A simple approach for the estimation of CO₂ penetration depth into a caprock layer

J.G. Wang a,b,c, Yang Ju b,c, Feng Gao a,b, Jia Liu b

Abstract

Caprock is a water-saturated formation with a sufficient entry capillary pressure to prevent the upward migration of a buoyant fluid. When the entry capillary pressure of caprock is smaller than the pressure exerted by the buoyant CO₂ plume, CO₂ gradually penetrates into the caprock. The CO₂ penetration depth into a caprock layer can be used to measure the caprock sealing efficiency and becomes the key issue to the assessment of caprock sealing efficiency. On the other hand, our numerical simulations on a caprock layer have revealed that a square root law for time and pore pressure exists for the CO₂ penetration into the caprock layer. Based on this finding, this study proposes a simple approach to estimate the CO₂ penetration depth into a caprock layer. This simple approach is initially developed to consider the speed of CO₂ invading front. It explicitly expresses the penetration depth with pressuring time, pressure difference and pressure magnitude. This simple approach is then used to fit three sets of experimental data and good fittings are observed regardless of pressures, strengths of porous media, and pore fluids (water, hydrochloric acid, and carbonic acid). Finally, theoretical analyses are conducted to explore those factors affecting CO₂ penetration depth. The effects of capillary pressure, gas sorption induced swelling, and fluid property are then included in this simple approach. These results show that this simple approach can predict the penetration depth into a caprock layer with sufficient accuracy, even if complicated interactions in penetration process are not explicitly expressed in this simple formula.

Keywords:
Fracture-matrix system
Fully coupled model
Two-phase flow model
Simple approach
CO₂ penetration depth
Caprock sealing efficiency

1. Introduction

Acidic fluids intrusion is a severe potential hazard for the geological storage of carbon dioxide (CO₂) in underground formations (Rutqvist and Tsang, 2002; Vilarrasa et al., 2014; Abidoye et al., 2015; Fei et al., 2015). The CO₂ leakage from a caprock layer may seriously reduce the quality of fresh water in the shallow subsurface and change the local air quality on the earth surface (Rutqvist et al., 2010; Armitage et al., 2013, 2015; Li et al., 2013). For example, the flow-through leakage of CO₂ may change the precipitation pattern when the penetration depth reaches the top of the caprock layer or the occurrence of breakthrough (Heath et al., 2012; Bolourinejad and Herher, 2014; Bielicki et al., 2015). This CO₂ breakthrough may heavily pollute the upper fresh water aquifer (Tsang et al., 2008; Bricker et al., 2012; Fontenot et al., 2013; Yang et al., 2013) if the multilayer system of caprocks is penetrated (Birkholzer et al., 2009). The subsequent flow-through leakage may be of self-enhancement or self-limiting (sometimes called self-healing) due to geochemical interaction (Deng et al., 2013; Ellis et al., 2013; Huerta et al., 2013; Smith et al., 2013; Elkhoury et al., 2015). Therefore, the caprock sealing efficiency is the key safety issue to the containment of a CO₂ storage reservoir.

The assessment of CO₂ penetration depth into a caprock layer becomes one of main tasks for CO₂ storage potential evaluations (Huang et al., 2014; Wriedt et al., 2014; Deng et al., 2015; Song et al., 2015). The assessment can be implemented through site investigations and observations, laboratory tests, and numerical simulations. Numerical simulation is an essential tool in fully understanding the migration of injected CO₂ for commercial-scale sequestration projects (Doughty, 2010; Rutqvist et al., 2010; Court et al., 2012; Orlic and Wassing, 2013; Talebian et al., 2013; Wang and Peng, 2014; Wang et al., 2015). This numerical simulation is usually completed in two main stages, although the coupling of storage reservoir and caprock has been analyzed (Birkholzer et al., 2009; Zhou et al., 2015). The preliminary stage is to simulate the migration and interaction of the injected CO₂ with the storage...
reservoir (Fan et al., 2012; Dalkhaa et al., 2013; Martinez et al., 2013; Saatlink et al., 2013; Jiang et al., 2014). The trapping mechanisms such as structural trapping, hydrodynamic trapping, solubility trapping, residual trapping, and mineral trapping are focused (Matter and Kelemen, 2009; Macminn et al., 2011; Kang et al., 2014). The plume formation and pressure build-up due to the CO2 accumulation beneath the caprock layer are the outcomes (Hesse and Woods, 2010; Rutqvist et al., 2010; Golding et al., 2011; Boait et al., 2012; Zhao et al., 2012; Green and Ennis-King, 2013; Wang et al., 2014; Bielicki et al., 2015). The second stage is to investigate the migration of the accumulated CO2 at the bottom of caprock and interaction between CO2 and the caprock layer (Wang and Peng, 2014; Wang et al., 2015; Zhou et al., 2015). The focus at this stage is on the calculation of caprock sealing efficiency (Heath et al., 2012; Hou et al., 2012; Armitage et al., 2015). This sealing efficiency can be measured by many methods and the CO2 penetration depth at the 100th year is a good choice (IPCC, 2005).

Many numerical simulation tools have been developed to assess the CO2 geological storage (Rutqvist and Tsang, 2002; Gherardi et al., 2007; Talebian et al., 2013; Wang and Peng, 2014; Andersen et al., 2015; Vilarrasa and Carrera, 2015). For instance, a fully coupled mathematical model was developed to simulate the multiphysics processes in the CO2-brine displacement within a caprock layer (Anchliya et al., 2012; Wang and Peng, 2014). This model considers the mechanical deformation, the change of pore pressure, the alteration of gas sorption/desorption and the modification of geochemical reaction. Particularly, a two-phase flow model is proposed to describe the CO2-brine displacement process in a fractured caprock layer. The movement of CO2-brine front also induces local deformation of caprock, alters wettability and entry capillary pressure, and modifies the absolute or intrinsic permeability (SadhuKhan et al., 2012; Armitage et al., 2013; Farokhpoor et al., 2013; Wang and Peng, 2014). Therefore, the full coupling of these interactions may heavily affect CO2 penetration depth or caprock sealing efficiency and should be fully taken into consideration. However, the computation of a fully coupled model is so complicated that it cannot be easily and fast implemented. A simple approach is necessary for a fast calculation of penetration depth.

One of simple approaches is the two-phase flow model for non-deformable porous medium. In the two-phase flow model, the CO2-water-rock interaction is considered through capillary pressure. This capillary pressure can be affected by porosity, CO2 state and rock properties (Wang and Peng, 2014; Li et al., 2015). This two-phase flow approach can be applicable for any dimensional problem. However, capturing the movement of CO2-water front is a difficult task for the numerical simulations in both fully coupled model and two-phase flow model. The accumulated CO2 spreads over the large area beneath the caprock bottom (Birkholzer et al., 2009; Bielicki et al., 2015), hence the penetration of CO2 into the caprock layer can be simplified into one-dimensional (1D) problem. If the movement of CO2-water front can be analytically solved, the calculation of penetration depth becomes an easy task. If the penetration is a diffusion process of an invading front into a semi-infinite medium, the concentration profile is described by a complementary error function (Crank, 1975; Murata et al., 2004; Matteo and Scherer, 2012). The penetration depth can be calculated by the square root law which refers to the square root of the product of diffusion coefficient and diffusion time. A similar expression is also obtained if the diffusion plus reaction rate is considered. Their difference is only the penetration speed and direction (Matteo and Scherer, 2012). In addition, the pressure difference between the pore pressure beneath the caprock (called injection pressure) and the initial pressure in the caprock layer (called reservoir pressure) may have significant impacts on the penetration depth. The above-mentioned diffusion-controlled process has difficulty in explicitly expressing the effects of pressure magnitude and difference. Being different from the above-mentioned diffusion process, this study calculates the penetration depth through a seepage-controlled process. In this seepage-controlled process, the CO2 pressure beneath the caprock and the pressure in the caprock layer can be easily taken into account.

A simple approach is proposed in this paper for a fast calculation of penetration depth. By using this approach, the penetration depth is explicitly expressed as the square root of pressure magnitude and difference. The effects of permeability and fluid mobility on penetration depth are explicitly expressed in the formula, too. This paper is organized as follows. First, the square root law is discussed by the numerical simulation results of fully coupled model and two-phase flow model. It is found that the square root law for time is still true even if sorption, swelling, deformation, and two-phase flow are all considered. Then, a simple model for fluid penetration is proposed based on the moving front seepage of an exotic fluid. This model deduces a moving front problem and the invading front of exotic phase or component is analytically solved. Third, the formula for the calculation of penetration depth is verified by three sets of experimental data taken from the literature. Finally, the analytical expression of penetration depth is extended to consider those factors affecting the fluid penetration such as compaction of fractured caprock, sorption-induced swelling, and fluid property. It is demonstrated that this simple approach has the capability to describe the effect of pressure magnitude and difference on the penetration depth in the penetration process. The slope of the penetration depth versus time can comprehensively accumulate many factors and can be determined by fitting experimental data.

2. Square root law for time and pore pressure based on numerical simulations

Our numerical simulations have demonstrated that the multiphysical process interaction had some impacts on caprock sealing efficiency (Wang and Peng, 2014; Wang et al., 2015) and a linear relationship between penetration depth versus pressuring time and pressure magnitude was observed in the square root space. However, this square root law is slightly different for the fully coupled model and the two-phase flow model. Two-phase flow model describes a process without multiphysical process effect. It does not consider the geomechanical process, sorption and reaction process, and diffusion process in shale matrix. Therefore, the two-phase flow model cannot consider self-limiting (self-healing)/self-enhancement and compaction phenomena. Fully coupled
model takes all of these effects into consideration and thus can
describe the self-limiting/self-enhancement and compaction pheno-
mena (Huerta et al., 2013; Wang and Peng, 2014). In this section,
these two simulation models are briefed. Their simulations on 1D
problem are compared and the linear relationship between penetra-
tion depth and square root of time is observed.

2.1. Fully coupled simulation model for multiphysical process
interactions

This fully coupled model considering caprock is composed of
fracture network and shale matrix. The caprock layer is sometimes
called fractured caprock (Elkhoury et al., 2015). In the fracture
network, the flow follows the Darcy’s law, but in shale matrix, CO2
follows a diffusion process. Its typical interactions shown in Fig. 1
include the following multiphysical processes: (1) mechanical
deformation process; (2) two-phase flow process; and (3) CO2-rock
reaction. The geomechanical process, diffusion process, sorption
process and reaction process are coupled in each time step (Wang
and Peng, 2014; Wang et al., 2015). In this fully coupled model,
thermal effect is neglected although the non-isothermal effects are
important and were dealt with by some researchers (e.g. Vilarrasa
et al., 2013; Goodarzi et al., 2015). Such a fully coupled model de-
scribes the phenomena of compaction, self-limiting, or self-
enhancement (Wang and Peng, 2014). These processes are
interacted through the whole fracture network. The in-situ conditions, respectively; \(r \) is the real time; \(k \) is the absolute perme-
ability of the fractured caprock; \(k_{lw} \) and \(k_{trw} \) are the relative
permeabilities of water and CO2 in the fracture network,
respectively; \(\mu_w \) and \(\mu_{ gw} \) are the viscosities of water and CO2 at
in-situ conditions, respectively; \(\phi \) is the porosity of the fracture
networks; \(f_w \) and \(f_{ gw} \) are the sources of water and CO2, respect-
ively; \(p_c \) and \(p_{ gw} \) are the degrees of caprock and water,
respectively; \(p_a \) is the standard atmospheric pressure; \(m_0 \) is the
average remaining CO2 content in the shale matrix; \(S_w \) and \(S_{ gw} \)
are the residual degrees of saturation of water and CO2, respect-
ively; \(\lambda \) is the heterogeneous index; \(p_e \) is the entry capillary pressure; \(\phi_0 \) is the
capillary pressure \((p_c = p_{gw} - p_w) \); \(\phi_{ gw} \) is the gas density at
the pressure \(p \); \(V_L \) is the Langmuir volume; \(p_L \) is the Langmuir
pressure; and \(p = p_{gw} + p_{ gw}S_{ gw} \).

(3) Diffusion matrix

The diffusion in matrix can be written as

\[
\frac{dm_b}{dt} = -\frac{1}{\tau} [m_b - m_e(p)]
\]

where \(\tau \) is the diffusion time, and \(m_e(p) \) is the CO2 content in
the shale matrix when the pore pressure within shale matrix is equal to
the pore pressure \(p \) in the fracture network.

These governing equations are coupled through the following
transport property models:

(1) Porosity model (Wang et al., 2013)

\[
\frac{\phi}{\phi_0} = 1 + (1 - R)\Delta e
\]

where \(\phi_0 \) is the initial porosity, \(\Delta e \) is the increment of effective
volumetric strain. For homogeneous porous medium, \(R \) can be
roughly expressed as \(R = a/\phi_0 \).

(2) Permeability model

\[
k = \left(\frac{\phi}{\phi_0}\right)^3
\]

where \(k_0 \) is the initial permeability.

(3) Relative permeability model

\[
\begin{align*}
k_{lw} &= k_{max}^{lw}\left(S_w^{N_w}\right)\left(1 - S_w + S_{ gw}\right) \\
k_{trw} &= k_{max}^{trw}\left(S_{ gw}^{N_{ gw}}\right)
\end{align*}
\]

where \(k_{max}^{lw} \) and \(k_{max}^{trw} \) are end-point relative permeabilities for
water and CO2, respectively; \(N_w \) and \(N_{ gw} \) are the fitting constants
for relative permeabilities of water and CO2, respectively; \(S_{ gw} \) is
the relative degree of saturation of CO2, and \(S_{ gw} = 1.0 \).
(4) Capillary pressure model

\[S_w = \left(\frac{p_e}{\gamma} \right)^\lambda \]

(10)

where \(\gamma \) is a constant.

(5) Entry capillary pressure model

\[p_e = \frac{p_{ei}}{1 + B\Delta e} \]

(11)

where \(p_{ei} \) is the initial entry capillary pressure, and \(B \) is a constant.

(6) Langmuir isotherm in shale matrix (Li and Elsworth, 2014)

\[m_b = \frac{V_{Lm}p_m}{p_{Lm} + p_m} \]

(12)

where \(p_{Lm} \) is the pore pressure in shale matrix; \(V_{Lm} \) and \(p_{Lm} \) are the Langmuir volume constant and Langmuir pressure for shale matrix, respectively.

(7) Swelling strain of shale matrix

\[\varepsilon_{31} = \frac{\varepsilon_{Lm}p_m}{p_{Lm} + p_m} \]

(13)

where \(\varepsilon_{Lm} \) is the Langmuir strain of shale matrix.

This fully coupled finite element model simultaneously solves both pore pressure and displacement of caprock. It employs an iterative algorithm to satisfy the nonlinear formulations due to two-phase flow and gas sorption-induced evolution of porosity and permeability, and alteration of entry capillary pressure within the given tolerance of errors. This approach incorporates the evolutions of various physical and transport properties, including (a) shale porosity as defined by Eq. (7), (b) absolute permeability as defined by Eq. (8), (c) relative permeability as defined by Eq. (9), (d) capillary pressure as defined by Eq. (10), (e) gas entry pressure as defined by Eq. (11), (f) gas adsorption as defined by Eq. (12), and (g) sorption-induced matrix swelling strain as defined by Eq. (13).

2.2. Two-phase flow model

When geomechanical deformation, sorption and reaction processes, and diffusion process in shale matrix are all ignored, this fully coupled model is simplified into a two-phase (water and CO\(_2\)) flow model. At this time, \(\partial \phi / \partial t = 0 \), porous medium is rigid, thus Eqs. (2) and (3) become the following governing equations.

For water flow, we have

\[\psi C_p \frac{\partial p_{nw}}{\partial t} - \psi C_p \frac{\partial p_w}{\partial t} = \nabla \cdot \left(\frac{k_{nw} \nabla p_w}{\mu_w} \right) + f_w \frac{p_w}{\rho_w} \]

(14)

For gas flow, we have

\[\psi (S_{nw} - p_{nw} C_p) \frac{\partial p_{nw}}{\partial t} + \psi p_{nw} C_p \frac{\partial p_w}{\partial t} = \nabla \cdot \left(\frac{k_{nw} \nabla p_w}{\mu_w} \right) + f_{nw} \]

(15)

This is a two-phase flow model. It describes the interaction between CO\(_2\) and water in rigid porous media. The interfacial tension and capillary pressure can be still incorporated into this model, but no interaction with rock deformation is involved.

2.3. Comparison of fully coupled model and two-phase flow model

Both two-phase flow and fully coupled models are applied to 1D problem as shown in Fig. 2. Because this is 1D problem, only 10 m in side length of the model is sufficient. The CO\(_2\) is accumulated at the bottom of the caprock layer and its pore pressure can be prespecified. Table 1 lists all parameters used in the simulations for both the fully coupled model and the two-phase flow model. Fig. 3a presents the change of penetration depth with real time before gas breakthrough. It is observed that these two curves are different. The penetration depth for two-phase flow model is much larger. Their difference of penetration depth becomes larger with pressuring time. This difference may come from sorption process. Detailed numerical simulations reveal that the sorption and reaction of CO\(_2\)/rock retards the penetration speed. This thus causes fully coupled model to have much smaller penetration depth. It is noted that after CO\(_2\) breakthrough, some substances may be washed away and the self-enhancement mechanism may be activated (Matteo and Scherer, 2012; Huerta et al., 2013). It is also noted that self-healing mechanisms may occur due to chemical reactions and shale ductility (Noiriel et al., 2004; Matteo and Scherer, 2012). All of these factors are included in the above simulation, but a square root law is still observed in the relationship between penetration depth and time. Fig. 3b replots this relationship in the domain of time square root. Both two-phase flow model and fully coupled model follow a straight line but with different slopes. This difference of slopes is determined by multiphysical interactions. Therefore, a square root law is applicable to the relationship of penetration depth and time for these two models but the determination of this square root law depends on the interaction among multiphysical processes.

3. A simple model for fast calculation of exotic phase penetration

The above two-phase flow model can be further simplified into a seepage-controlled model if the capillary pressure between CO\(_2\) and brine is ignored. Fig. 4 presents a typical seepage-controlled model with moving invading front, which is a 1D penetration
problem. Our model assumes that the penetration front coincides with the pressure distribution front of the injected fluid. This is true for exotic phase because the CO₂ concentration coincides with pressure. In this figure, pressure \(p_1 \) is applied along the inlet boundary of the caprock (we call it as an injection pressure for the caprock). The initial pressure in the caprock (we call it as an injection pressure for the boundary of the caprock (we call this pressure as injection pressure) drives the injected fluid to further penetrate into the caprock. The calculation of penetration depth \(H \) is still focused. This depth refers to the distance between the invading front (dashed line) and the inlet boundary. This penetration depth can be obtained based on the Darcy’s law below.

The speed of the invading front is

\[
\nu_H = \frac{dH}{dt}
\]

(16)

The Darcy’s velocity at the front is

\[
\nu_H|_{x=H} = -\frac{k \, \frac{\partial p}{\partial x}}{\mu} |_{x=H}
\]

(17)

Both velocities should be equal at the front, thus we have

\[
\frac{dH}{dt} = -\frac{k \, \frac{\partial p}{\partial x}}{\mu} |_{x=H}
\]

(18)

where \(\frac{\partial p}{\partial x} \rvert_{x=H} \) is determined by the fluid flow in porous media. This is a 1D flow problem with moving boundary. For this seepage problem, if the time-dependent term is ignored, the conservation law of mass is approximated by

\[
\frac{\partial}{\partial x} \left(-\rho \frac{k \, \frac{\partial p}{\partial x}}{\mu} \right) = 0
\]

(19)

Its boundary conditions are

\[
p = \begin{cases}
 p_1 & (x = 0) \\
 p_2 & (x = H)
\end{cases}
\]

(20)

For incompressible fluid, the solution to Eq. (19) is

\[
p = \frac{p_2 - p_1}{H} x + p_1
\]

(21)

and

\[
\frac{\partial p}{\partial x} \rvert_{x=H} = \frac{p_2 - p_1}{H}
\]

(22)

The equation for the front movement is thus obtained as
This implies that the penetration speed for compressible gas follows a parabolic curve as is assumed to be a constant. Therefore, the pressure distribution difference, penetration depth is larger for higher mobility. At deeper depth, this ratio becomes smaller, and the amplification effect becomes weaker. In addition, permeability and its evolution can express the effects of many factors (to be discussed in Section 5). Therefore, any mechanical or chemical actions can be taken into account only through the evolution of permeability. In addition, CO2 may be non-ideal gas in the penetration process. Eq. (28) will be slightly modified based on the compressibility of CO2 (such as Vilarrasa et al., 2010). This study still assumes that Eq. (28) is applicable but the coefficient can be calibrated with the square root law through laboratory or field data.

4. Comparison with experimental observations

This section will check the applicability of the above formulae for the calculation of penetration depth by three sets of experimental data. The square root laws for pressure and time are verified respectively through two tests on water penetration into concrete and one penetration test of hydrochloric acid and carbonic acid into cement. Although water penetration into concrete is different from the CO2 permeation into shale caprock in micro-flow mechanisms, such a check is still meaningful for the proposed simple approach.

4.1. Test #1

Murata et al. (2004) conducted a seepage test to investigate the watertightness of concrete. They tested three samples which were prepared with three water-cement ratios (w/c) of 0.55, 0.7 and 0.8, respectively. They used photographs to measure the penetration depth of water with pressuring time. The injected fluid was water, thus being almost incompressible. Therefore, Eq. (24) is used to fit these experimental data. Fig. 5 is the fitting result for the relationship between penetration depth and injection pressure (water). The penetration depth was measured for a test period (pressuring time) of 48 h. This figure shows that Eq. (24) well fits these experimental data of three concrete samples. The relationship between penetration depth and injection pressure observes a square root law.

At a fixed injection pressure, Eq. (24) shows that the penetration depth increases with pressuring time. This equation is again used to fit the relationship between penetration depth and pressuring time for the three samples. The fitting results are presented in Fig. 6a for w/c = 0.55, in Fig. 6b for w/c = 0.7, and in Fig. 6c for w/c = 0.8. These figures show that the square root law is applicable for the relationship of penetration depth and pressuring time. They also show...
that the sample under higher confining pressure (P_c) has lower penetration depth. Under higher confining pressure, the sample is denser, thus lower intrinsic permeability and smaller penetration depth were obtained. Further, the water-cement ratio has significant impacts on the penetration depth. Higher water-cement ratio means that the concrete has higher permeability, hence the penetration depth is higher. As a summary, the relationship of penetration depth and pressuring time follows the square root law. The external force induced compaction and the initial status of the concrete sample affect the penetration depth. Higher confining pressure causes lower penetration depth. Lower ratio of water to cement induces lower penetration depth, too.

4.2. Test #2

This is another test to investigate the watertightness of concrete. Being different from the Test #1, Yoo et al. (2011) tested three samples with uniaxial compressive strength (σ_c) of 16 MPa, 21 MPa, and 27 MPa, respectively and obtained a set of experimental data under the injection pressure of 1.5 MPa. The penetration depths of three samples were measured at the pressuring time of 48 h, 96 h, 144 h and 192 h, respectively. Because the injected fluid is water, Eq. (24) is still used to fit these experimental data. Fig. 7 is the fitting result for the relationship of penetration depth and pressuring time for the three samples. This figure shows that the square root law is applicable to the relationship of penetration depth and time regardless of concrete strength. Higher strength has lower penetration depth. This may be because the sample with higher strength has lower permeability. Again, the square root law is observed for pressuring time for the three samples with different strengths.

4.3. Test #3

Matteo and Scherer (2012) conducted a test to investigate the penetration of hydrochloric acid and carbonic acid into Class H Portland cement. Being different from the above two tests, they also performed flow-through tests using 1 M HCl over a range of flow rates from 7.5 mL/h to 300 mL/h. Such a test was designed to check the effect of geochemical reaction on penetration depth. This test obtained a complete penetration process under the pressuring time

![Fig. 6. Relationships of penetration depth and pressuring time (Lines: Fitted by Eq. (25); Symbols: Experimental data). (a) Water-cement ratio = 0.55. (b) Water-cement ratio = 0.7. (c) Water-cement ratio = 0.8.](image)

![Fig. 7. Relationships of penetration depth and pressuring time for concrete samples with different uniaxial compressive strengths (Lines: Fitted by Eq. (24); Symbols: Experimental data).](image)
up to 50 h. Eq. (24) is still used to fit the relationship of penetration depth and time. The fitting result is shown in Fig. 8. This figure shows that Eq. (24) well fits these experimental data. In addition, the penetration tests were conducted in different directions to identify the anisotropy of flow path. The upright direction has much lower permeability, thus the penetration depth in this direction is much smaller. This figure also shows that lower flow rate has slightly less penetration depth. Flow rate has slight impact on penetration depth. This impact may be due to dissolution or deposition mechanisms from acid-brine-rock interaction in flow-through tests. These results imply that geochemical reaction within caprock affects penetration depth or caprock sealing efficiency. This process may have some self-limiting or self-enhancement mechanism depending on flow pattern. For this CO2-brine-rock interaction problem, a fully coupled model is necessary to consider all of these mechanisms.

5. Analysis for those factors affecting CO2 penetration

This simple formula of Eq. (24) or (28) shows that the penetration depth still follows the square root law of permeability. Fig. 9 is a typical relationship between CO2 penetration depth at the time of 317 years and absolute permeability. This curve was obtained by our fully coupled model with the parameters in Table 1 as the base parameters. Only intrinsic permeability is changed from 1.5×10^{-21} m2 to 1.5×10^{-17} m2. The computational model is 10 m wide and 30 m high. Other conditions are the same as Fig. 2. Fig. 9 shows that the effect of permeability on penetration is complex. It may not follow the square root law. This section will investigate those factors affecting permeability evolution such as compaction, sorption-induced swelling, capillary pressure, and fluid transport property. Through these analyses, the simple formula of Eq. (24) or (28) is extended in its application range.

5.1. Compaction-induced permeability change of fractured caprock

As discussed in Section 3, this simple approach shows that penetration depth depends on permeability and its evolution. For a fractured caprock, its permeability has two components: fracture permeability and matrix permeability. Thus, the total permeability of this fractured caprock is expressed as

$$k = k_m + k_f = k_f \left(1 + \frac{k_m}{k_f}\right)$$

(29)

where k_m is the matrix permeability, and k_f is the fracture permeability. The matrix permeability k_m is much smaller than the fracture permeability k_f, i.e., $k_f > 100k_m$, thus one can have an approximation as

$$k = k_f$$

(30)

Fractured caprock will change its compressibility under compaction. Both fracture and matrix contribute to this change of compressibility. If the contribution from matrix is ignorable, the compressibility coefficient of the fractured caprock can be expressed as

$$c_f = \frac{1}{\phi_f} \frac{\partial \phi_f}{\partial e}$$

(31)

where ϕ_f is the porosity of fracture, and σ_e is the effective stress on the fracture network. Because of nonlinearity of fracture deformation (Barton, 2013; Zhang, 2013; Rutqvist, 2015), constant fracture compressibility is not suitable for a large range of stress change. If the cubic law for fracture flow is true and fracture compressibility observes an exponential function, the permeability-stress relationship can be assumed to follow an exponential function as (Briggs et al., 2014; Ma, 2015):

$$k = k_0 \exp \left[-3c_f(\sigma_e - \sigma_{e0})\right]$$

(32)

where σ_{e0} is the initial effective stress on the fracture network. If the caprock is under uniaxial strain condition and its overburden stress remains unchanged during CO2 penetration, the permeability of fracture network is then expressed as the function of pore pressure only:

$$k = k_0 \exp \left[3c_f \frac{\nu}{1-\nu} a_b(p-p_0)\right]$$

(33)

where a_b is the material constant and p_0 is the initial pore pressure. Obviously, the compaction-induced change of permeability is directly linked to the change of pore pressure at that point. This result is obtained at the assumption of constant total stress. This assumption is similar to that of P&M model for coalbed methane extraction (Palmer and Mansoori, 1998). Eq. (33) directly links the change of permeability with the increment of pore pressure. For rigorous porous media, $c_f = 0$ and k is constant. No compaction effect can be considered.

5.2. Two-phase flow

This simple approach does not consider the capillary pressure in CO2-water flow. Two-phase flow in porous media has a key parameter of capillary pressure p_c. If the injection pressure is less than entry capillary pressure (Watts, 1987), the CO2-water interface does not penetrate into the shale layer. Otherwise, a progressive penetration of CO2 into the shale layer can be observed. For such a penetration problem, this simple approach is slightly modified to consider the effect of capillary pressure. Capillary pressure is to balance the interfacial tension between CO2 and water, thus it has no contribution to the driving force to the viscous fluid flow in porous medium. So the capillary pressure should be taken away from the pressure difference. For example, the pressure p_1 should

![Fig. 8. Relationships of pressuring time and penetration depth for concrete samples with different uniaxial compressive strengths (Lines: Fitted by Eq. (24); Symbols: Experimental data).](image)
be reduced to a new $p_i'(p_i' = p_1 - p_0)$. The pressure difference between p_1 and p_2 is the driving force to the viscous flow of CO$_2$. Eq. (28) is still applicable after the replacement of p_1 with p_1':

$$H = \left(\frac{2kt}{\mu} (p_1' - p_2) \right) \sqrt{\left(1 + \frac{p_1'}{p_2}\right) / 2}$$ \hspace{1cm} (34)

5.3. Fluid state (gas or liquid) (viscosity and density)

The thermodynamic parameters of fluid, particularly the viscosity and compressibility of fluid, change with temperature (T) and pressure (p). The changes are more sensitive whether the CO$_2$ flow is in gaseous or supercritical state. Its thermodynamics changes both fluid mobility and storage capacity in pore space, thus altering the penetration speed. Both density and viscosity can be calculated by the equation of state such as Peng-Robinson equation (Peng and Robinson, 1976). This simple approach can take this change into account through the modification of fluid mobility in porous medium. At the same temperature and a small range of pressure change, the thermodynamics of fluid can be regarded as constants.

5.4. Sorption-induced swelling and fracture-matrix interaction

Shale matrix will swell after the adsorption of CO$_2$ if the CO$_2$ infiltrates into the shale matrix. Again, the infiltration into shale matrix can be assumed to follow a diffusion process and be associated with the magnitude of pore pressure. This infiltration induced swelling strain ϵ_V is then expressed as

$$\epsilon_V = \epsilon_{V0} \left(1 - \exp\left[-D_k(t - t_0)\right]\right)$$ \hspace{1cm} (35)

where t_0 is the time at start point, and the initial swelling strain ϵ_{V0} can be expressed by

$$\epsilon_{V0} = \epsilon_{Vm} \left(\frac{p}{p + p_{Lm}} - \frac{p_0}{p_0 + p_{Lm}}\right)$$ \hspace{1cm} (36)

If the total volumetric strain for the shale caprock is constant, this swelling of shale matrix occupies the flow channels of fracture network and thus changes the permeability of fractured caprock as below.

For self-limiting, we have

$$k = k_0 \left(1 - \exp\left[-D_k(t - t_0)\right]\right)$$ \hspace{1cm} (37)

For self-enhancement, we have

$$k = k_0 \left(1 - \exp\left[-D_k(t - t_0)\right]\right)$$ \hspace{1cm} (38)

where D_k is a swelling diffusion coefficient which is closely related to the diffusion coefficient D. For such a fracture-matrix system with constant total volume, its permeability is evolving as

$$k_0 = k_0 \left[1 - R_f \frac{L_m}{t_f} \left(\frac{p}{p + p_{Lm}} - \frac{p_0}{p_0 + p_{Lm}}\right)\right]^3$$ \hspace{1cm} (39)

where k_0 is the initial permeability without swelling, and R_f is a constant related to fracture spacing, aperture and fracture length in a representative element volume (Wang et al., 2015).

5.5. Performance of this extended simple approach

The above-extended simple formula of Eq. (28) includes compaction, sorption-induced swelling and fluid state. Its performance is demonstrated here. In the calculation, only one parameter is changed and all other parameters are kept constant. Fig. 10a presents the effect of compaction on penetration depth. Because the compaction process is completed at the beginning of penetration, this compaction affects only its initial permeability. Obviously, compaction changes the slope of square root curve of penetration depth versus time. It is again observed that smaller initial permeability corresponds to smaller penetration depth. This observation is true even if the pressure difference (or overpressure) is kept the same at different burial depths (expressed by the initial pore pressure in the caprock layer). This figure shows that larger burial depth corresponds to less penetration depth. This observation is true even if the pressure difference (or overpressure) is kept the same at different burial depths (see Fig. 10c). Of course, Fig. 10b and c shows that the overpressure is the main factor. Finally, swelling strain due to mass loss can be described in this simple formula. Fig. 10d compares the behaviors of constant permeability, increasing permeability (self-enhancement) and decreasing permeability (self-limiting) due to swelling strain. This is in agreement with those observations by Matteo and Scherer (2012). The self-enhancement is strong at the initial stage and gradually becomes weak and stable. This is because the mass loss is stronger at the beginning and gradually vanishes with time in flow-through tests. Such a process can be expressed through the change of volumetric strain. However, the self-limiting is weaker at the initial stage and gradually becomes stronger. This is because reaction or sorption-induced swelling needs time for contacting and infiltration into shale matrix. Therefore, such a simple approach can fast estimate the penetration depth although some mechanisms cannot be identified. Very important issue is that this formula can be calibrated by some initial data in laboratory or field measurements without knowing the properties of caprock. This makes the formula practicable.

6. Conceptual zoning for caprock sealing efficiency

The above assessment of caprock sealing efficiency can be drawn with a conceptual zoning in Fig. 11, where the injection pressure is expressed in a square root domain and the limit injection pressure refers to the maximum accumulated pressure beneath the caprock layer (Green and Ennis-King, 2013). This plot is drawn based on...
capillary pressure, square root law and potential interactions. As shown in Fig. 11, the whole domain is divided into capillary sealing zone, relatively safe zone, unstable zone, and breakthrough zone. When injection pressure is smaller than entry capillary pressure, no CO$_2$–brine displacement is activated and the caprock sealing is absolutely safe for volumetric (Darcy) flow. This zone is called capillary sealing zone. Between this pressure and limit injection pressure, the CO$_2$–brine displacement has been activated. The CO$_2$ front is continuously moving inward with injection pressure and the penetration depth is increasing correspondingly. When the penetration depth reaches its limit or caprock thickness, the caprock layer is breakthrough. At this time, CO$_2$ flow-through phenomena are observed and the caprock sealing is in the breakthrough zone. After breakthrough, some mechanisms particularly for self-enhancement may be activated (Huerta et al., 2013). Thus the caprock layer in this breakthrough zone is at risk.

The relative safe zone and unstable zone form a multiphysical interaction zone. This zone is adjacent to capillary sealing zone, breakthrough zone and bounded by the limit injection pressure. Multiphysical interaction may occur in this zone and affect the evolution of penetration process. According to the square root law, a straight critical penetration line divides this zone into relatively

Fig. 10. Increase of penetration depth with increase of pressuring time. (a) Compaction effect. (b) Effect of burial depth under the same injection pressure. (c) Effect of burial depth under the same overpressure. (d) Self-limiting and self-enhancement behaviors.

Fig. 11. Conceptual zoning for caprock sealing efficiency.
safe zone and unstable zone. In the relatively safe zone, the CO₂ front cannot penetrate through the caprock layer and enter into the breakthrough zone if the current conditions do not change. In the unstable zone, a breakthrough can be expected under current conditions. However, this critical penetration line can be crossed through the activation of new mechanisms such as self-limiting or self-enhancement. For example, a process is lost in the relatively safe zone at the beginning, but some self-enhancements may be activated. This makes further penetration cross the line. The similar phenomenon can be observed in the unstable zone. Similar phenomena have been experimentally observed by Matteo and Scherer (2012). They observed self-limiting for the inverted case (no flow-through case) and self-enhancement for the 7.5 mL/h case (a flow-through case). Therefore, key issues for the assessment of caprock sealing efficiency are to determine this critical penetration line and to identify potential mechanisms of either self-limiting or self-enhancement through either tests or numerical simulations. The fully coupled model is a good tool for the solution of these key issues but further investigations are necessary to fully understand the interactions of multiphysical processes with updated geological and experimental data. The simple approach in this paper can help to explore potential mechanism transition and predict the potential breakthrough time if the current conditions are not changed.

7. Conclusions

This study proposed a simple approach to fast calculate the penetration depth of CO₂-water front in a saturated caprock layer. The formula based on this simple approach is then verified by three sets of experimental data for concrete samples as well as a fully coupled numerical model and a two-phase flow model. This simple approach is further extended to include the compaction of fractured caprocks, the sorption-induced swelling of shale matrix in the fracture-matrix system, the capillary pressure in the two-phase flow system, and fluid property. Based on these preliminary investigations, the following understandings and conclusions can be made.

First, this simple approach can describe the square root law for bothpressuring time and pressure magnitude. It can give a fast assessment of caprock sealing efficiency when partial information at the beginning is available. However, the slope of penetration depth versus pressuring time in square root domain depends on the multiphysical interactions among CO₂ flow and sorption, rock deformation, as well as the modification of porosity and permeability. Therefore, the slope is a comprehensive parameter for the multiphysical interactions. This simple approach provides a fast assessment method for the CO₂ caprock sealing efficiency in natural shale caprocks.

Second, both pressure difference and pressuring time follow a square root law. For incompressible fluid, pressure magnitude in the caprock has no effect on penetration speed. For compressible fluid, both pressure difference and pressure ratio impact the CO₂ penetration speed. Therefore, burial depth has some impact on the CO₂ penetration depth.

Third, the caprock compaction, the swelling of shale matrix due to CO₂ diffusion and the geochemical reaction between fracture and matrix may be the mechanisms for self-limiting or self-limiting in the CO₂-brine mixing zone and the CO₂ sweeping zone. These factors may alter the penetration path in the square root spaces of pressure or time.

Finally, the combination of anisotropic swelling and dehydra- tion in the saturated shale caprock may reopen the fracture system, thus enhancing the caprock permeability and reducing the caprock sealing efficiency. This is a potential risk for the CO₂ storage in the geological formation and should be further investigated.

Conflict of interest

The authors wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Acknowledgments

The authors are grateful to the financial support from the Creative Research and Development Group Program of Jiangsu Province (2014-27), the National Science Fund for Distinguished Young Scholars (Grant No. 51125017), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD2014). The authors highly appreciate two reviewers for their helpful comments.

References

Dalkhaz Ch, Shevailer M, Nightingale M, Mayer B. 2-D reactive-transport formula- tion based on element conservation, with application to CO₂ storage simula-

tion. Inter-

Ellis BR, Fitts JP, Bromhal GS, McIntyre DL, Tappero R, Peters CA. Dissolution-driven permeability reduction of a fractured carbonate caprock. Environmental Engi-

Fan Y, Durlofsky L, Tchelpele HA. A fully-coupled flow-reactive-transport formula-
