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Stem cells are fundamental units for achieving regenerative therapies, which leads naturally to a theoretical
and experimental focus on these cells for therapeutic screening and intervention. A growing body of data in
many tissue systems indicates that stem cell function is critically influenced by extrinsic signals derived from
the microenvironment, or ‘‘niche.’’ In this vein, the stem cell niche represents a significant, and largely
untapped, entry point for therapeutic modulation of stem cell behavior. This Perspective will discuss how
the niche influences stem cells in homeostasis, in the progression of degenerative and malignant diseases,
and in therapeutic strategies for tissue repair.
Effective functioning of the body’s tissues and organs depends

upon innate regenerative processes that maintain proper cell

numbers (homeostasis) and replace damaged cells after injury

(repair). In many though not all tissues, regenerative potential

is determined by the presence and functionality of a dedicated

population of stem and progenitor cells, which respond to exog-

enous cues to produce replacement cells when needed. Under-

standing how these unspecialized precursors aremaintained and

regulated is essential for understanding the fundamental biology

of tissues. This knowledge also has practical implications, as the

regenerative potential of tissue-specific stem and progenitor

cells can be exploited therapeutically by transplantation to

replenish the stem cell pool, by endogenous manipulation to

boost the repair activity of cells already present in the tissue, or

through in vitro modeling of development and disease to provide

otherwise inaccessible systems for identifying pathological

mechanisms and testing the efficacy of newly discovered drugs.

Indeed, the promise of stemcell biology for the development of

novel therapeutics has fueled a veritable explosion in studies

aimed at using these cells in ‘‘regenerative medicine,’’ an

emerging field of biomedicine focused on the ‘‘repair, replace-

ment, or regeneration of cells, tissues or organs’’ (Mason and

Dunnill, 2008). Yet such strategies ultimately must consider and

address biological constraints imposed by both the stem cell

itself and the environment, or niche, in which the stem cell is

asked to function. In this Perspective, I review existing and

emerging evidence suggesting that the stem cell niche repre-

sents a particularly attractive and relatively underexploited entry

point for the discovery of novel stem cell regulatory mechanisms

and the development of newapplications in regenerative biology.

Several new and exciting studies, in both the hematopoietic

(blood-forming) system and solid organs, have highlighted the

potential of such approaches. This work likely represents the

shallow end of a very deep pool, which upon further investigation

will yield new paradigms for understanding and controlling stem

cell functions to achieve therapeutically valuable results.

Stem Cells and Their Niches
As the functional units for growth and regeneration in many

tissues, stem cells hold a position of significant importance for
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maintaining proper tissue function. Thus, these cells should be

protected as much as possible from damage or loss, while at

the same time maintaining sufficient communication with their

surroundings to ensure appropriate responsiveness to physio-

logical cues for cell replacement and repair. In many tissues,

this balance between protection and interaction appears to be

accomplished by maintaining stem cells in a specialized micro-

environment, or niche, which provides spatial and temporal

cues to support and coordinate stem cell activities (Wang and

Wagers, 2011). Stem cell niches have been identified and char-

acterized in many tissues, including the germline, bone marrow,

digestive and respiratory systems, skeletal muscle, skin, hair

follicle, mammary gland, and central and peripheral nervous

systems. Extensive studies in a number of different laboratories

have begun to elucidate the critical components of many stem

cell niches, which include specific mesenchymal, vascular,

neuronal, glial, and inflammatory cell types, diffusible and cell-

surface-associated signaling molecules, and physical parame-

ters such as matrix rigidity, shear stress, oxygen tension, and

temperature (see Figure 1; reviewed in Bautch, 2011; Ehninger

and Trumpp, 2011; Jones and Wagers, 2008; Morrison and

Spradling, 2008; Peerani and Zandstra, 2010; Raaijmakers,

2011; Sneddon and Werb, 2007; Voog and Jones, 2010; Wang

and Wagers, 2011; Wilson and Trumpp, 2006). In particular,

cell-cell interactions within the niche provide structural support,

regulate adhesive interactions, and produce soluble signals that

can control stem cell function. Stem cell interactions with the

extracellular matrix (ECM) provide retention cues, as well as

mechanical signals, based in part on substrate rigidity (Engler

et al., 2006; Gilbert et al., 2010), which allow stem cells to

respond to external physical forces. In addition, the ECM can

sequester or concentrate growth factors, chemokines, and other

stem cell regulatory molecules by binding both locally and

systemically produced factors within the niche (Yamazaki

et al., 2011). The close association of many stem cell types

with the vasculature and nervous system allows for modulation

of stem cell responses by metabolic cues and circadian rhythms

(Kiel et al., 2005; Méndez-Ferrer et al., 2008, 2009, 2010), and

provides a conduit through which inflammatory and immune

cells, as well as humoral factors, can be delivered to the niche
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Figure 1. Constituents of a Stem Cell Niche
Stem cell niches are highly complex and dynamic, including both cellular and acellular components. This schematic depicts many of the critical constituents of
stem cell niches, drawing predominantly from data in the hematopoietic system, and also including data from the skeletal muscle and gut. Labels are color-coded
to match objects in the diagram, and some examples are given where appropriate. Please see text for additional detail. ECM, extracellular matrix; GPCRs,
G protein-coupled receptors; MSC, mesenchymal stem cell.
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(Chow et al., 2011; Christopher et al., 2011; Ehninger and

Trumpp, 2011). Finally, temperature, shear forces, and chemical

signals provided by the niche also influence stem cell behavior in

response to the external environment (Adams et al., 2006; North

et al., 2009; Wang and Wagers, 2011). Importantly, while the

specific components that constitute a particular stem cell niche

may vary in different tissues and under distinct physiological

contexts, in all cases the signals provided by these cellular and

acellular components appear to be integrated by stem cells to

inform their fate decisions, including choices between quies-

cence or proliferation, self-renewal or differentiation, migration

or retention, and cell death or survival.

The pivotal role of the niche in determining stem cell functions

presents a powerful opportunity to manipulate stem cells to

enhance their therapeutic efficacy. Indeed, because the niche,

by definition, impacts stem cell function extrinsically, it may be

argued that this anatomical structure represents an even more

‘‘druggable’’ target for regenerative medicine than the stem

cell itself. Such ‘‘niche therapies’’ could be applied to enhance

stem cell functionality—in transplantation, through endogenous

targeting, or via in vitro model systems (Figure 2). The following

paragraphs consider the progress, challenges, and opportuni-

ties for such approaches and how understanding the stem cell

niche may ultimately enable full realization of the promise each

presents.

Targeting the Niche to Enhance Stem Cell Transplant
for Regenerative Medicine
One of themost celebrated successes in the use of stem cells for

regenerative medicine has been the clinical implementation of

bonemarrow transplantation for regeneration of the blood-form-

ing system (Thomas, 2000). The process of bone marrow trans-

plant typically involves the harvesting of donor cells containing

hematopoietic stem cells (HSCs) from either the marrow cavity

or peripheral blood (after treatment with appropriate ‘‘mobi-

lizing’’ agents that induce themigration of HSCs from themarrow

into circulation), and infusion of those cells into a recipient whose

own blood-forming cells have been impaired or ablated by
chemotherapy or radiation. Thus, a primary challenge in bone

marrow transplant (and likely in other tissue-specific transplant

approaches that may be pursued in future studies) is achieving

sufficient regeneration in a short enough period of time to be

effective. In the case of the blood system, this requires (1) collec-

tion of sufficient numbers of stem cells for transplant, (2) efficient

migration of these cells after intravenous injection to their proper

locations within the bone marrow, and (3) proliferation of these

cells in the body to rapidly replenish lost cells. Ineffectiveness

or inefficiency at any of these steps can result in life-threatening

graft failure. Therefore, strategies that can boost the rate or

extent of regeneration, either by providing more regenerative

cells or by increasing the per cell output of each stem cell trans-

ferred, may significantly reduce transplant-associated risk and

increase the rate of successful engraftment. Importantly, strate-

gies that target the stem cell niche could aid in both approaches.

Indeed, targeting of the stem cell niche is already effectively em-

ployed in the clinical practice of marrow transplantation, wherein

donors are treated with stem cell mobilizing agents, such as

granulocyte-colony stimulating factor (G-CSF) or AMD3100.

These agents activate niche remodeling and disrupt the normal

interactions of HSCs with the marrow environment (Broxmeyer

et al., 2005; Kollet et al., 2006; Méndez-Ferrer et al., 2010),

thereby causing the egress of stem cells into the peripheral

circulation where they can be easily collected for subsequent

transplantation. Likewise, administration of lineage-specific

hematopoietic cytokines, including granulocyte-macrophage-

colony stimulating factor (GM-CSF) or erythropoietin, is routinely

employed to support the enhanced production of particular

blood cell lineages in patients with deficiencies in leukocytes

or leukocyte subsets.

In addition to targeting the niche throughmobilizing and differ-

entiation agents, much interest has focused on strategies that

may recapitulate a stem cell expanding niche ex vivo. Such

approaches, if successful, could in theory generate increased

numbers of cells for transplant. Although such ex vivo expansion

approaches have been pursued formany decades, unfortunately

for the most part without significant gains (Dahlberg et al., 2011),
Cell Stem Cell 10, April 6, 2012 ª2012 Elsevier Inc. 363



Figure 2. Potential Entry Points for Niche-Directed Stem Cell Therapies
Targeting the stem cell niche could have therapeutic value in a number of strategies aimed at using or manipulating stem cells for regenerative medicine. In the
context of transplantation, ex vivo recapitulation of niche-derived signals could be used to expand stem cells for subsequent transplant (A), or to expand or alter
the niches that are available in vivo in transplant recipients (B). Direct targeting of niche cells in vivo also could be used to replenish lost niches or reverse niche
dysfunction (C), thereby restoring or enhancing endogenous regenerative potential. Conversely, modified, tumor-supportive niches could be targeted for deletion
or modification to counteract their growth and metastasis-promoting activities (D). Finally, reconstitution of stem cell niches ex vivo has the potential to provide
necessary extrinsic cues, which are lacking in cultures containing stem cells alone (E), to initiate in culture normal processes of development (F) that typically are
inaccessible to experimental interrogation, and to uncover how these processesmay be perturbed in disease to impede or pervert normal stem cell differentiation
(G). Intervention in any of these culture systems with gene modification or small molecule supplementation could also provide novel systems for drug discovery.
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recent advances in our understanding of the substantial com-

plexity of the stem cell niche coupled with improved technolo-

gies for high-throughput screening and biomaterials fabrication

are likely to reinvigorate this area of investigation (Peerani and

Zandstra, 2010). Previous studies have reported successful

expansion of clinically relevant numbers of hematopoietic

stem and progenitor cells through endogenous (Varnum-Finney

et al., 2000) or ligand-mediated (Varnum-Finney et al., 2003) acti-

vation of Notch signaling (a conserved cell-cell communication

pathway that regulates cell fate and differentiation events in

many different metazoan tissues; Liu et al., 2010). More recently,

work using microfabricated arrays of stem cell regulatory factors

(i.e., Wnt, Notch, and BMP2) together with ECM components

demonstrated a complex interplay between matrix proteins

and growth factors in the regulation of self-renewal and differen-

tiation of neural stem cells (Soen et al., 2006). Moreover, studies

of skeletal muscle stem cells have provided compelling data

indicating that even relatively simplistic interventions, such as
364 Cell Stem Cell 10, April 6, 2012 ª2012 Elsevier Inc.
modulation of substrate elasticity, can profoundly impact the

ex vivo expansion of regenerative cells, enabling significant

tissue engraftment to be obtained from as few as 10 cultured

precursor cells (Gilbert et al., 2010). Such modulation of matrix

rigidity also has been used to bias the differentiation potential

of mesenchymal stromal cells (MSCs), with stiffer matrices

favoring osteogenic lineages (Engler et al., 2006). It is likely

that similar principles, when applied to hematopoietic or other

tissue stem cell systems,may have equivalently useful outcomes

for stem cell expansion and cell fate modulation. Likewise, high

throughput chemical screening using purified human HSCs has

identified soluble signals, such as inhibition of ligand-induced

signaling by the aryl hydrocarbon receptor (AhR), that can

promote in vitro expansion of umbilical cord and mobilized

peripheral blood-derived human HSCs (Boitano et al., 2010;

M. Cooke, personal communication). Such unbiased screens

likely illuminate natural mechanisms used by niche cells in vivo

to modulate stem cell expansion, and thus, future studies of
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this type could be further informed by direct analysis of endoge-

nous niche signals to prioritize candidate pathways.

Niche-directed interventions also might be employed to boost

support for transplanted stem cells after transplantation. In this

regard, compelling preclinical data in mice suggest that activa-

tion of osteolineage cells by parathyroid hormone (PTH), which

promotes the proliferation of nestin+ mesenchymal cells and

encourages osteolineage differentiation (Calvi et al., 2003; Mén-

dez-Ferrer et al., 2010), speeds posttransplant recovery of

peripheral mature cells, improves pharmacological mobilization

of HSCs, and protects mice from otherwise lethal hematoabla-

tive chemotherapy (Adams et al., 2007). Such studies supported

the initiation of clinical trials to test the impact of PTH supple-

mentation on donor cell mobilization and engraftment during

sequential cord blood transplantation (ClinicalTrials.gov Identi-

fier numbers: NCT00393380 and NCT00299780). Although

the engraftment study was stopped early when toxicity

endpoints (thought to be transplant-related, rather than drug-

induced) were met, outcomes from the mobilization trial indi-

cated that about half of patients who had failed a previous round

of mobilization mobilized successfully after PTH (D. Scadden,

personal communication). In a similar approach, treatment of

irradiated mice with the peroxisome proliferator-activated

receptor-gamma (PPAR-g) inhibitor bisphenol A diglycidyl ether

accelerated hematopoietic engraftment, apparently via inhibition

of marrow adipogenesis (Naveiras et al., 2009). Such interven-

tions, which target mesenchymal cell types that are components

of the HSC niche in the bone marrow, may be particularly rele-

vant for improving transplantation outcomes in aged individuals,

who typically exhibit reduced bone density and increased

adiposity. These age-related microenvironmental alterations

could impair HSC function, and so, reversal of these changes

might be predicted to enhance therapeutic engraftment in

aged individuals (see below).

Targeting Endogenous Niches to Promote Regenerative
Activity or Impede Deregulated Growth
In many acute and degenerative diseases, alterations in the stem

cell niche may activate stem cell suppressive mechanisms that

impair tissue regenerative potential (for review, see Jones and

Rando, 2011; Liu and Rando, 2011; Rossi et al., 2008). This

phenomenon is particularly evident in the context of physiolog-

ical aging, where a number of tissues exhibit profound alter-

ations in stem cell number and activity that coincide with

reduced tissue function and a delay or failure to repair after

injury. In the blood system, HSC numbers increase with age

but HSC function declines (Morrison et al., 1996; Rossi et al.,

2005), leading to impaired stem cell engraftment potential and

skewed production of mature cell lineages by individual aged

HSCs (Dykstra et al., 2011). Stem cell function is similarly

impaired in the aged central nervous system (CNS), which

exhibits reduced neurogenesis at baseline (Molofsky et al.,

2006) and impaired remyelination activity after injury (Sim et al.,

2002), and in the skeletal muscle, where deficiencies in satellite

cell number and activation impede rapid repair of acutely

damaged muscle fibers (Brack et al., 2005; Collins et al., 2007;

Conboy et al., 2003, 2005). This inexorable decline in stem cell

function stimulated by advancing age likely contributes to the

progression of chronic diseases, particularly diseases that can
span several decades of life (such as multiple sclerosis and

some adult-onset forms of muscular dystrophy) and are there-

fore impacted by age-related deficits in tissue stem cells, even

if those deficits are unrelated to the disease-causing factors. In

this regard, recent studies in parabiotic mice have implicated

age-variant systemic factors, including soluble factors (Brack

et al., 2007; Conboy et al., 2005; Villeda et al., 2011) and circu-

lating hematopoietic cells (Ruckh et al., 2012), in modifying

the stem cell niche to promote or reverse the effects of aging

on stem and progenitor cell function. Such studies highlight

the dynamic nature of the stem cell niche, and the potential for

endocrine, as well as paracrine, control of tissue regenerative

function. These studies also point to discrete molecular entities,

including inactivated Notch signaling (Conboy et al., 2005) or

hyperactivated Wnt (Brack et al., 2007) or TGF-b (Carlson

et al., 2008) signaling in skeletal muscle, and excessive levels

of CCL11/eotaxin (Villeda et al., 2011) or ineffective activity of

recruited phagocytes (Ruckh et al., 2012) in the CNS, as niche-

derived targets for therapeutic intervention. Thus, niche-directed

strategies that revert the stem cell microenvironment to a more

‘‘youthful’’ state may be effective in reversing age-associated

stem cell defects and thereby restore robust regenerative

potential to aging tissues.

Interestingly, even young animals may experience remodeling

of stem cell niches that impacts tissue regenerative potential,

particularly if they are exposed to prolongedmetabolic perturba-

tions. Obese, insulin-resistant, and diabetic individuals exhibit

profound impairments in tissue repair, including ineffective heal-

ing of cutaneous wounds (Rafehi et al., 2011), poor regeneration

of injured skeletal muscle (Hu et al., 2010), and aberrant regula-

tion of immune and inflammatory cells (Mathis and Shoelson,

2011). As in aged animals, regenerative defects in the diabetic

state appear to be modulated at least in part by blood-borne

factors. Parabiotic experiments in a diabetic skin wounding

model, where diabetic animals (which normally show impaired

healing after skin wounding) were exposed to circulating factors

found in normoglycemic animals, showed an accelerated rate of

wound closure, enhanced angiogenesis, and an increased

recruitment of inflammatory cells thought to be important in

‘‘clean-up’’ of the wound site in diabetic mice following para-

biosis (Pietramaggiori et al., 2009). Likewise, recent data in the

hematopoietic system reported a significant impairment of

HSC mobilization in diabetic mice and patients (Ferraro et al.,

2011). Given that impaired angiogenesis and altered inflamma-

tory responses in many tissues are common manifestations of

advancing age and diabetes, it is possible that these may repre-

sent common mechanisms by which modifications in the stem

cell niche can suppress tissue regenerative function. Thus,

niche-based therapeutics that prevent or reverse these alter-

ations may be of broad benefit to the already large and ever-

increasing population of individuals diagnosed with diabetes or

metabolic syndrome.

In addition to aging and diabetes, endogenous targeting of the

stem cell nichemay also be desirable in situations of deregulated

cell growth leading to cancer. Several intriguing studies support

the existence of a specialized tumor microenvironment that

plays a particular role in encouraging tumor cell growth and

may promote the metastatic spread of malignant cancer stem

cells (reviewed in Raaijmakers, 2011; Sneddon and Werb,
Cell Stem Cell 10, April 6, 2012 ª2012 Elsevier Inc. 365
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2007; Voog and Jones, 2010; Wels et al., 2008). Stromal cells

isolated from established tumors often exhibit alterations in their

gene expression profiles, including deregulation of secreted

factors that may promote cell growth or inhibit normal differenti-

ation. For example, stromal cells associated with human basal

cell carcinomas (BCCs) show enhanced expression of antago-

nists of the bone morphogenetic protein (BMP) pathway,

including Gremlin1 and Follistatin, when compared to normal

stroma, and ex vivo supplementation of cultures of BBC cells

with Gremlin1 inhibited BMP-stimulated tumor cell proliferation

(Sneddon et al., 2006). Similarly, the dependence of a number

of solid tumors, including pancreatic adenocarcinoma and colon

carcinoma, on activated Hedgehog (Hh) signaling has been

traced to a requirement for this pathway in the tumor mesen-

chyme, rather than in tumor cells themselves (Yauch et al.,

2008). In one particularly striking example of a ‘‘tumorigenic

niche,’’ conditional inactivation of the small RNA processing

enzyme Dicer specifically in mouse osteolineage cells induced

a modified niche that promoted myelodysplasia, leading ulti-

mately to the emergence of an acute myelogenous leukemia

that was independent of Dicer deletion in the hematopoietic

compartment (Raaijmakers et al., 2010). These data indicate

that gene disruption or deregulation in the niche can provide

a ‘‘fertile soil’’ for the growth of malignant clones, and may

underlie the emergence of some hematopoietic dysplasias. Tar-

geting such aberrant niches, particularly in the early stages of

disease, may be an effective strategy for reversing disease

course (Figure 2), a notion supported by the observation that

transplantation of dysplastic cells from the Dicer-deficient

microenvironment to a wild-type host failed to transfer disease

(Raaijmakers et al., 2010).

In a contrasting approach, recent studies suggest that target-

ing the niche to drive stem cell proliferation, rather than to inhibit

it, may also hold clinical utility. In particular, it has been sug-

gested that by altering the inflammatory tone of the stem cell

niche, via modulation of cytokines such as interferon-alpha

(IFN-a) and G-CSF, one might drive ‘‘dormant’’ HSCs or resting

leukemic stem cells into cycle and thereby enhance the effi-

ciency of chemotherapeutic ablation of tumor cells or of endog-

enous stem cells (which would likely enhance subsequent donor

cell engraftment) (Essers and Trumpp, 2010). Such effects might

also be accomplished by targeting nonmyelinating Schwann

cells in the bone marrow, which appear to be responsible for

maintaining HSC ‘‘hibernation’’ by activating latent TGF-b

(Yamazaki et al., 2011).

Such niche-directed strategies may prove themselves to be

equally relevant interventions in solid tumors as well. Studies in

a mouse model of neurofibroma indicate that haploinsufficiency

of the tumor suppressor NF1 in the nonneural cells of the tumor

microenvironment promotes tumor growth, in part by recruit-

ment of dysfunctional mast cells that produce critical tumor

growth factors (Yang et al., 2006; Zhu et al., 2002). Likewise,

cancer-associated fibroblasts (CAFs) found in association with

invasive breast cancers appear to support tumor initiation and

progression, in part by elaboration of the chemokine CXCL12

(also known as stromal derived factor-1, SDF-1), which acts

directly on breast cancer cells and also on endothelial progeni-

tors to stimulate tumor angiogenesis (Orimo et al., 2005). Finally,

modified niches may in some cases direct the formation of
366 Cell Stem Cell 10, April 6, 2012 ª2012 Elsevier Inc.
secondary tumors, producing factors that attract or retain meta-

static cells at particular locations (Kaplan et al., 2006; Wels et al.,

2008). In these situations, targeted strategies that ablate tumor-

supportive niche cells, disrupt homing to these niches, or alter

the ability of the niche to produce required growth factors or

‘‘metastatic beacons’’ may provide novel and effective strate-

gies for inhibiting tumor cell growth and malignant progression

(Jin et al., 2006; Lane et al., 2009; Raaijmakers, 2011).

Ex Vivo Models for Tissue Development and Disease:
Opening the ‘‘Black Box’’ of Degenerative Disease
Human degenerative diseases vary widely in their etiology,

pathology, and prognosis, and we know sadly little about the

causes and early events in the vast majority of these afflictions.

This knowledge gap relates in part to the fact that many degen-

erative diseases fail to manifest symptoms (and therefore gener-

ally lack diagnosis) until relatively late in the disease process,

when many of the disease-initiating and tissue destructive

events have already taken place. For example, in patients with

type 1 diabetes, a degenerative pathology evoked by autoim-

mune destruction of pancreatic beta cells, diagnosis typically

occurs only after the patient has lost 40%–90% of beta cell

mass, depending on age (Gale, 2002; Klinke, 2008). Likewise,

in Parkinson’s disease, it has been estimated that pigmented

neurons in the substantia nigra and striatal dopamine levels are

decreased by up to 50 and 80%, respectively, before the symp-

tomatic manifestation of their loss is detected (Fearnley and

Lees, 1991; Marsden, 1990; Ross et al., 2004). Unfortunately,

this complicated clinical situation forces a somewhat retrospec-

tive analysis of disease in human subjects, which generally is

insufficient to reveal the fundamental underlying mechanisms

that could be targeted early to prevent or reverse pathological

expression of disease phenotypes. In this regard, patient-

specific stem cells, which can undergo the same developmental

processes that give rise to disease pathology in vivo, provide

a unique opportunity to recapitulate disease processes in real

time, under experimental scrutiny and subject to intentional

manipulation, to discover exploitable vulnerabilities in the drivers

of pathology. The groundbreaking development of induced re-

programming technology (Park et al., 2008a, 2008b; Takahashi

et al., 2007; Takahashi and Yamanaka, 2006; Yu et al., 2007),

and the resulting possibility of generating disease-specific

induced pluripotent stem cells (iPSCs) from almost any human

patient (Park et al., 2008a), has made this possibility a reality

for many human disorders. Excitingly, studies that have charac-

terized disease-specific phenotypes of patient iPSCs and evalu-

ated the potential of these cells for drug discovery have for the

most part supported the utility of this approach (Brennand

et al., 2011; Kiskinis and Eggan, 2010; Liu et al., 2011; Zhang

et al., 2011). Yet, at the same time, such studies reinforce the

notion that highly reductionist approaches—which focus only

on the cell type that is lost or damaged in a given disease—

may overlook critical ‘‘niche effects’’ on disease progression.

An illustrative case in point, motor neurons generated from

mouse pluripotent stem cells expressing a mutant human gene

associated with familial cases of amyotrophic lateral sclerosis

(ALS, or ‘‘Lou Gehrig’s Disease,’’ a lethal neurodegenerative

disease caused by the death of motor neurons in the brain and

spinal cord; Boillée et al., 2006) manifested a significantly greater
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in vitro pathology when cultured together with glial cells that also

carried the disease gene (Di Giorgio et al., 2007; Nagai et al.,

2007). These data implicated toxic mediators produced by glial

cells within the diseased neuronal niche as critical players in

motor neuron loss and disease progression, and further studies

using human pluripotent cell-derived motor neurons ultimately

identified prostaglandin D2 (PGD2) signaling as a critical medi-

ator of this toxic effect (Di Giorgio et al., 2008). Significantly,

inhibition of the PGD2 receptor provided substantial protection

to motor neurons cocultured with mutant glia, though this inter-

vention had no effect on motor neurons cultured with wild-type

glia (Di Giorgio et al., 2008). Thus, the discovery of this critical

disease-promoting mechanism in ALS relied upon an in vitro

system in which stem cells capable of producing the target cells

of a disease were exposed to the disease-modified niche cells

that signal their elimination.

Concluding Remarks
Stem cells hold tremendous potential for realizing the promise of

regenerative medicine, but these cells are not solo actors in the

drama of tissue maintenance and repair. As stem cells must

respond rapidly and appropriately to a multitude of extrinsic

signals, these cells are intricately connected with their surround-

ings and receive constant input from their niches, which direct

their subsequent behavior. Through better understanding of

the cellular players and molecular signals that constitute stem

cell niches under different physiological and pathological

conditions, we will develop more refined models of stem cell

responses and may ultimately be able to dictate their activities

to promote tissue regeneration. Likewise, by targeting dysfunc-

tional or deregulated niches, we may design new strategies to

combat stem cell loss, such as occurs in response to organismal

aging and degenerative disease, and to prevent or reversemalig-

nant transformation for the treatment of hematopoietic and non-

hematopoietic tumors. Success in these endeavors will require

a holistic view of stem cell regulation, exploiting new advances

in in vivo stem cell analysis and ex vivo modeling to uncover

novel entry points for niche-directed therapies.
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