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1. Introduction

In this paper, we consider the Dirichlet problem for the following Hessian quotient equations in exterior domains

Sk,l
(

D2u
) = Sk(D2u)

Sl(D2u)
= 1 in R

n \ Ω, (1.1)

u = ϕ on ∂Ω. (1.2)

Here Ω is a bounded domain in R
n , 0 � l < k � n, D2u denotes the Hessian of the function u, and S j(D2u) is defined to be

the jth elementary symmetric function of the eigenvalues λ = (λ1, λ2, . . . , λn) of D2u, i.e.,

S j
(

D2u
) = σ j

(
λ
(

D2u
)) =

∑
1�i1<···<i j�n

λi1 · · ·λi j , j = 1,2, . . . ,n.

When l = 0, we denote S0(D2u) ≡ 1.
Eq. (1.1) is an important class of fully nonlinear elliptic equations which is closely related to geometric problem. Some

well-known equations can be regarded as its special cases. When l = 0, it is a k-Hessian equation. In particular, it is a
Poisson equation if k = 1, while it is a Monge–Ampère equation if k = n. When k = n = 3, l = 1, i.e., det D2u = �u, Eq. (1.1)
arises from special Lagrangian geometry [8]: if u is a solution of (1.1), the graph of Du over R

3 in C
3 is a special Lagrangian

submanifold in C
3, i.e., its mean curvature vanishes everywhere and the complex structure on C

3 sends the tangent space
of the graph to the normal space at every point. Therefore Eq. (1.1) has drawn much attention, see [1,3,10,11].

The Dirichlet problem of Monge–Ampère equations in exterior domains in R
2 was studied by Ferrer, Martínez and Milán

in [6,7] using complex variable methods and in exterior domains in R
n with prescribed asymptotic behavior at infinity

was investigated by Caffarelli and Li in [2] using Perron’s method. Recently, the Dirichlet problem of Hessian equations has
been studied by Dai and Bao in [5] using Perron’s method. In this paper, we consider the existence of viscosity solutions to
Hessian quotient equations using Perron’s method.
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To work in the realm of elliptic equations, we have to restrict the class of functions. Let

Γk = {
λ ∈ R

n
∣∣ σ j(λ) > 0, j = 1,2, . . . ,k

}
.

A function u ∈ C2(Rn \ Ω) is called k-convex (uniformly k-convex) if λ ∈ Γk(Γk), where λ = λ(D2u) = (λ1, λ2, . . . , λn) are
the eigenvalues of the Hessian matrix D2u.

From [3] and [11], we know that Eq. (1.1) is elliptic and

(
Sk,l

(
D2u

)) 1
k−l =

(
Sk(D2u)

Sl(D2u)

) 1
k−l

is a concave function of the second derivatives of u if u is uniformly k-convex. It is natural for the solutions of Eq. (1.1) to
be considered in the class of uniformly k-convex functions.

An extensive study of viscosity solutions of second order partial differential equations can be found in [4] and [9].
For the reader’s convenience, we recall the definition of viscosity solutions to Eq. (1.1). Let D be an open subset of R

n ,
and f ∈ C0(D) be nonnegative. A function u ∈ C0(D) is called a viscosity subsolution to

Sk,l
(

D2u
) = f in D, (1.3)

if for any y ∈ D , ξ ∈ C2(D) satisfying

u(x) � ξ(x), x ∈ D and u(y) = ξ(y),

we have

Sk,l
(

D2ξ(y)
)
� f (y).

A function u ∈ C0(D) is called a viscosity supersolution to (1.3), if for any y ∈ D , any k-convex function ξ ∈ C2(D)

satisfying

u(x) � ξ(x), x ∈ D and u(y) = ξ(y),

we have

Sk,l
(

D2ξ(y)
)
� f (y).

A function u ∈ C0(D) is called a viscosity solution to (1.3), if u is both a viscosity subsolution and a viscosity supersolu-
tion to (1.3).

A function u ∈ C0(D) is called a viscosity subsolution (supersolution, solution) to (1.3) and u = ϕ(x) on ∂ D if u is a
viscosity subsolution (supersolution, solution) to (1.3) and u � (�,=)ϕ(x) on ∂ D .

A function u ∈ C0(Rn \ Ω) is called k-convex if in the viscosity sense σ j(λ(D2u)) � 0 in R
n \ Ω , j = 1,2, . . . ,k.

2. Preliminaries

From [9, Proposition 2.2], we know the supremum of a set of subsolutions is still a subsolution. Moreover, a comparison
principle of viscosity solutions to Hessian quotient equations holds [4, Theorem 3.3]. Then we can state the following
existence and uniqueness results [9, Proposition 2.3].

Lemma 2.1. Let B be a ball in R
n and f ∈ C0(B) be nonnegative. Suppose u, u ∈ C0(B) are respectively viscosity subsolution and

supersolution of

Sk,l
(

D2u
) = f in B, (2.1)

and satisfy u|∂ B = u|∂ B = ϕ ∈ C0(∂ B), then there exists a unique k-convex function u ∈ C0(B) satisfying (2.1) and

u = ϕ on ∂ B.

Lemma 2.2. Let B be a ball in R
n and f ∈ C0(B) be nonnegative. Suppose u ∈ C0(B) satisfies in the viscosity sense Sk,l(D2u) � f

in B. Then the Dirichlet problem

Sk,l
(

D2u
) = f in B, (2.2)

u = u on ∂ B (2.3)

has a unique k-convex viscosity solution u ∈ C0(B).
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Proof. Clearly, u is a viscosity subsolution of (2.2), (2.3). From Lemma 2.1, we only need to prove (2.2), (2.3) has a viscosity
supersolution u ∈ C0(B) satisfying u = u on ∂ B .

Let v ∈ C2(B) ∩ C0(B) satisfy

�v = 0 in B,

v = u on ∂ B.

We claim v is a viscosity supersolution of (2.2). Indeed, suppose v is not a viscosity supersolution of (2.2), then there exist
y ∈ B and some k-convex function ξ ∈ C2(B) such that

v(x) � ξ(x), x ∈ B, v(y) = ξ(y), (2.4)

but

Sk,l
(

D2ξ(y)
)
> f (y).

By the k-convexity of ξ and the Newton–Maclaurin inequality

(
σk(λ)

σl(λ)

) 1
k−l

� C

(
σr(λ)

σs(λ)

) 1
r−s

, λ ∈ Γk, C = C(n,k, l, r, s), k � r, l � s, k − l � r − s,

we know

�ξ(y) = S1
(

D2ξ(y)
)
� 1

C

(
Sk,l

(
D2ξ(y)

)) 1
k−l

>
1

C

(
f (y)

) 1
k−l � 0.

But from (2.4), we get

λ
(

D2 v(y)
)
� λ

(
D2ξ(y)

)
.

Hence

�ξ(y) � �v(y) = 0.

This is a contradiction. Lemma 2.2 is proved. �
Lemma 2.3. Let D be an open set in R

n and f ∈ C0(Rn) be nonnegative. Assume k-convex functions v ∈ C0(D), u ∈ C0(Rn) satisfy
respectively

Sk,l
(

D2 v
)
� f (x), x ∈ D,

Sk,l
(

D2u
)
� f (x), x ∈ R

n.

Moreover,

u � v, x ∈ D,

u = v, x ∈ ∂ D. (2.5)

Set

w(x) =
{

v(x), x ∈ D,

u(x), x ∈ R
n \ D.

Then w ∈ C0(Rn) is a k-convex function and satisfies in the viscosity sense

Sk,l
(

D2 w
)
� f (x), x ∈ R

n.

Proof. From the proof of Lemma 2 in [5], we know w is k-convex.
Let y ∈ R

n , ξ ∈ C2(Rn) satisfying w(y) = ξ(y),

w(x) � ξ(x), x ∈ R
n. (2.6)

If y ∈ D , we have

v(y) = w(y) = ξ(y), v(x) = w(x) � ξ(x), x ∈ D.
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Therefore

Sk,l
(

D2ξ(y)
)
� f (y).

If y ∈ R
n \ D , we have

u(y) = w(y) = ξ(y), u(x) = w(x) � ξ(x), x ∈ R
n \ D.

By (2.5), (2.6),

u(x) � ξ(x), x ∈ R
n.

Therefore

Sk,l
(

D2ξ(y)
)
� f (y).

This completes the proof of Lemma 2.3. �
The following lemma can be found in [2].

Lemma 2.4. Let Ω be a bounded strictly convex domain in R
n, ∂Ω ∈ C2 , ϕ ∈ C2(Ω). Then there exists a constant c only dependent

on n, ϕ and Ω such that for any ξ ∈ ∂Ω , there exists x(ξ) ∈ R
n satisfying

∣∣x(ξ)
∣∣ � c, wξ < ϕ, x ∈ Ω \ {ξ},

where

wξ (x) := ϕ(ξ) + 1

2

(∣∣x − x(ξ)
∣∣2 − ∣∣ξ − x(ξ)

∣∣2)
, x ∈ R

n.

The main result of this paper is the following theorem.

Theorem 2.1. Let Ω ⊂ R
n be a smooth, bounded and strictly convex domain and 0 ∈ Ω , ϕ ∈ C2(∂Ω). Then there exists a constant c0

such that for any c > c0 there exists a unique k-convex function u ∈ C0(Rn \ Ω) satisfying (1.1), (1.2) in the viscosity sense and

lim sup
|x|→∞

(
|x|k−l−2

∣∣∣∣u(x) −
[

c∗
2

|x|2 + c

]∣∣∣∣
)

< ∞, (2.7)

where c∗ = (Cl
n/Ck

n)
1

k−l , k − l � 3.

If l = 0, Theorem 2.1 corresponds to Theorem 1 in [5]. Thus Theorem 2.1 generalizes Theorem 1 in [5]. And it seems
interesting to study the entire solution problem for Hessian quotient equations and the exterior problem for other partial
differential equations.

3. Proof of Theorem 2.1

In this section, we prove Theorem 2.1. We divide the proof into six steps.

In the first step, we construct a viscosity subsolution wa of (1.1).
Let a > 0. Set

wa(x) = min
∂Ω

ϕ −
r∫

1

(
sk−l + a

) 1
k−l ds +

|√c∗x|∫
1

(
sk−l + a

) 1
k−l ds, x ∈ R

n,

where r = 2
√

c∗ diam Ω . Then

Dij wa = (|y|k−l + a
) 1

k−l −1
[(

|y|k−l−1 + a

|y|
)

c∗δi j − ac2∗xi x j

|y|3
]
, |x| > 0,

where y = √
c∗x. By rotating the coordinates we may set x = (r,0, . . . ,0)′ , |y| = √

c∗r, therefore

D2 wa = (
Rk−l + a

) 1
k−l −1

⎛
⎜⎝

Rk−l−1c∗ 0 · · · 0
0 (Rk−l−1 + a

R )c∗ · · · 0
· · · · · · · · · · · ·

k−l−1 a

⎞
⎟⎠ ,
0 0 · · · (R + R )c∗
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where R = |y|. Consequently λ(D2 wa) ∈ Γk for 0 < |x| < ∞. Then

Sk,l
(

D2 wa
) = Sk(D2 wa)

Sl(D2 wa)

= (Rk−l + a)
k

k−l −k{Ck
n−1[(Rk−l−1 + a

R )c∗]k + Rk−l−1c∗Ck−1
n−1[(Rk−l−1 + a

R )c∗]k−1}
(Rk−l + a)

l
k−l −l{Cl

n−1[(Rk−l−1 + a
R )c∗]l + Rk−l−1c∗Cl−1

n−1[(Rk−l−1 + a
R )c∗]l−1}

= (
Rk−l + a

)
ck−l∗ Rl−k Ck

n Rk−l + aCk
n−1

Cl
n Rk−l + aCl

n−1

�
(

Rk−l + a
)
ck−l∗ Rl−k Ck

n Rk−l

Cl
n Rk−l + aCl

n

= ck−l∗
Ck

n

Cl
n

= 1. (3.1)

Apparently,

wa � ϕ, x ∈ ∂Ω. (3.2)

Moreover,

wa(x) = min
∂Ω

ϕ −
r∫

1

(
sk−l + a

) 1
k−l ds +

|√c∗x|∫
1

s

[(
1 + a

sk−l

) 1
k−l − 1

]
ds +

|√c∗x|∫
1

s ds

= c∗
2

|x|2 −
r∫

1

s

[(
1 + a

sk−l

) 1
k−l − 1

]
ds − 1

2
r2 + 1

2
+

∞∫
1

s

[(
1 + a

sk−l

) 1
k−l − 1

]
ds − 1

2

+ min
∂Ω

ϕ −
∞∫

|√c∗x|
s

[(
1 + a

sk−l

) 1
k−l − 1

]
ds

= c∗
2

|x|2 + min
∂Ω

ϕ +
∞∫

r

s

[(
1 + a

sk−l

) 1
k−l − 1

]
ds − 1

2
r2 −

∞∫
|√c∗x|

s

[(
1 + a

sk−l

) 1
k−l − 1

]
ds.

Let

μ(a) := min
∂Ω

ϕ +
∞∫

r

s

[(
1 + a

sk−l

) 1
k−l − 1

]
ds − 1

2
r2.

Then μ(a) is increasing for a and

wa(x) = c∗
2

|x|2 + μ(a) −
∞∫

|√c∗x|
s

[(
1 + a

sk−l

) 1
k−l − 1

]
ds.

Therefore

wa(x) − c∗
2

|x|2 = μ(a) −
∞∫

|√c∗x|
s

[(
1 + a

sk−l

) 1
k−l − 1

]
ds

< μ(a), x ∈ R
n. (3.3)

In the second step, we define the Perron solution uc of (1.1).
By the expression of wξ (x) in Lemma 2.4, there exists a constant c1 such that for any ξ ∈ ∂Ω ,

wξ (x) � c∗ |x|2 + c1, x ∈ R
n \ Ω, dist(x, ∂Ω) � 1. (3.4)
2



92 L. Dai / J. Math. Anal. Appl. 380 (2011) 87–93
Fix a0 > 0 such that c0 := μ(a0) � c1. For any c > c0 and for x ∈ R
n \ Ω , let Sc,x denote the set of k-convex functions

w ∈ C0(Rn \ Ω) satisfying in the viscosity sense,

Sk,l
(

D2 w(y)
)
� 1, y ∈ R

n \ Ω,

w � ϕ, y ∈ ∂Ω,

and for any y ∈ R
n \ Ω, |y − x| � 2 diam Ω ,

w(y) � c∗
2

|y|2 + c.

Then for all μ−1(c0) < a < μ−1(c), by (3.1), (3.2), (3.3), wa ∈ Sc,x . Consequently Sc,x �= ∅. Define

uc(x) = sup
{

w(x): w ∈ Sc,x
}
, x ∈ R

n \ Ω.

In the third step, we prove uc can be extended as a continuous function in R
n \ Ω and uc = ϕ on ∂Ω .

By (3.4), for ξ ∈ ∂Ω and x ∈ R
n \ Ω , x sufficiently close to ξ , we have wξ ∈ Sc,x . Consequently uc(x) � wξ (x) for x

sufficiently close to ξ . And thus

lim inf
x→ξ

uc(x) � lim inf
x→ξ

wξ (x) = ϕ(ξ).

On the other hand,

lim sup
x→ξ

uc(x) � ϕ(ξ).

Indeed, if along a sequence xi → ξ , limi→∞ uc(xi) � ϕ(ξ) + 3δ for some δ > 0. Then by the definition of uc , there exists
wi ∈ Sc,xi such that wi(xi) � ϕ(ξ) + 2δ for large i. But wi ∈ C0(Rn \ Ω), then for any ξ close to ξ , wi(ξ) � ϕ(ξ) + δ. This is
a contradiction.

In the fourth step, we prove uc satisfies (1.1).
By the definition of uc , uc is a viscosity subsolution of (1.1). We only need to prove uc is a viscosity supersolution of

(1.1).
For any x ∈ R

n \ Ω , fix 0 < ε < 2 diam Ω such that B = Bε(x) ⊂ R
n \ Ω . From Lemma 2.2, the Dirichlet problem

Sk,l
(

D2ũ
) = 1, y ∈ B,

ũ = uc, y ∈ ∂ B (3.5)

has a unique k-convex viscosity solution ũ ∈ C0(B). By the comparison principle, uc � ũ in B . Define

w̃(y) =
{

ũ(y), y ∈ B,

uc(y), y ∈ (Rn \ Ω) \ B,

Then w̃ ∈ Sc,x . Indeed, by the definition of uc ,

uc(y) � c∗
2

|y|2 + c, y ∈ B.

Let

ṽ(y) = c∗
2

|y|2 + c.

Then

Sk,l
(

D2ũ
) = 1 = Sk,l

(
D2 ṽ

)
, y ∈ B,

ũ = uc � ṽ, y ∈ ∂ B.

From the comparison principle, for any y ∈ B , ũ � ṽ , i.e. ũ(y) � c∗
2 |y|2 +c. By Lemma 2.3, Sk,l(D2 w̃) � 1 in R

n \Ω . Therefore
w̃ ∈ Sc,x . And thus by the definition of uc , uc � w̃ in R

n \ Ω and uc � ũ in B . Hence

uc ≡ ũ, y ∈ B. (3.6)

But ũ satisfies (3.5), we have in the viscosity sense,

Sk,l
(

D2uc
) = 1, y ∈ B.
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As a result, in the viscosity sense,

Sk,l
(

D2uc(x)
) = 1, x ∈ R

n \ Ω.

Because x is arbitrary, we know uc is a viscosity supersolution of (1.1).

In the fifth step, we prove uc satisfies (2.7).
By the definition of uc ,

uc(x) � c∗
2

|x|2 + c, x ∈ R
n \ Ω.

Then

uc(x) − c∗
2

|x|2 − c � 0 � 1

|x|k−l−2
, x ∈ R

n \ Ω. (3.7)

On the other hand, from (3.3), as |x| → ∞,

wa(x) = c∗
2

|x|2 + μ(a) − O
(|x|2−k+l).

Because wa ∈ Sc,x , then as |x| → ∞,

uc(x) − c∗
2

|x|2 − μ(a) � −O
(|x|2−k+l).

Let a → μ−1(c), then

uc(x) − c∗
2

|x|2 − c � −O
(|x|2−k+l). (3.8)

And thus from (3.7) and (3.8),

lim sup
|x|→∞

(
|x|k−l−2

∣∣∣∣uc(x) −
[

c∗
2

|x|2 + c

]∣∣∣∣
)

< ∞.

In the sixth step, we prove the uniqueness.
Suppose u, v satisfy (1.1), (1.2) and (2.7). By the comparison principle of viscosity solutions to Hessian quotient equations,

and lim|x|→∞(u − v) = 0, we know u ≡ v in R
n \ Ω . The proof of Theorem 2.1 is completed.
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