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Abstract

The paper aimed to study the effect of large deformation and material nonlinearity on the adhesive contact between a
smooth rigid spherical indenter and a Neo-Hookean layer of finite thickness, for the cases of the layer thickness/indenter
radius ratio between 1 and 2. Our analysis was based on the large-deformation JKR (LDJKR) theory, which models the
adhesive contact of two elastic solids in large-deformation regime by knowing the solution of the corresponding non-adhe-
sive contact problem. In this paper, the non-adhesive contact between a spherical indenter and a Neo-Hookean layer was
solved by finite element analysis. Combined these numerical results and the LDJKR theory, approximate analytic expres-
sions of the applied load and displacement of adhesive contact of Neo-Hookean layers were obtained. The effects of layer
thickness were also discussed.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The contact test based on JKR (Johnson–Kendall–Roberts) theory of adhesion (Johnson et al., 1971) has
widely used in quantifying the work of adhesion between two soft elastic materials (Chaudhury and White-
sides, 1991; Ahn and Shull, 1998; Ghatak et al., 2000; Maugis and Barquins, 1978; Shull, 2002). This theory
is applicable when the contact radius is small in comparison with the radius of the spheres. For example, it
cannot be applied to thin elastic lenses. Extension of the JKR theory to handle thin lenses has been addressed
by Shull et al. (1998). However, it should be noted that JKR theory assumes small strains and material line-
arity (Hui et al., 2000). There are many problems of practical interest where these conditions are not satisfied.
For example, the elastic modulus of elastic gels and pressure sensitive adhesives can be lower than 104 Pa,
specimens made of these materials can undergo very large deformation during a JKR test. The same issues
are present in adhesive contact of a micro- or nano-indenters on thin and compliant coatings. Barthel and Par-
0020-7683/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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riot (2007) analyzed the adhesive contact of a coated elastic substrate. In these problems, the radii of the ind-
enters are typically on the same order of the substrate. So far, most of the analyses were carried out using small
strain theory (Barthel and Parriot, 2007; Yang, 2003a,b; Reedy, 2006). Therefore, it is important to study the
applicability of the small strain JKR theory in the large-deformation regime.

When the contact radius is not small in comparison with the radius of spheres, the Hertz assumption of
replacing the spheres by an infinite half space is no longer valid. In addition, since the deformation is large,
the strains do not depend linearly on the displacement gradients; and the constitutive model relating the defor-
mation to the stress field is no longer linear. Consequently, the stress field can no longer be obtained by super-
imposing the singular stress field caused by adhesion to the non-adhesive Hertz stress field. Lin and Chen
(2006) developed a theory which models large-deformation adhesive contact of hyperelastic lenses based on
energy balance. They calculated the energy release rate of a large-deformation JKR (LDJKR) problem using
the solution of the corresponding large-deformation Hertz (LDH) problem. Two problems were studied in
their work (Lin and Chen, 2006) a rigid spherical indenter in contact with a Neo-Hookean half space, and
a Neo-Hookean hemisphere in contact with a rigid substrate. In this paper we extend this work to the case
of a compliant layer.

2. Theoretical background

In this section we briefly summarized the large-deformation JKR theory (LDJKR) developed by Lin and
Chen (2006) for the adhesive contact of two hyperelastic solid lenses. This theory is an extension of the der-
ivation by Shull et al. (1998) to the large-deformation regime. The geometry is shown schematically in Fig. 1.
The thicknesses of these lenses are denoted by h1 and h2, respectively. Let a, P, d = d1 + d2, denote the current
projected contact radius, the current load, and total applied displacements, respectively. The air gap outside
the contact region can be viewed as an external crack. A fundamental quantity in JKR theory is the energy
release rate G of this crack as a function of and the material properties. It should be noted that since the cri-
terion for bonding and debonding is not specified, a, d must be considered as independent variables. Let
denote the current projected contact area. The energy release rate, in a displacement control test, is
G ¼ oUSE

oA

����
d

; ð1Þ
where USE = USE (a,d) is the elastic strain energy of the system. To compute G, Lin and Chen (2006) divided
the loading into two stages. In the first stage (Hertz), the adhesive force is turned off and the lenses are loaded
until the projected contact area reaches A. The external load and the displacement in the first stage are denoted
by PH and dH, respectively. In the second, the projected contact area A is fixed and the adhesive forces are
turned on. Due to adhesion, the external load P must decrease in the second stage. The external load and
the displacement at the end of this process is the actual load and displacement, P and d, respectively. Since
the deformation during the second stage is typically small,
d� dHðaÞ
P � P HðaÞ

’ CHðaÞ ¼
odH

oP H

����
a

: ð2Þ
Fig. 1. Illustration of JKR test of two lenses.
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The energy release rate can be simplified and results in
Fig. 2.
assum
G ¼ �C0HðaÞ
4pa

d� dHðaÞ
CHðaÞ

� �2

; ð3Þ
where C0HðaÞ ¼ dCH=da. The energy release rate for a load controlled test is obtained using a similar proce-
dure. It is
G ¼ �C0HðaÞ
4pa

ðP � P HðaÞÞ2: ð4Þ
As a consequence of Eqs. (3) and (4), the energy release rate is determined by the solution of the large-defor-
mation Hertz problem, i.e., PH, dH and CH.

The large-deformation JKR theory can be obtained by relating the energy release rate in (3) and (4) to the
work of adhesion, W. Consider the work of adhesion W be the energy to adhere a unit of true surface area A 0,

where A0 ¼ 2pR2 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a

R

� �2
q� 	

. Hence, W ¼ dU
dA0 ¼ dU

dA
dA
dA0 ¼ G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a

R

� �2
q

. Substituting this relation into (3)

and (4), we obtained
d ¼ dHðaÞ � CHðaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4paW 1� a

R

� �2
h i�1=2

C0HðaÞ

vuut
; ð5Þ

P ¼ P HðaÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4paW 1� a

R

� �2
h i�1=2

C0HðaÞ

vuut
: ð6Þ
Eqs. (5) and (6) have the same form as the standard JKR theory for small a/R, except that PH, and dH are the
large-deformation Hertz load and displacement and CH is the large-deformation Hertz compliance.

3. Geometry, material and normalization

We consider a smooth rigid spherical indenter of radius R in contact with a Neo-Hookean layer of thick-
ness h as shown in Fig. 2. The bottom of the elastic layer is assumed to be perfectly bonded to a rigid substrate.
The interface between the sphere and the elastic layer is assumed to be frictionless. The material is modeled as
an incompressible Neo-Hookean solid. The strain energy density U is
U ¼ l
2
ðI1 � 3Þ; ð7Þ
A spherical rigid indenter contacts on a hyperelastic layer. Top surface of the layer is assumed frictionless and the bottom surface is
ed fixed.
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where l is the infinitesimal shear modulus and I1 is an invariant of Cauchy–Green strain tensor, i.e.,
I1 ¼

P3
k¼1k

2
k , where kk is the principal stretch ratio in the kth direction. In simple tension, the Cauchy stress

r � r11 is related to the k � k1 by
r ¼ lðk2 � k�1Þ: ð8Þ
According to (5) and (6), the LDJKR solution is completely determined by the dependence of the Hertz
load PH, displacement dH and compliance on the contact radius a and specimen geometry. From dimensional
considerations,
P H ¼ P o/1ða=R; h=RÞ; ð9Þ
dH ¼ do/2ða=R; h=RÞ; ð10Þ
CH ¼ Co/3ða=R; h=RÞ; ð11Þ
respectively, where P o ¼ 16la3

3R , do ¼ a2

R and Co ¼ 1
8la are the small strain Hertz load, Hertz displacement and

Hertz compliance for a rigid sphere in contact with an incompressible isotropic elastic half space. The dimen-
sionless functions /1, /2, /3 are unknowns and will be determined using finite element method. For small con-
tact, /1! 1, /2! 1, /3! 1, that is, we recover the small strain Hertz theory.

4. Finite element model

As explained above, the key is to determine the compliance of the sample as a function of contact radius.
The finite element model is illustrated in Fig. 3. Frictionless condition was applied inside the contact zone and
was prescribed on the two surfaces in contact in our finite element model. A typical mesh using axis-symmetric
elements CAX4H is shown in Fig. 3. A large number of elements are used near the contact edge for accurate
prediction of the contact region. To reach the required accuracy (see discussion below), different meshes will be
used for different range of contact radius.

Since the contact area is less sensitive to load variations than displacement variations, the compliance CH is
computed using the following scheme. Let the contact radius, the displacement and the load in the beginning
of the kth step be denoted by,and Pk, respectively, k = 1, 2, . . . Increase the load Pk by a very small amount
DPk so that contact radius ak remains fixed within the accuracy imposed by the finite element mesh. In prac-
tice, this condition is satisfied when DPk < 0.001Pk. Denote the increase in displacement due to this load incre-
ment by Ddk. The compliance at is computed using
CHðakÞ ¼
Ddk

DP k
: ð12Þ
In the next step, increase the load to Pk+1 (the step size here is much larger than DPk) to create a new contact
radius ak+1 and a new displacement dk+1. The process is repeated until the desired contact radius is reached.

5. FEM results of non-adhesive contact

Finite element results for various thicknesses to radius ratio are presented in Figs. 4–8. Simulations are car-
ried out for h/R = 1.0, 1.2, 1.5, 1.8, and 2.0 to very large deformation, with contact area almost equal to the
Fig. 3. Typical mesh of non-adhesive contact of a spherical indenter and a hyperelastic layer.



Fig. 4. For h/R = 1.0, (a) FEM results (�) of PH/Po versus a/R and its fitting function /1 (solid line) (b) FEM results (�) of dH/do versus
a/R and its fitting function /2 (solid line) (c) FEM results (�) of CH/Co versus a/R and its fitting function /3 (solid line).
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indenter radius. Each figure consists of three parts, e.g. Fig. 4(a)–(c). The first part (a) in these figures plots
the normalized Hertz load, PH/Po = /1 versus the normalized contact radius, a/R. The second part (b) plots
the normalized Hertz displacement dH/do = /2 versus a/R. The last part (c) plots the normalized compliance
CH/Co versus a/R. Finite element results are denoted by the symbol � in these figures. These finite element
results are fitted using polynomial functions. The fits are shown in the same figure as solid lines. Equations
used for fitting are given in each figure. These equations are very accurate through the entire range of
0 6 a/R < 1.

Figs. 4(a)–8(a) show that PH/Po is greater than 1 for sufficiently large contact, i.e., 0.4 < a/R < 1. This result
shows that the small strain Hertz theory underestimates the actual Hertz load. Also, the thinner the elastic
layer, the larger is the deviation. It is surprising that the small strain Hertz load agrees well with the large-
deformation Hertz load for contact radius up to 40% of the indenter radius. A different trend is found for dis-
placements. Figs. 4(b)–8(b) show that significant deviation occurs at small contact radius; this is to be
expected, as the Hertz displacement used in the normalization do not take into account of the effect of finite
layer. For all cases of h/R, the small strain theory overestimates the displacement at small and medium con-
tact. However, for h/R P 1.5, the small strain theory underestimates the displacement for very large contact,
as can be seen in Figs. 6(a)–8(a). Note that this effect does not occur for thinner layers. For layers thinner than
1.5R, the small strain Hertz theory overestimates the displacement in the entire range of contact. Finally, the
compliance predicted by the small strain theory overestimates the actual compliance in all cases. This is to be
expected, since the small strain theory is based on the solution of a rigid punch indenting on a half space.

The fitting functions given in Figs. 4–8 are valid for a specific h/R. It is possible to obtain expressions that
work for the entire range of h/R, i.e., 1 6 h/R 6 2. These functions are found to be



Fig. 5. For h/R = 1.2, (a) FEM results (�) of PH/Po versus a/R and its fitting function /1 (solid line) (b) FEM results (�) of dH/do versus a/
R and its fitting function /2 (solid line) (c) FEM results (�) of CH/Co versus a/R and its fitting function /3 (solid line).
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The coefficients bi, ci and di in Eqs. (13)–(15) are now functions of normalized the thickness h/R. For 1 6 h/
R 6 2, the coefficients bi in /1 are
b1

h
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� �
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The coefficients ci in /2 for 1 6 h/R 6 2 are



Fig. 6. For h/R = 1.5, (a) FEM results (�) of PH/Po versus a/R and its fitting function /1 (solid line) (b) FEM results (�) of dH/do versus a/
R and its fitting function /2 (solid line) (c) FEM results (�) of CH/Co versus a/R and its fitting function /3 (solid line).
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The coefficients di in /3 for 1 6 h/R 6 2 are found to be
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Fig. 7. For h/R = 1.8, (a) FEM results (�) of PH/Po versus a/R and its fitting function /1 (solid line) (b) FEM results (�) of dH/do versus
a/R and its fitting function /2 (solid line) (c) FEM results (�) of CH/Co versus a/R and its fitting function /3 (solid line).
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6. Results of adhesive contact and comparison

The relation between load and projected contact radius for the adhesive contact of a spherical rigid indenter
and the Neo-Hookean layer is obtained using (6) and the results of the last section. Specifically, the load versus
contact radius for large-deformation JKR theory can be calculated by
P ¼ P o/1

a
R
;
h
R

� �
�
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�4paW 1� a
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h i�1=2

C0o/3
a
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a
R ;

h
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vuuut ; ð31Þ
where the prime denotes d/da. Similarly, using (5) and the large-deformation Hertz displacement dH and com-
pliance CH given above, the relation between the displacement and the contact radius in the large-deformation
JKR theory is ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih ivu
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Fig. 8. For h/R = 2.0, (a) FEM results (�) of PH/Po versus a/R and its fitting function /1 (solid line) (b) FEM results (�) of dH/do versus
a/R and its fitting function /2 (solid line) (c) FEM results (�) of CH/Co versus a/R and its fitting function /3 (solid line).
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The theory used to obtain (31) and (32) is exact except for the approximation used to derive Eqs. (5) and (6). The
accuracy of this assumption as well as the accuracy of our fits to finite element results has been checked by sep-
arate finite element analyses to directly simulate the adhesive contact between a spherical indenter and the elastic
layer. In the direct finite element simulation of adhesive contact, the adhesive forces between two contacting sur-
faces were modeled by the cohesive zone model, which has been used to study the interfacial forces between solids
by many investigators (Barthel, 1998; Jagota et al., 1998; Lin and Hui, 2002). Excellent agreement between our
theory and direct finite element solution using the cohesive zone model (Dugdale–Barenblatt model (Dugdale,
1960; Barenblatt, 1968)) was obtained for a spherical indenter contacting on a layer with thickness h = 10R

and has shown in Lin and Chen (2006). The reasoning is as follows: for small contact, the assumption (2) holds
because linear theory is a good approximation, and for large contact, the actual displacement is very close to the
large-deformation Hertz displacement. That is, d � dH is indeed very small in comparison with dH.

To take into account of the work of adhesion and compare our results with the JKR theory, we introduce
the following normalized variables:
A ¼ a

3pWR2

16l

h i1
3

; ð33Þ

P ¼ P
pWR

; ð34Þ

�d ¼ d

9p2W 2R
256l2

h i1
3

; ð35Þ
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where A; P ; �d are the normalized contact radius, normalized load and normalized displacement, respectively.
The normalized contact radius, a/R in the previous section is related to the new normalized contact
radius by
Fig. 9.
The pr

Fig. 10
thickn
a
R
¼ bA; where b ¼ 3pW

16lR

� �1=3

: ð36Þ
Detailed calculations of Eqs. (31) and (32) using normalizations (33)–(36) were given in Appendix A. Figs. 9
and 10 show the predictions of P and �d at a fixed normalized contact radius A by (A3) and (A4) for various
layer thickness h, respectively. Also shown in Figs. 9 and 10 are predictions based on the small strain JKR
theory (solid lines) as comparison. The equations of the small strain JKR theory, in normalized form, are
Comparison of normalized load P versus normalized contact radius A curves predicted by our theory for different layer thickness.
ediction by JKR theory is plotted as comparison.

. Comparison of normalized displacement �d versus normalized contact radius A curves predicted by our theory for different layer
ess. The prediction by JKR theory is plotted as comparison.
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P ¼ A3 �
ffiffiffiffiffiffiffiffi
6A3
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; ð37Þ
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3
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p
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The parameters used for the normalization are W = 0.06 J/m2, R = 10 lm, l = 10 MPa, so that b = 0.0707.

7. Conclusion and discussion

Based on our numerical results, we obtain analytic expressions which relate the applied load or applied dis-
placements to the contact radius and the work of adhesion in the large-deformation regime. These expressions
are given by (31) and (32). When the contact area is very small, these expressions reduce to the standard small
strain JKR theory.

For non-adhesive contact of a rigid indenter with radius R and hyperelastic layers with thickness h and
1 6 h/R 6 2, our results show that for small to medium contact, the load versus contact radius relation pre-
dicted by the small strain Hertz theory is quite accurate. For contact radius exceeding 40% of the indenter
radius, the small strain JKR theory can considerably underestimates the actual load. On the other hand,
the relationship between displacement and contact radius differs from the small strain theory except for extre-
mely small contact. However, the difference is less than 25% for a/R < 1. Our results show that the differences
between the two theories do not always increase with contact radius, especially for thin layers. The same trends
are observed for adhesive contact. In light of this, if JKR theory was to be used to interpret experimental data,
then the force versus contact area relation should be used for small to moderate deformation while the dis-
placement versus contact radius relation should be used for very large deformation.

Also, to give a sense of what the deformation pattern looks like at large a/R, the deformed configuration
obtained from the FEM result of a hyperelastic layer of h/R = 1.0 and a/R = 0.98 is shown in Fig. 11.

Our results can be easily modified to model adhesion hysteresis due to rate processes on the interface, such
as the formation and breaking of hydrogen bonds (Ghatak et al., 2000). The only restriction is: (1) the region
where the interfacial rate processes occurs is very small in comparison with the contact area, so that the pro-
cesses are completely controlled by the energy release rate computed based on elasticity theory; (2) the bulk
material is hyperelastic. For these cases, the work of adhesion in Eqs. (31) and (32) must be regarded as history
dependent quantities; reflecting the fact that interfacial fracture is rate dependent.

There are several limitations in this work. Our computations are carried out using a Neo-Hookean solid
whereas the behavior of soft materials can be substantially different from this idealized model, especially at
Fig. 11. The deformed configuration of the hyperelastic layer of h/R = 1.0 at a/R = 0.98.
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very large deformation. For example, Kawamura et al. (2001) and Urayama et al. (2001) have shown that the
strain energy density function of poly(dimethylsiloxane) (PDMS) networks under multi-axial loading deviates
significantly from that of a Neo-Hookean solid. However, it should be noted that the validity of the theory
presented in this work is independent of the form of the strain energy density function, as long as the material
is hyperelastic. Instead of using a strain energy density function which works well for a particular elastomer,
we have chosen to carry out our calculations on an idealized model which has universal appeal. There is no
difficulty using the same procedures shown in this work to study the adhesive contact mechanics of any hyper-
elastic solid, irrespective of the form of strain energy density function. Finally, we have used frictionless
boundary condition on the contacting interface. This is a standard assumption in contact mechanics.
Undoubtedly our results will change if no sliding is permitted on the interface, especially when the contact
radius is large. We do not expect this change will be very significant, since the bottom of the layer is perfectly
bonded to a rigid layer.
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Appendix A

Using normalization of (33)–(36), (31) and (32) can be rewritten as
P ¼ A3/1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6A3ð1� b2A2Þ�1=2

/3ðbAÞ � bA/03ðbAÞ

s
ðA1Þ
and
�d ¼ A2/2 �
2/3

3A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6A3ð1� b2A2Þ�1=2

/3ðbAÞ � bA/03ðbAÞ

s
; ðA2Þ
respectively, where the prime denotes d=dðbAÞ. Substituting (27)–(29) into A1 and A2, the normalized load P
and the normalized displacement �d for adhesive contact between a hyperelastic hemisphere and a rigid sub-
strate are given by
P ¼ A3ð1þ b1bAþ b2b
2A2 þ b3b

3A3 þ b4b
4A4 þ b5b

5A5Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6A3ð1� b2A2Þ�1=2

1� d2b
2A2 � 2d3b

3A3 � 3d4b
4A4 � 4d5b

4A4

s
ðA3Þ
and
�d¼A2ð1þ c1bAþ c2b
2A2þ c3b

3A3þ c4b
4A4þ c5b

5A5Þ�2

3
ð1þd1bAþd2b

2A2þd3b
3A3þd4b

4A4þd5b
5A5Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Að1�b2A2Þ�1=2

1�d2b
2A2�2d3b

3A3�3d4b
4A4�4d5b

4A4

s
; ðA4Þ
respectively.
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