [2S, Proposition 3.2, pp. 195-1961). Hence, 
for a pair of strict dpda’s, the segmental property is properly more general than 

real-timeness for one of them. 

We :xe henceforth exclusively concerned with a pair of strict dpda‘s A/r, and M2 

Lvhich is assumed to have the scgmentai property. Now the emphasis in this paper 

is on the equivalence checking algorithm itself, and the idea of the segmental 
property is introduced merely to demonstrate the increased generality of our tech- 
nique over previous ones. So, we do not go into the details of the property further 

tlw~pt the following which ;we directly relewnt to termination of our algorithm. 



An extended direct Lranching algorithm for dpda’s 93 

Lemma 3.6. Let M, and M2 be a pair of equiuafenr sfrict dpda’s which has the segmental 

propert_v, and 

(9OlJOl)+P, 4 and (9.2,&E)=+,P) 
I ? 

-for some u E c* and live conjigurations (p, a) E Q, x r:, (p, p) E Q2 x rl, hence 

(P, a)= (E P)* 

Then 

IReading-Szg(,O, /3)I d %I(@, 

where 

9(a) = ,u7$( I +1Q2i)“‘--‘. 

Here, -for a set Q2, iQrl denotes the cardinality of Q2. 

Proof. The proof is by induction on 1~11. 
The basis, Ia I= I, is obvious by Definition 3.4, where %I( cu) = 9. 

Next, we assume for some n ( 2 1) that the lemma is true for any cy such that 

1~ 1 s n. Then let 

for some u. E S* and live configurations ( pO, Au) E Q, x r;“, (&, P@:;) E Q2 x r’f, 

where A E l‘, and (Reading-Seg(j&, p:t>l= 9 or else p:( = F. Now if 

(p,,,A)=&(p, e) forsome uEC* andpE @,, 
Afl 

since the pair of 1LI, and I& has the segmental property. In addition, 

(p, CY)= CF, /?‘p$ with 11~1 = n. 

Hence, 

/Reading-Seg( p, p’p;I)I s ti( I + 1 Q-J>“‘i ’ 

by the induction hypothesis. Thus, for any 4 E EMP(p, p’) c_ EMP(&, pI), 

I Reading-Seg( q, p;f)l d 1 Reading-Se& pI p’p;)I s &( 1 + I @l)lfri -I. 
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Therefore, if we let EMP( j!&, &) = {cl,, &, . . . , i&} where Id l&l, we have 

IReading-Seg( j&, PI,@:)] s IReading-Seg( DO, ,Bb)) + i IReading-Seg(& pG)l 
i=l 

5s !% +[@I%(1 +lQ,l)‘“‘-’ 

s %(I +IQ,I)‘““‘-‘. 

So, the lemma has been induced. cl 

Recall that, for a pair of equivalent live configurations (p, cu) of a strict dpda ( E Do) 

and (j& p) of a real-time strict dpda ( E I?,), we have 

[Reading-Seg(p, @)I = 1~15 k,(al 

for some constant k, which is defined by M, (see [2S, Definition 3.1 and Lemma 

3. I, pp. 196~1971). 

Definition 3.7. (i) Let ( p, /3) and ( p, y) tz Qz x 1-T be two live configurations such that 

and 

Reading-Seg( p, /3) = Reading-Seg( p, 7) - fi ,& . . . p, 

EMP(p, A,,) = EMP(p, p,,). 

Then we write 

in c;dse, for every q E EM&p, A&h, . . . p,) = EMP(p, ~J3,~, . . . p,), 

for i -= I, 2, . . . , 1. 

(ii) For two live configurations ( p, ,3), (11, y) c QJ x I’! and an integer h 2 0, let 

ltnd 

p :- pp with p” = p”“, 

y = y’y” with y” = y”“. 

Then we write 

(Pm 4, Y) 

if ( p, /T) ‘=- (p. y’) and /?” = y”. 
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Remark 3.8. (i) By definition, k coincides with = and = in case h = 0 and h = 00, 

respectively. In addition, relation k is reflexive, symmetric, and transitive, i.e., 2 

is an equivalence relation. Furthermore, (p, /3) k(p, y) implies (p, p) = (p, y). 

(ii) If (p, p) k(p, y) as in Definition 3.7(ii), then (A p) L( p, y) for any h’ < h, 

and more generally, ( p, /3’8) g( p, y’a) for any is E rf and h” s 181. 

(iii) If (p, P) %p, Y) as above, and (p, P)+i (q,, W, (p, Y) +I (q2, 3,) for 2 1 
some x E Z*, (q,, &)E Q2 x r:, (q2, &)E Q2 x rf_ then q1 = q2 and (y,, a,) k(q2, fi2). 

Besides, if either l&l < h or l&l 6 h then if, = az. 

(iv) Given (p, S). (p, y), and h, it is essy to check whether (p, p) k( p, y) or not. 

Summarizing the above all, if (p, p) A@. y) then we may regard that (p, p) and 

(p, y) are almost equal. 

Lemma 3.9. Gioen Q positive !nteger a, consider n set Si &] of configurations defined 
b.v 

with (p, 8’) =$G+( p, /?‘) and 0~ IReading-Seg( p, /3’)I s Zl}, 
? 

and partition it iI4 w !?K >quiualence classes under the relation =. Then the number if’ 

the equivalence trusses into which S[kB] is puvtilinned is at most 

Proof. We have 

and 

I{ Reading-Seg( p, p’) E 1‘; I( p, p’) E S[ 4]}1 s (!I’?1 + 1) ‘. 

Furthermore, for each (p, /3’) = (p, &h,/3&. . . P,h,. . . P/h,) E S[%] and i, where 

Reading-Seg( fi, /3’) = /3&. . . p,. . . PI and 1 G id I< 3, the number of the 

equivalence classes into which { ( p, PI A &A2 . . . PiA: . . . P/A,) E S[ %](A\ E 1’: is an 

F-segment in (is, &A,&A2.. .&A:. . . &A,)} is partitioned under = is at most 

Therefore, the objective number of the equivalence classes is at most 
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Proposition 3.1Q. Let M, and M-, be a pair qf equivalenr strict dpda’s which has the 
segmenta i property, and 

*for some 24 E C* and live con$gurations ( p, a) E Q, x I-l, ( j& p) E Q2 x r,‘, where ay = 

Ad with A E I‘,. Furthermore, let 

t p, Ala”) =+ (4, FIQ”) 
*%I , 

jbr wme :Y~, E ,V* and q E Q,, and 

Proof. Let 

S’[t p, 0 ) = ( ii, p ), q ; 11 I 

Then each (qi. y;P”)t S’[(p, &=(I), p), q; h] is such that (y, a”)f(ijl, yj,W’), and 

hence 

\Reading-Seg($, yi)i 5 (Reading-Seg(ijj, y;P”)I s :d(tv”) 

by Lemma 3.6. So, the number ofi the equivalence classes into which S’[(p, a) f 
(is, p), 4; h] is partitioned under = is at most lQ~I’V’!‘“‘“.““(ll~~l + 1) fi~tr” by Lemma 

3.9. 
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Moreover9 l{qj E Q2 I (qj9 YjP”) E s[( P9 a) G (P9 P)9 4; hlll s 1 Q21- 
So, combining these gives the final bound. 0 

In case Mz is real-time in the above proposition, S[( p, a) = (p, p j, q; h] is finite 
(cf. [25, Lemma 4.4, p. 2051). But it is not necessary so in our case, nevertheless we 

can resort to the above property instead for finite termination of the algorithm. It 

should be noted here that our algorithm needs to know neither 92 nor %(a”) in 

advance. 

4. The equivalence checking algorithm 

The equivalence checking is carried out by developing step by step a so-called 

comparison tree. 

At the initial stage, the comparison tree contains only the root labeled (q,,,, Z,,,) = 

(qo2, Zo2) which is said to be in unchecked status. In each step the algorithm considers 

a node labeled (p, a) = ( j?, p) such that, for some u E E*, 

and tries to pro’, e or disprove this equivalence. In case ay = 9 = F, or another internal 

node labeled (p, cu) = (ii, p) has already app ctiled elsewhere in the tree, then we 
turn the node to be in checked status. Otherwise, except a special case where the 

node is in halting status defined in Section 4.3, we expand it by branching or skippir.g 

almost as in [25]. 

4.1. Branching 

Lemma 4.1. !f (p, 0) = (& p) holds, then the _followirrg conditions (i) and (ii) hid: 

(i) In case neither ( p, a) nor ( p, p) is in wnode, 

FIRST( p, a) = FIRST( jj, /3). 

(ii) (a) In case both ( p, cu) and (I?, p) are in reading mode, jbr each ai E 
FIRST(~,~)={~,,~, ,..., a,}~& let 

(b) In case ( p, a ) is in wade, let a, = P, 1 = 1, 

(c) In case ( p, a ) is not itt F-mode and ( j& /?) is in e-mode, let a, = E, I= 1, 
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Then, in every case, 

(j-4, a,) = (PI, PA i = 13 2, - - - , 1. 

Proof. Part (i) follows from Proposition 3.1, and part (ii) is obvious. q 

Checking whether condition (i) holds or not is named branch checking to the node 

labeled ( p, a) = ( j?, /3) in question. When it is verified to hold, the checking is said 

to be successful. Then, we expand the above node by adding to it I sons labeled 
( p,, CY,) = ( p,, pi j in unchecked status, i = 1,2, . . . , 1. In addition, let the new edges 

connecting it and these sons be labeled 0, i = 1,2,. . . ,I, in the same order as above. 
The step of developing the comparison tree in this way is named branching to the 

node in question. We may apply branching not only to a leaf but also to an internal 

node (in skipping status defined in Section 4.2) in the developing comparison tree. 
In the latter case, old and new sons may coexist. In either case, the node to which 

branching has been applied is called the branching node, and is in checked status. 

If condition (i) does not hold, then we conclude that “M, f A&“. 

4.2. Skipping 

In order to prevent the comparison tree from growing larger and larger infinitely 

by successive application of branching steps, certain nodes are expanded by other 

steps of skipping. 
Now let the comparison tree which has just been constructed up to a certain stage 

be denoted by T( A/1, : M,). Here. it is assumed that the father-son relations in the 

tree may have been realized not only b>f branching but also by skipping which will 
be described hereafter. No other step is ever used to realize any father-son relation 

in the comparison tree. 

Definition 4.2. (i) If ( p. tuy) = (,6, CUT) and (y, fir) = (S, 67) are labels of two nodes 

in T( M, : AA) which are connected by an edge labeled .Y c I* such that 

iii) A sequence of such father-son relations as 
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for i=1,2,..., m, is named a derivation path, and is written as 

= ml+l, &l+l I m 
where _V = x1x2 . . . x,,~, or simply 

In particular, 

above e 
if (PI, &)A (pm+,. $,+,1 (see Definition 

may be replacMe2d byG.3. 
2.3), then the 

* 1: I I .d -‘ 

Definitioy 4.3. (cf. [25, FFfinition 4.2, pp. 206-2071). For d derivation 

(j& p) 1 (q,, y), if ( jj, p) ,a(“’ (Y,, y) with n 3 I, then define 
hl2 1cl~ 

=rnin~lplI(ii.P)~(li.P)~‘““‘(itr, y), 
> 

Define also 

Then consider a node labeled (‘, N) = ( p, p) in T(M, : M,) where ( p, a) has a 

nondecreasing mode (see Definition 2.2) and (j& /3) is in reading mode, and rewrite 

the node label as 

(~9 Aa”)= (IT, P’P”), where LY = Ad’with A E Z’, (4.1) 

for some factorization /3 = /3lp” with j3’~ 1’:. Furthermore, suppose that T( M, : M,) 

contains another branching node labeled 

(p, Au,)= (P, p’o) (4.2) 

for come (til E: I‘;” and p’wz E I‘: such that (p1/3’) = (II, /3’\. Here, let such (p. Aw,) = 

( p, p’+> be with the longest possible Reading-Seg( p, p ) E 1-i. 

Definition 4.4. (i) Applicabifit~ ofskipping: Skipping to the node labeled (p, Ad’) = 

(p, p’p”) (equation (4.1)) in question with respect to the branching node labeled 
( p, Awl ) = ( j& /3’wJ (equation (4.2)) is said to be applicable in T( MI : A&) if every 



100 E. Tomita 

derivation path of the form 

for any x E Z*, (qj, y) E Qr! x r:, can be rewritten as 

with y = r,w2. 
(ii)- A skipping-end: A skipping-end from the node labeled ( p, Act”) = (j& p’B”) 

(equation (4.1)) in question with respect to the branching node labeled ( p, Am,) = 

( j& P’wz) (equation (4.2)) in T( M, : M,) is defined to be a node labeled by each 
equivalence equation in 

((9, fl”F(G Y,P”,I((P~ AJw)=(Is, p’lw,N*~ 1 I ’ .‘ 

(( 9, E I w l ) = ( iji, yli co,)), where the node labeled (9a , CO,)= 

(q,, Y,WJ is not in halfing status, ( p, P’) :-$ (Q,, Yj)9 
3 

.YC z”, y c EMP(p, A)}. 

(iii) An edge-label: For a skipping-end labeled (9, C-Y”)= (c_i,, y&3”) from the node 

labeled f p, Ad’) = ( p, p’j3”) (equation (4.1) ) in question, an edge-label bet&teen them 

in T( M, : AL) is defined to be a shortest input string so such that 

with the fol!cxing property: For any XE 2“ such that 

it holds that 

Hence. 

Note, in Definition 4.4(ii), the restriction that the node labeled (9, w,)- (q,, _v,to,) 
is not in halting status. The reader, however, may suppose for a while that no node 

k in htr/ling status until Ii(l/fiv~,q status is introduced for the first time in Section 4.3. 
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When skipping is applicable to the node in question with respect to some lmznching 

node in T( M, : AA), we expand it by adding all its skipping-ends in unchecked status 

to it as its sons, with the new edges connecting them labeled by edge-labels defined 

above. The step oi developing the comparison tree in this way is named .ikipping 

to the node in question. We introduce here skipping status in which a node turns 

to be when skipping has been applied to it. 

Remark 4.5. If all the branch checkings along the derivation path (4.3) have been 
successful, then so are those along .Y starting from the node labeled (4.1) except the 

end (see [25, Lemma 4.3, pp. 203-2041). Hence, the latter intermediate checkings 

can be skipped as described above. 

Nodes in skipping status should be visited over and over again. When skipping 

to a node in skippirlg statrls has turned to be not applicable at some later stage, 

then a branching step is applied to it. When a skipping status is applied again to a 
node in skipping status to which skipping keeps applicable, if additional skipping- 

ends are found then they are added as new sons. Besides, the edges between tire 
skipping node and its sons are relabeled, if necessary, so that the latest labeling 

shouid satisfy the conditions of Definition 4.4(iii). 

A skipping -rep applied to some node reduces the height of the left-hand side of 

its equivalence equation by one to have its skipping-ends as its sons. Therefore, in 
case M, = A&, the height of the left-hand side of any node label in the comparison 
tree is bounded as in [25] (see Lemma 5.2). Unlike [25], however, successive 

application of conventional rkipping steps (without taking halting status into con- 
sideration) may yield an infinite number of skipping-ends with unboundedly high 

right-hand sides in case M2 has E-moves (see for an example Remark 4.7). This is 

the reason why halting status shall be introduced in the next section. 

4.3. Halting 

This section is significant only if the dpda M2 has F-moves. 

Consider a skipping node labeled (p, a) = (jj, p) with cy = Aa”, A E I’,, which has 

a skipping-end labeled 

(99 co = @j,, Yo) 

such that 

for some so E I+. Now suppose that it has been applied skipping steps sufficiently 

many times, and that another brother skipping-end labeled 

(4, d) = (ci;,, Yj, (4.6) 
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such that 

for some x E Et, y # yo, has just been contained in the comparison tree. In addition, 
assume that they satisfy 

and 

(see Definition 3.7). Here, both equivalence equations (4.4) and (4.6) should be 

checked to hold for (p, a) = (p, ,G) to hold. However, once (4.9) has been verified 

to hold, we know that (Q,, yo) = (qj, 7) holds. Hence, it suffices to check only the 
former (4.4). Then the latter skipping-end labeled (4.6) is turned to be in newly 
introduced halting status, and it will not be expanded any more. Nodes which are 
not in halting status are said to be nonhalting. 

Definition 4.6. A skipping-end labeled (4.6) with (4.7) is said to satisfy the halting 

condition if it can find a nonhalting brother skipping-end labeled (4.4) with (4.5) 

such that (4.8) and (4.9) hold. 

Just after a skipping step to a node in question, we check whether its uncheckuti 

or halting skipping-ends satisfy the halting condition or not. Then we turn only 
erich skipping-end that satisfies the halting condition to be in halting status. Such 

a step of turning appropriate skipping-ends to halting just after skipping to the node 

in question is named halting to them. We should recall here that the edge-labels 

between the skipping node and its skipping-ends may vary as the tree grows. Hence, 

the halting condition to a skipping-end in halting status should be rechecked as 
well in a halting step as described above. If a halting skipping-end has turned not 

to satisfy the halting condition, then its status is turned from halting back to rc~huskc~~ 

in the halting step. 

Lf’e ;frc on the assumption th;it the given pair of dpda’s WI and Al, has the 

segmental property. So, in ctisc ,!I, = ,bI,, the number of wnhalting skipping-ends 

ih bounded ov+,ing to Proposition 3.10 (see Lemma 5.S). 

Note that the brotherhood of the hdting rlode labeled (y, ru”) = (4,. y) and the 
mwhdting node Ltbelcd (0, cu”) =Z (S,, y,,) is signiticant to havvc (4.8) and (4.9). To 
show the significance of (4s) and (4.9), assume that the comparison tree contains 

a hranc*hing node labeled (p,,. .4(,o “) = ( ji,,, &‘,p”) with respect to which skipping to 

another node labeled ( p,,, A,,u,‘:) ~5 ( ii,,. p,‘,p:() is applicable. and that 



i 
An extended direct branching algorithm jkw dpdn’s 103 

for some u E Z*, where (&, &) =5: (PO, PI), Q! =A~“withA&,p=Plp”with/YE1~2+, 
preceding (4.5) and (4.7). So 

((pi, &I QN)s (ISO, PhIP”)) ~ef ((4, E IQ”) G (& 301 P”)), 
1: 2 

and 

where y. = y,oP”, 

where y = @“. 

We let here 

( jj,,, p,‘,) * (ii,. Y,~) and 
2 

GO, Pb) * U&q Y,). 
_) 

Then for (p,,, A,cu;:) = ( j&, /3&!!:) to hold, not only (q, LYE) = ($7 y@g) but also 

(q, cu:) = (@,, y&i) should be checked to ‘hold. Here, the node labeled (q, cwli) = 

(q,, y,&) is yielded as a skipping-end from the node labeled ( ptt, A,,a{) = (PO, p#g) 

so that 

for some H-,, E L(p(,, A,,) such that 

and it may be expanded hereafter. On the contrary, the node labeled (4, ai;) = 

(y,, ?#I;) is not SO, since the y,ode labeled (q, a”) = (sip yip”) is in halting status. 

However, (4.9), i.e., (tj,, y,,,p”) z(qj, _r,p”), necessarily implies (&, y,,,Pb) = (qj, yip:;) 

from Remark 3.8(i), (ii),-and hence (q, a;) = (q,, yip:) if only (q, ari) = (Ifi, YjoPI;) is 
checked to hold. Therefore, avoidance of the node labeled (q, a{;) 3 (qjv y,/3:;) is 

justified under (4.8) and (4.9) (see also the proof of Claim IE,, case (B)(iii’i in 

Section 5.2). 

Continue the process so far described as far as possible so long as no branch 

checking failure is encountered. If we reach a stage where the comparison tree 
hitherto having been constructed is subject to no more change, then we conclude 

that “M, = M2“. On the way, the next node to be visited is chosen as the ‘smallest’ 
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of the unchecked and skipping nodes, where the size of a node labeled (p, a) = (Q p) 

is the pair (Max{loul, lOI>, Min{l& IpI}>, under lexicographic ordering. 

The exact algorithm follows below. 

Algorithm 

Let the comparison tree consist of only a root labeled (9(,,, Zo,)= (902, Z,,,). 

while the comparison tree contains an unchecked or a skippicg node 

do let P be the smallest such node, and suppose it is labeled (11, cu) = ( j& p) 

[No LIXPANWN] 

ifa=p= F or (p, a) = (p, /3) appears as the label of another internal node 

then turn P to checked 

[S , KIPI'1NC; RI:-SKWPING] 

else if ( p, cu) has a nondecreasing mode, (j& p) is in reading mode, and 

skipping is applicable to Y with respect to some hrancYGng node 

then apply the skipping to P 

[ HAL:1-1 W] followed by halting to its skipping-ends 
if the skipping has caused a change other than 

generation of only hnltir~g skipping-ends 
then turn P to skipping: 

[RACKJ turn ;.I1 s-cIlec*ked nodes to skippir7g; 

else [no Ed $bntial change has occurred] 

turn P to .~ltucV~d 

fi 

[ BHWMN~r] 

[RACK ] 

else if branch ch#e&ing is successful for p 
then apprj the branching to P : 

turn P to checked: 
turn all s-checked nodes to skipping 

else [branch checking fails] 

conclude that “M, f A/l,“; halt 

fi 

fi 

od 

fi 

4.S. An e_xample 

Let US apply the above algorithm to the following pair of strict dpda’s: M, = 

(h,h p, yL IZW. A R, C W. ((1, b. t’. 4 e), 8,. qol, Z(,,, 0) and M2 =({9,)2, r, s), 
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(901, zod -f: (P, AC-D), 

(PY A) L (P? AB), 

(P, A): (P, B), 

0, B)A (P, 9, 

(P3 B& (9, &), 

(P, Ci -L (9, CL 

(9, B& (99 E), 

(9, C) -L (4, e). 

(9, D) -L (9, CD), 

(9, D) -1; (9, d, 

82 

(902,zoz) -f+ (r, EH), 

(4 E) J+ (5 0, 

0-9 0 J9 (4 El, 

k F)L (r, G), 

(r, H):+ (r, GH), 

(4 a-L 0, 4, 

(5, H) : (r, GFH), 

Successive application of branching steps yields an intermediate tree containing 
early nodes numbered @-@in Fig. 1. When @ (p, A - BCD) = (r, E - FH) is visited 

first, skipping is applied with respect to 0 (p, A - CD) = (r, E - H) to yield nonhalting 
skipping-ends (p, BCD) = (r, FH) and (9, BCD) = (r, G l FH). Furthermore, when 

the same node @ ( p, A 9 BCD) = (r, E 0 FH) is visited and applied skipping again, 

a new skipping-end (9, BCD) = (r, GF l FH) is yielded to have the tree in Fig. 1. 
Then it is confirmed to satisfy the halting condition, since it can find a nonhalting 
brother skipping-end @ (9, BCD) = (r, G. FH) such that 

2=l(r, EFH)==%(r,GFH)l<l(r, EFH,=a(r,GFFH)l 
M, n1: 

and 

(r, G- FH) L(r, GF- FH). 

Here, G is a common canonical reading segment in (r, G) and (r, GF), and 
EMP(r, G) = {s}. M oreover, F and F are &-segments in (r, GE) and (r, GF), 
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h 

r-, 
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P; 
E. 
E 
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iu 

h ,? 

::: ..: 

oil ._ 
AL 
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respectively, and (s,E)=$(s,E), (s, F)---$(s,E). Hence, (r, G)=(v,GF). 

Consequently, skipping-end (9, BCD) = (r, GF* FH) is turned to halting and node 

0 16 (p, Aa BCD) = (r, E l FH) is turned from skipping to s-checked. Then algorithm 

halts with the correct conclusion that “MI = &“. (L( M,) = L( A&) = 

{a’b(cu bmc)d2*-‘el la m 2 1, n Z= I}.) 

Remark 4.7. If ‘halting’ would not be taken into consideration, then skipping steps 

should be repeatedly applied to ( p, A l BCD) = (r, E; FH) to yield an infinite number 
of skipping-ends (9, BCD) = (r, GF’FH), i = 0, I, 2, . . . , since 

I I , , 
(p,AlBCD)%(9&3CtJ) and (r,EIFH)s(r,GFiIFH) 

MI M2 

for i=O, I,2 ,.... 

5. Termination and correctness of the algorithm 

5.1. The case where M, and M2 are equivalent 

Irzl what follow:, the pair of dpda’s MI and M2 is assumed to have the segmenta 

property (see Definrtion 3.4). 

I 

Lemma 5.1. A branching node labeled (p, a) = (~1 p) is said to be nondecreasing 
reading if ( p, cy ) has a nondecreasing mode and ( j& p) is in reading mode. Then in 

case the given dpda’s M, and Mz are eguivalent, the number of nondecreasing-reading 
branching nodes in the comparison tree is less than 

(see Definition 3.4 for 3). 

Proof. Suppose for the sake of contradiction that the comparison tree could contain 
nondecreasing-reading branching nodes labeied (pi, A,a I) z (pi* pip:‘), i = 
1,2,..., m, with m 2 Y, where (pi, Ai) E Q, x I‘,, and IReading-Seg( j&, /3i)l= 2 or 

else 1 d 1 Reading-Seg( j&, /3:)I < 9 and j3:’ = E. Here, we can show as in the proof of 

Lemma 3.9 that the number of the equivalence classes into which {(pi, pi) E Qr! X 

1’1’ 1 1 s is m} is partitioned under = is at most 

IQ.4 ‘QJ’.~ +‘{(lr’21 + 1)” - 1>s IQ21’V’-‘(11;l + I).’ - 1. 

Then, there could exist a pair of nondecreasing-reading branching node. labeled 

(pk,&a~k(ljk,/%P~) and (pI,A&‘)=(~,J3$~) such that (pk,Ak)=(phAr) and 
(j&, &) =: (PI, pi). So, one of these nodes should have been applied skipping. This 
is a contradiction. Cl 
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Lemma 5.2. Let 

9, = Max(j6l I( p, A) -f: (4, 0) is in 6,}, 9” = Max{( PI - l)Y’, 1). 

Then in case the given dpda’s M, and M2 are equivalent, every node label ( p, ar) = (A p) 

in the comparison free satisjes 

I+Y’. 

Proof. The case where 9 , s I is trivial, therefore, we shall consider only the case 

where P, > 1 . 

Now let a node labeled (p, a!) = (p, p) be with the maximum jc~l in the comparison 

tree T( MI : M,), where 

((P,,,I,~,~I)~fIj,,il, Pncd) (=((p, d=(lxP))) 

for some u, E Y, ( p;, (.u,) E Q, x I-r, ( j?,, p,) E Q2 x I?, I d i s II. 

Then let il I= I, and pick out as many indices j,‘s,j 2 2, as possible from {2,3,. . . , II} 

such that 

(1) Ia,, ,I + 1 s IQ 

(2) la, 1 -=c 1 cu,j for any i’, 4 < i’ S 12 + 1, 

(3) (ii,:, p,,) is not in F-mode. 

Here, every internal node labeled ( p,,, cu,,) = (F,,, @,~)(I s i, 6 n) as above is a hrarwhir~g 
node, since if it had been applied skipping then ICY,,, ,I = ]c,,: - 1, violating condition 

(2). Also for the same reason, every ( p,,, a,,) has a nondecrecsing mode. Then, every 
( pi,, pI, 1 is in reading mode, since L( pi,, /3,,) = L( pi,, CY,,) # {F}. That is, every internal 
node labeled ( p,,, ai,) = (F,,, pi, ) picked out above is a nondecreasing-reading branch- 

ing node. Therefore, the number of these nodes is less than or equal to Y- I by 
Lemma 5.1. So, 

Hence, the result. n13 

(Note a misprint in [X, p. ! 47, lint: -- I]: “II>” should read “US’.) 

Definition 5.3 (1119, p S2]). The Mghf qfa tree is defined to be the maximum number 

of edges along a path from the root of the tree to a leaf of the tree. 



An extended direct branching algorithm for dpda’s 109 

Proof. Let the comparison tree T( MI : A&) have a path from the root labeled 

( qo,, Zo,) = (qo2, Zo2) to a leaf labeled (p, cy ) = (j5, p) such that 

((Pn+I, a,,+1 )=(Pn+d,,+4 (=((PA=~~m>). 

Here, these edges 

i=l,2 
(a) 1; 

- - 9 n, are classified into the following three types: 

I +,I 2 Id and t PI, PA is in reading mode. (An edge realized by branching 

of type (a) in Lemma 4.1 (ii), where (pi, cy;) has a nondecreasing mode. So a node 

labelt d (pi, cy,) = (p,. p,) is a nondecreasing-reading branching node in Lemma 5.1.) 

(b) I~,+,l=l&-~ c ;pn edge realized by branching of type (a) or(b), or by skipping), 

(0 (I)~+ *,+I ) = (Pi, a,), and (r),, PI) is in E-mode (an edge realized by branching 

of type ic)). 
Th&?n, for ! = a, b, c, let 

(m-,1 (1, h J=(F,+,, P1+,)> is an edge of type (t ! 

So, 

along the above derivation path}. 

IN,,1 +INhl +iN,.l= n. 

Let us first consider the c2se where Y, 2 1. Now Lemma 5.1 shows 

Therefore, 

1 N+ 1 + \,: (ICY, ,,I +,I)< 1 +(;P, - I)(:+ I). 
It W,, 

Moreover, 

I Nt.1 d I N/ + I Nl. 

Hence, 

,?~2(lN,l+lN,l)~2(3,Y-~~, +l). 

In case 9: = 0, we have 1 NJ = 0 and I Nhl = 1, hence n s 2. 
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Thus, the number of edges along a path from the root to any leaf of the comparison 

tree is at most 2(p,Y- 9, + 1). This concludes the result. Cl 

Lemma 5.5. Let 

2, = Max(B( a”) 1 (q, a”) is a reachable conjiguration of M, such 

that Icy”1 < Y), see Lemma 3.6 for B(a”). 

T&en in case the given dpda’s M, and Mz are equivalent, the number of nonhalting 
skipping-ends from any skipping node in the comparison tree is at most 

Proof. Let a node labeled ( p, a) = ( fj, /3) be a skipping node in the comparison tree 
T( M, : Mr), where (Y = Ad’ with A E I’, and Ic~“l< 9 by Lemma 5.2, p = @‘p” with 

P (“’ = p” for some nonnegative integer h < IpI, and let q E EMP( p, A). Then, from 

Proposition 3.10, the number of the equivalence classes into which 

={(4,,Y~P’.)“02XI.~l(P,A)~(q,F.)and 
I 

(p, p’) =++I ($, y,) for some s E Z*} 
? 

is partitioned under = is at most 

IQI - 2 
i<),i.h, t 2 ([r-J + Iy’ 

(cf. (4.9) in the halting condition). Moreover, the pair of ( p, GY) and (j& 0) has the 

segmental property. So the number of nonhalting skipping-ends whose labels are 

of the form (9, a”) = (q,, y&3”) for given 9 E EMP( p, A) is at most 3 I Q211Q~“lal +‘( ILl + 
I)‘“; (cf. (4.8)). Here IEMP( p, A)1 d IQ& so we have the final bound as described 
above. I! 

Now, these lemmas are combined to have the following. 

Theown 5.6. For the pair of equivalent dpdu‘s M, atrd M2. ( E II,,) which has the 

segmental property, the algorithm halts in a jhite rlunlher sf steps with the correct 

wnclusion thaf l ’ M, = h&“. 

Proof. From Lemmas 5.4 and 5.5, the height and the ‘width’ of the comparison 

tree with only nonhalting nodes are bounded. Though kzickg skipping-ends may 
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be yielded from this finite part of the tree, too, no halting skipping-ends contribute 
to expand the comparison tree further. Hence, the development of the tree terminates 

in a finite number of steps. In addition, every node label (p, GY) = (j$ p) in the tree 

is such that (qo,,Z,,,)~(p, a) and (qo2, &)=$ (ii, /3) for some u E C*. Hence, 

by Proposition 3.1, no branch checking failure ever occurs. Therefore, the conclusion 
is VW, = M2”. Cl 

5.2. The case where M, and M2 are ir# equivalent 

Theorem 5.7. brr case thegiven dpda’s M, ;rnd M2 ( E DO) are inequivalent, the algorithm 

halts in a finite number qf steps with the correct conclusion that “M, f M2”. 

Proof. Suppose for the sake of contradiction that no branch checking failure would 

ever occur. Here, let T(M, : MJ denote the comparison tree which has been 

developed as far as possible, Then it should follow that we have the following Claim 

IE, for any positive integer n. 

Claim IE,. For ecory nonhalting node lobeled (p, cx) = (j& p) (a = ~~~02 E f;‘, p E r:‘) 

in T(M, : M2,, iJ 

-for some a, E I‘,‘, w E L.( p, al), and r E Q,, then the following hold: 

(i) (~5, p):=$j (&, a) forsome (& a)E Q2 xr’f. 
2 

for some w. E L( p, a,) and a nonhalting node labeled (r, (Y,) = (&, &,) such that 

Proof of Claim E,. The proof is by induction on n. 
Basis. n = 1 ((w, E r,). In case the internal node labeled (p, a) = (p, p) is a brmching 

node, properties (i) and (ii) obviously hold with w, = MT E C u {E} and a0 = 8, since a 

branching step of type (a) or (b) in Lemma 4.1 has been successfully applied (after 
that of type (c)). Hence, property (iii) trivially holds. Consequently, in case the 
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internai node labeled (p, ar) = ( j& p) has been applied skipping with respect to some 

branching node, the same properties as above also hold wfth w E 2, except that the 
node labeled (r, CU?) = (& a) which is a skipping-end may possibly be halting. But, 

it can be so only if there exists a nonhalting brother skipping-end labeled (r, cu,) = 

(Jr,, &) such that (ii) and (iii) hold. Hence, Claim IE, has been proved. 

Induction step. Now we assume that IE,, L, . . . , IF,, are true for some n (3 I) and 

shall prove that E,, + I also holds. 

Let a nonhalti’ry internal node labeled (p, a) = (ji, @)(a = aI a2 E r;, p E I’!) be in 

T(M, : A&) and 

for some (t, c I’,+, 1%’ E L( p, a,), and I’ E C,,. 

(A) In case the internal node labeled (p, LY ) = (ii, p) is a branching node: Divide 
deriwtion (5. I ) into 

where w - UN*’ and ( pt. cu; a,) c Q, x f’,+. Since the node in question has been applied 
a branching step of type (a) or (11) (after that of type (c)J, we have 

and 

for some ( j?‘, [Ii’) E_ Q2 x: I’!, where the node labeled (p’, CY I CW?) = (ii’, 6’) is rwrrhahrtg. 

Then the induction hypothesis E,, applies to this nonhalting node for the latter 
derivation of (5.2) to have the following: 

and 

(S.S) 
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So, these properties combined with the preceding (5.3) ?nd (5.4) directly give the 

objective properties (i) through (iii) in case h = I@, p) :2 (&, CS~)~ = h’. In the other 

case where h < h’, we can also derive (i;k, a,) L(&, a) along others from Remark 

3.8(ii) applied to (5.5). 
(B) Incasetheinternalnodelabeled(p,a)~(~,P)(~-Aa”=cu,cw,,A~T,,P= 

p’p”) has been applied skipping: There exists a branching node labeled (p, Am,) = 
(p, p’w2) such that (jJ, /3’) = (p, f?‘) with respect to which skipping to the node in 

question has h ,een applied, where Reading-Seg( j?, p’) E rl is the longest possible one. 
Now divide derivation (5.1) into 

and 

where w = q; CY, = AC& Q“ = (Y& and n’+n”= n + 1 (see Fig. 2). 

5;k 
:’ 

,/‘-----’ a 7-l 
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?&first halJ The first derivation (5.6) implies 

(p, Alw,)&""(q, +,) 
MI 

(1 s II’s II +l), (5.8) 

and the induction hypothesis IE,,, (if n’ 6 n) or the result in the preceding case (A) 

(if n’ = n + 1) applies to the hrunching node labeled (p, Am,) = (jJ, p’wz) for derivation 

(5.8) to have the following: 

(@‘w,)~=+ (i&, y) fOrsOme(qj, Y)E O2XE 
3 

and 

(5.9) 

for SOme -XI E L( p, A) and a nonhalfing node labeled (4, w,) = (q,., YJ such that 

(5.10) 

(5.11) 

Since skipping to the node labeled (p, Ad’) = (ii, p’p”) with respect to the bmnching 

node labeled (p, AU,) = (p, @I_!) has been checked to he applicable after the appear- 

ante of the above derivation path (5.9), it can be rewl-itten as 

with y. = y,owl. This implies ( j& P’) +j 

with y = y,~, by (5. IO). So, 
\ 

for some y,,), y, c I’!. and 

K) (F, P) i+ (S,, Y), where Y = y,P”. . 

(5. IO’) 

Moreover, the above skipping to the node in question has yielded 
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for some so E L( p, A), such that 

il5 

(5.12) 

Then, combining (5. I2) and (5. IO’) giv$-s 

where y. = yiop”. In addition, Remark 3.8(ii) applied to (5.1 l), with (5.12), (iii’) and .* 
(&, y,d = (q,, Y, 1, gives 

(qp YO) ‘tqj3 Yh (5.13) 

Here we can assume, without loss of generality, that the skipping-end labeled 
(q, a”) = (tj,, y&3”) is nonhalting. To show tC, assume that it is a halting node. Then 

there exists another nonhalting brother skipping-end labeled (q, 0”) 3 (gj, y,&?“) 

such that, for some -x0,, E L(p, A), 

(ii”) (0, Al~“)=(j% P’iP”))e ((9. ala”)=@ Y~&V), . , I . 

and 

Thus, combining (5.14) and (iii’) gives 

In addition, (5.13) implies (ij,, y,,@“) ‘2’ CS,, Y), and hence 

(5.14) 

(5.15) 

by (5.15). So, if we rename not only (9, a”) = ($, ?/ror,p”) by (9, CY”) = (9,, @“) but 

also .x,~~, and 11;~~ by xn and h’,, respectively, then we have the desired result. 



Now, if n’= n + 1 and x = w in (5.6) (n” = 0, y = E, q=r,anday= E in (5.7)), then 

(5.6) coincides with (5.1), and the proof is complete. So, we shall consider the other 

case in the following. 
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‘IIre second hav In case LY;I E f ;’ and n”> 0 (n’ c n), we can apply induction 

hypothesis iE,,$# to the nonhalting node labeled (9, (Y”) = (t&q ‘yo) for derivation (5.7), 

since n” d n. Then, 

(Lj;,, ?++i (GA) forsome(i~,(3,)EQ-rxfT, . 
(5.16) 

and 

for some _q, E L(y, CT ;) and a nonhalting node labeled (r, cu,) = (&, ir,,) such that 

and 

( ik, il,,) S( FL, ir, ). (5.19) 

T/le r~hole. Combining (i’) and (5.16) by (5.13) gi\ es 

such that 

(5.20) 

Furthermore, combining (ii’) and (5 17) gives 

(we Remark U(iii)). Therefore: 

(a) If 
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then combining (iii’) and (5.18) easily derives 

In addition, if h?- -= 11; then (5.20) implies (&, &) z(& a). So, combining this and 

(5.19) gives 

(b) If h = rtl, <‘: h2 then, by (5.18), we have I(& v,)+ (fk, a[)l> h’,, and hence 

I(& Y) A ( 
hf2 

FL, ii)1 > h ‘I. Thus, combining (iii’) agd (5.18) also derives the same 

inequality as above. In addition, if II’, < h2, then (5.19) implies ( jrk, 0,) Z( F/_ n,). so, 

,combining this and (5.20) gives 

Therefore, in either case, 

This concludes the proof oli the whole part of case (B). 

Thus, Claim E,, has been induced for any n. Cl 

Proof of Theorem 5.7 (continued). ‘Sow if we apply this claim especially to the root 

labeled &,, &,) = (qo2, Zo2), then we know that the condition of Proposition 3.1 

holds, since we have encountered no branch checking failure (see [25, Lemma 5.3, 

Claim E,, property (ii), pp. 2 M-217]). Thus, MI - = M2 should hold, contradicting 

the assumption that M, and Mz are inequivalent. Therefore, branch checking failure 

does occur at some stage, concluding that “MI + M2". Cl 

6. Concluding remarks 

We have been so far concerned with only dpda’s which accept by empty stack, 
i.e., which are strict. For dpda’s M, and Mz with e.ther acceptance, we can transform 
them to strict dpda’s M; and Mi such that M, = M2 if and only if Ml, = AI;, as 

described below. 

Let M, = (Qi, Ti, C, 6i, q(ji, ZoI, F,), i = 1, 2, be a pair of dpda’s accepting by either 

final states or empty stack wK?h tn:ts the segmental property with a constant 3 

defined in Definition 3.4. 
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Now introduce an endmarker # Ps E, a new state qF e Q,, and a new stack symbol 

2 E I-,, and let 

S[,, = {(9();3 z[)i>’ (9, ~3Z)l(90i~ zOi)-f: (9, e, is in ‘()a), 

i 
{(q,, A)&~,, 49, E f;;, AE Cu{Z)} 

I 
6,; = <, u {(9*, A) L (9_ ~)j A E I-, u {Z}} if M, accepts by final states, 

I {(y, a L (yt, 4 9 E QI) if M, accepts by empty stack, 

for i= I , 2. Then the strict dpda AI: = (9, u (9, }, I’, u (Z}, Su { # }, S:, c~,),, Z,,,, 0) 
is such that L( 41:) = I_( &I,) #, and the pair of Al’; and Mi has also the segmental 

property with a constant 4 + 1. 

Hence, we can check a pair of dpda’s for their equivalence so long as it has the 
segmental property, whether they accept by empty stack or by tinal states. 

Secondly, we can easily generalize the algorithm so that it works even if some 

rexhabIt: configurations may not be live. Or, we can also convert an arbitrary strict 

dpda to an equi4ent one all of whose reachable configurations are live, by, e.g., 

[Z. Lemma 1.1, p . 39], preserving the segmental property. So. we lose no generality 
i1‘ife zsume that all rexhahle contigurations of &I, are live in case I.( AI,) f II.‘Here, 

w c‘tin check whether L( RI,) = 0 or not. 
Summarizing, we have the following. 

L;rstlx, it is lcti open in this pulper to tind classes of dpdG with the segmental 

propert>’ holding for each pair. Howc\xx, we m:ly instead propose a class of dpda’s 

irl \thi<*h ever: pair of 1ik.t: con!igurations has just the same segmental property as 

in Iktinition 3.4 escept fh;lf !U, :md RI2 are identical. Then we conjxturc: here that 
the equi\tilence problem is solvAle for dpda’s in such a class. 
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