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a b s t r a c t

In this paper, the variational iteration method is applied to obtain the solution for space
fractional partial differential equations where the space fractional derivative is in the Riesz
sense. On the basis of the properties and definition of the fractional derivative, the iterative
technique is carried out in a straightforward manner without the need for transforms or
numerical approximations. Examples demonstrate that the series solution obtained shows
agreement with the exact solutions of the problems solved.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The variational iteration method (VIM) was proposed by the Chinese mathematician He [1–4] as a modification of a
general Lagrange multiplier method [5]. It has been shown that this procedure is a powerful tool for solving various kinds
of problems. VIM has been used to solve fractional differential equations with great success [6]. Following that, VIM was
applied to more fractional differential equations, showing the effectiveness and accuracy of the method [7–11].
Fractional differential equations have attracted much attention recently due to the exact description of nonlinear

phenomena that they afford. Here we consider fractional partial differential equations of the form

Ltu(x, t) = Rαx u(x, t), t > 0, (1)

where Lt is an integer order time derivative, and Rαx is the Riesz space fractional derivative of order α where parameter α is
a real number restricted to

0 < α < 2, α 6= 1.

The Riesz fractional derivative and its generalizations are used in equations that describe applications in random walk
models and anomalous diffusion characterized by nonlinear dependence of the mean square displacement of a diffusing
particle over time [12–17]. Numerical methods have been recently suggested for solving Riesz fractional problems [18,19].
However, iterative techniques have not been applied to such problems due to the difficulty of repeated evaluation of Riesz
fractional derivative of the solution components.
In this work, VIM is used to obtain the solution of the linear problem for a general zeroth-component function u0 = f (x)

that belongs to L1(−∞,∞). The article begins with some basic definitions of the fractional derivatives used. A lemma is
proved, showing how to carry out iterative steps to obtain the series solution. Examples are presented to illustrate the
approach suggested.
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2. The Riesz fractional derivative

The Riesz fractional derivative Rαx is defined as [20]

Rαx u(x) = −
[Dα
+
u(x)+ Dα

−
u(x)]

2 cos(απ/2)
, 0 < α < 2, α 6= 1 (2)

where Dα
±
u(x) are the Weyl fractional derivatives

Dα
±
u(x) =


±
d
dx
I1−α
±
u(x), 0 < α < 1

d2

dx2
I2−α
±
u(x), 1 < α < 2,

(3)

and Iβ± denote the Weyl fractional integrals of order β > 0, given by

Iβ+u(x) =
1

Γ (β)

∫ x

−∞

(x− z)β−1u(z)dz

Iβ−u(x) =
1

Γ (β)

∫
∞

x
(z − x)β−1u(z)dz.

(4)

When α = 0 the Weyl fractional derivative degenerates into the identity operator

D0
±
u(x) = Iu(x) = u(x). (5)

For continuity we get

D1
±
u(x) = ±

d
dx
u(x), D2

±
u(x) =

d2

dx2
u(x). (6)

Evidently, in the case α = 2 it takes the form of the second-derivative operator

R2xu(x) =
d2

dx2
u(x). (7)

For the case α = 1 we have

R1xu(x) =
d
dx
Hu(x) =

d
dx
1
π

∫
∞

−∞

u(z)
z − x

dz, (8)

where H is the Hilbert transform and the integral is understood in the Cauchy principal value sense.

3. The variational iteration method (VIM)

Consider the partial differential equation

Lu(x, t)+ Nu(x, t) = g(x, t), (9)

with prescribed auxiliary conditions, where u is the unknown function, L and N are linear and nonlinear operators,
respectively, and g is the source term. In the variational iteration method, a correction functional for Eq. (9) can be written
as

un+1(x, t) = un(x, t)+
∫ t

0
λ[Lun(x, ξ)+ Nũn(x, ξ)− g(x, ξ)]dξ (10)

where λ is a general Lagrange multiplier, which can be identified optimally via the variational theory, and ũn is a restricted
variation which means δ̃un = 0.
It is obvious now that the main steps of He’s variational iteration method require first the determination of λ, the

Lagrangian multiplier that will be identified optimally. Having determined the Lagrangian multiplier, the successive
approximations un+1, n ≥ 0, of the solution u will be readily obtained upon using any selective function u0, preferably
chosen as the initial condition of the problem. Consequently, the solution is

u = lim
n→∞

un.

Applying the method to problem (1), the correction functional equation takes the form

un+1(x, t) = un(x, t)+
∫ t

0
λ[Lξun(x, ξ)− Rαx ũn(x, ξ)]dξ . (11)

To carry out the procedure with relation (11), a repeated evaluation of the Riesz fractional derivative is needed. In the
following lemma, we show how to overcome this obstacle.
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Lemma 1. Let f(x) be a function in L1(−∞,∞). Then for α ∈ (0, 2), α 6= 1, and a positive integer k, a k-times fractional Riesz
derivative of f (x) takes the form(

Rαx
)k f (x) = 1

π

∫
∞

−∞

∫
∞

0
(−)kωkα f (v) cos(ω(x− v))dωdv.

Proof. Using the definition of Riesz and Weyl fractional derivatives (2) and (3), for the case α ∈ (0, 1),

Rαx sin(ωx) =
−C1(α)
2

d
dx

[∫ x

−∞

sin(ωz)
(x− z)α

dz −
∫
∞

x

sin(ωy)
(y− x)α

dy
]

(12)

where C1(α) = 1/(cos(απ/2)Γ (1− α)). By substitution and using trigonometric identities we have

Rαx sin(ωx) = −C1(α)
d
dx

∫
∞

0

− cos(ωx) sin(ωτ)
τ α

dτ , (13)

which yields

Rαx sin(ωx) = −ω
α sin(ωx). (14)

For α ∈ (1, 2),

Rαx sin(ωx) =
−C2(α)
2

d2

dx2

[∫ x

−∞

sin(ωz)
(x− z)α−1

dz +
∫
∞

x

sin(ωy)
(y− x)α−1

dy
]

(15)

where C2(α) = 1/(cos(απ/2)Γ (2− α)). Then

Rαx sin(ωx) = −C2(α)
d2

dx2

∫
∞

0

sin(ωx) cos(ωτ)
τ α−1

dτ , (16)

which yields

Rαx sin(ωx) = −ω
α sin(ωx). (17)

A similar argument for cos(ωx) shows that for the case α ∈ (0, 1),

Rαx cos(ωx) = −C1(α)
d
dx

∫
∞

0

sin(ωx) sin(ωτ)
τ α

dτ ,

= −ωα cos(ωx) (18)

and for the case α ∈ (1, 2),

Rαx cos(ωx) = −C2(α)
d2

dx2

(∫
∞

0

cos(ωx) cos(ωτ)
τ α−1

dτ
)

= −ωα cos(ωx). (19)

Now consider the Fourier integral representation of f (x):

f (x) =
1
π

∫
∞

−∞

∫
∞

0
f (v) cos(ω(x− v))dωdv. (20)

Then, a k-times fractional Riesz derivative of f (x) is given by(
Rαx
)k f (x) = 1

π

∫
∞

−∞

∫
∞

0
(−)kωkα f (v) cos(ω(x− v))dωdv. � (21)

4. Examples

Example 1. Consider the fractional diffusion equation:

ut(x, t) = Rαx u(x, t), −∞ < x <∞, t > 0, (22)

with an initial condition

u(x, 0) = f (x), (23)

where f(x) is in L1(−∞,∞).
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The correction functional equation for the problem is given by

un+1(x, t) = un(x, t)+
∫ t

0
λ

[
∂un(x, ξ)
∂ξ

− Rαx ũn(x, ξ)
]
dξ . (24)

This yields the stationary conditions

λ′(ξ) = 0,
1+ λ(ξ) = 0.

This in turn gives

λ = −1.

Substituting this value of the Lagrangian multiplier into functional (24) gives the iteration formula

un+1(x, t) = un(x, t)+
∫ t

0
Rαx ũn(x, ξ)−

∂un(x, ξ)
∂ξ

dξ . (25)

The initial condition is used for the zeroth approximation in its Fourier integral representation. Eq. (25) yields the following
successive approximations:

u0(x, t) = f (x)

u1(x, t) = (1/π)
∫
∞

−∞

∫
∞

0
(1− tωα)f (v) cos(ω(x− v))dωdv

u2(x, t) = (1/π)
∫
∞

−∞

∫
∞

0

(
1− tωα +

1
2
ω2αt2

)
f (v) cos(ω(x− v))dωdv

...

un(x, t) = (1/π)
∫
∞

−∞

∫
∞

0

n∑
k=0

(−tωα)k

k!
f (v) cos(ω(x− v))dωdv.

Recall that u = limk→∞ uk, which gives

uα(x, t) =
1
π

∫
∞

−∞

∫
∞

0
e−ω

α t f (v) cos(ω(x− v))dωdv,

which is the exact solution of the problem. Fig. 1 shows at t = 0.5 the effect of changing α on the solution for f (x) = δ(x)
where the problem describes discrete random walks [17]. It can be seen for Fig. 1 that as α increases the amplitude of the
sinusoidal behavior in the solution decreases. In the figure, u2 denotes the exact solution of the corresponding integer order
problem.

Example 2. Consider the advection–dispersion problem [18]

ut(x, t) = 0.25Rαx u(x, t)+ 0.25R
β
x u(x, t), 0 < x < π, t > 0,

subject to the conditions

u(x, 0) = sin(4x)
u(0, t) = u(π, t) = 0.

The correction functional equation takes the form

un+1(x, t) = un(x, t)+ λ
∫ t

0

[
∂un(x, ξ)
∂ξ

− 0.25(Rαx ũn(x, ξ)+ R
β
x ũn(x, ξ))

]
dξ . (26)

This yields the stationary conditions

λ′(ξ) = 0,
1+ λ(ξ) = 0,

which in turn gives

λ = −1.
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Fig. 1. u(x, 0.5)with the change of α for f (x) = δ(x).
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Fig. 2. u(x, 0.5)with the change of α for β = 0.7.

The following successive approximations are obtained:

u0(x, t) = sin(4x)
u1(x, t) = sin(4x)(1− 0.25(4α + 4β)t)

u2(x, t) = sin(4x)
(
1− 0.25(4α + 4β)t +

1
2
(0.25)2t2(4α + 4β)2

)
...

un(x, t) = sin(4x)
n∑
k=0

1
k!
(−0.25(4α + 4β)t)k.

We have u = limk→∞ uk, and as α→ 2, β → 1, from (8) and (7) we have

u(x, t) = sin(4x)e−5t ,

which is the exact solution of the corresponding integer order problem. Figs. 2 and 3 show at t = 0.5 the effect of changing
α and β on the solution for β = 0.7 and α = 1.99, respectively. In both figures, u2,1 denotes the exact solution of the
corresponding integer order problem.
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Fig. 3. u(x, 0.5)with the change of β for α = 1.99.

Example 3. Consider the space fractional wave equation

utt(x, t) = c2Rαx u(x, t), c > 0, t > 0,

subject to the conditions

u(x, 0) = sin
(πx
l

)
, ut(x, 0) = 0

u(0, t) = 0, ux(0, t) =
π

l
cos

(
cπ t
l

)
.

This problem is a generalization of the diffusion equation in [21] obtained by replacing the integer second-order space
derivative by the Riesz fractional derivative. The correction functional equation takes the form

un+1(x, t) = un(x, t)+ λ
∫ t

0

[
∂un(x, ξ)
∂ξ

− c2Rαx ũn(x, ξ)
]
dξ . (27)

This yields the stationary conditions

λ′′(ξ) = 0, 1− λ′(ξ)|ξ=t = 0, λ(ξ)|ξ=t = 0,

which in turn give

λ = ξ − t.

The correction functional equation now takes the form

un+1(x, t) = un(x, t)+
∫ t

0
(ξ − t)

[
∂un(x, ξ)
∂ξ

− c2Rαx ũn(x, ξ)
]
dξ . (28)

Taking the zeroth component as u0(x, t) = sin
(
πx
l

)
, the following successive approximations are obtained:

u0(x, t) = sin
(πx
l

)
u1(x, t) = sin

(πx
l

)(
1−

1
2!

(π
l

)α
c2t2

)
u2(x, t) = sin

(πx
l

)(
1−

1
2!

(π
l

)α
c2t2 +

1
4!

(π
l

)2α
c4t4

)
...

un(x, t) = sin
(πx
l

) n∑
k=0

(−1)k

2k!

(π
l

)αk
(ct)2k.
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Fig. 4. u(x, 0.25)with the change of α with c = l = 1.

We have u = limk→∞ uk, which gives

uα(x, t) = sin
(πx
l

)
cos

((π
l

)α/2
ct
)
,

whereas when α→ 2, we have

u2(x, t) = sin
(πx
l

)
cos

(
πct
l

)
,

which is the exact solution of the integer order problem. Fig. 4 show the effect of changing α on the solution at t = 0.25
with c = l = 1. In figure, u2 denotes the exact solution of the corresponding integer order problem.

5. Conclusion

An iterative solution to the Riesz fractional partial differential equation is deduced. The scheme is based on the properties
of the Riesz fractional derivative. The solution is obtained directly utilizing the variational iteration method without the
need for any transforms, discretization of the operator, or numerical approximations. The series solutions obtained coincide
with the exact solutions of the problems solved. The basic approach of this solution scheme can also be utilized with other
iterative solution techniques.
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