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1. Introduction and preliminaries

Let X1, . . . , Xd be d real-valued random variables on some probability space (Ω,A, P). Given a measurable function
ψ : Rd

→ R, we calculate numerical bounds on P(ψ(X1, . . . , Xd) ≥ s), where we assume that each Xj has known
distribution Fj(x) = P(Xj ≤ x), 1 ≤ j ≤ d, but the dependence structure of the vector (X1, . . . , Xd)

′ is unknown. Thus,
for a fixed s ∈ R, we look for

Mψ (s) = sup

P(ψ(X1, . . . , Xd) ≥ s) : Xj ∼ Fj, 1 ≤ j ≤ d


, (1.1a)

mψ (s) = inf

P(ψ(X1, . . . , Xd) > s) : Xj ∼ Fj, 1 ≤ j ≤ d


. (1.1b)

A simple compactness argument shows that the supremum in (1.1a) and the infimum in (1.1b) are attained (see [1]). From
mass transportation theory, a dual representation is known for the problems in (1.1) (see [2]). This dual representation,
however, is typically difficult to evaluate. For the case that ψ = + is the sum operator, problems (1.1) are of particular
interest in risk analysis (see [3]) and reliable dual bounds related to the dual representation were given in [4] for the case
of homogeneous marginals. These were extended to the non homogeneous case and to overlapping marginals in [5,6].
While these bounds are well computable for any dimension d in the homogeneous case, the numerical evaluation in the
non homogeneous case poses serious problems. For more details on the numerical calculation/approximation ofM+(s) and
m+(s), we refer the reader to [4] and references therein. Note that, in general, the sharp boundMψ (s) is not attainedwhen the
structure of dependence of the vector (X1, . . . , Xd)

′ is comonotonic, that iswhen the risks are similarly ordered. Analogously,
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in the case d = 2, the sharp boundmψ (s)might not be attained when the risks are countermonotonic, that is when the two
risks are oppositely ordered.

In this paper,wepropose anewmethod to approximate numerically the sharpboundsmψ (s) andMψ (s) for certain classes
of functionsψ which include in particular the sum,min,max and product operators. Thismethod is based on rearrangement
arguments and on a simple rearrangement algorithm introduced in special cases in [7,1]. In comparison to themethod of dual
bounds, our method is easy and fast. It can handle reasonable dimensions d and, in particular, also the inhomogeneous case.
A numerical evaluation and comparison is given in Section 4 of this paper. The fact that this algorithm is computationally
less demanding should be relevant for practical applications. It is interesting to note that, in the homogeneous examples
considered, the bounds calculated by ourmethod provide numerical evidence for the sharpness of the analytical dual bounds
in [4], an analytic proof of which is still open.

1.1. Assumptions on the function ψ

Given a vector x ∈ Rd, let x−j be the vector in Rd−1 obtained by deleting the j-th component of x. Throughout the paper,
we assume that the function ψ : Rd

→ R is measurable and coordinate-wise increasing, and there exist two measurable
functions ψd−1

: Rd−1
→ R and ψ2

: R2
→ R such that ψ satisfies

ψ(x1, . . . , xd) = ψ2(xj, ψd−1(x−j)), 1 ≤ j ≤ d. (1.2)

Relevant cases of such ψ are the sum (ψ2(x1, x2) = x1 + x2), the product (ψ2(x1, x2) = x1x2, for x1, x2 > 0), the max
(ψ2(x1, x2) = max{x1, x2}) and the min (ψ2(x1, x2) = min{x1, x2}) operators. Asymmetric functions do not satisfy the
above requirements.

2. A combinatorial problem

In this section, we describe a combinatorial problem which will turn out to be strictly connected to (1.1). Let X =

(xi, j), xi, j ∈ R∪{−∞,+∞}, 1 ≤ i ≤ n, 1 ≤ j ≤ d, be a (n×d)-matrix. Let X−j be the (n× (d−1))-matrix obtained from X
by deleting its j-th column X(j). Denote by ψ(X) (respectively, ψ−j(X)) the n-dimensional vectors obtained by applying the
function ψ (resp., ψd−1), to each row of X (resp., X−j). Formally,

ψ(X) =


ψ(x1,1, . . . , x1,d)

...
ψ(xi,1, . . . , xi,d)

...
ψ(xn,1, . . . , xn,d)

 , ψ−j(X) =



ψd−1(x1,1, . . . , x1, j−1, x1, j+1, . . . , x1,d)
...

ψd−1(xi,1, . . . , xi, j−1, xi, j+1, . . . , xi,d)
...

ψd−1(xn,1, . . . , xn, j−1, xn, j+1, . . . , xn,d)

 .

Using (1.2), for 1 ≤ j ≤ d, we have

ψ(X)i = ψ2(xi, j,ψ−j(X)i), 1 ≤ i ≤ n.

Let P (X) be the set of all (n × d)-matrices obtained from X by rearranging the elements within a number of its columns in
a different order, that is

P (X) =


X̃ = (x̃i, j) : x̃i, j = xπj(i), j, π1, . . . , πd are permutations of {1, . . . , n}


.

We study the problem of how to rearrange the columns of X such that the minimal component ofψ(X) is maximized. Using
the notation introduced above, this problem can be written as

Gψ (X) = max
X̃∈P (X)

min
1≤i≤n

ψ(X̃)i. (2.1)

Similarly, we consider the problem of how to rearrange the columns of X such that the maximal component of ψ(X) is
minimized, that is

Hψ (X) = min
X̃∈P (X)

max
1≤i≤n

ψ(X̃)i. (2.2)

Given two vectors a, b ∈ Rn, we denote by a[i] the i-largest component of a (a[n] is the minimal). We write a ⊥ b to indicate
that the components of a and b are oppositely ordered, that is (aj − ak)(bj − bk) ≤ 0 for all 1 ≤ j, k ≤ n. Let

Oψ (X) =

X∗

∈ P (X) : X∗

(j) ⊥ ψ−j(X
∗), 1 ≤ j ≤ d


be the set of those permutation matrices X∗ such that X∗

(j) is oppositely ordered to ψ−j(X
∗).
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Theorem 2.1. Assume that the function ψ is strictly increasing in each coordinate. Using the above notation, it is possible to
rewrite the problems (2.1) and (2.2) as

Gψ (X) = max
X∗∈Oψ (X)

ψ(X̃)[n] and Hψ (X) = min
X∗∈Oψ (X)

ψ(X̃)[1].

Proof. Take X̃ ∈ P (X) \ Oψ (X). Then, it is possible to find an index j ∈ {1, . . . , d} such that a = X̃(j) is not oppositely
ordered to b = ψ−j(X̃). Therefore, there exist two indexes i1, i2 ∈ {1, . . . , n} such that ai1 < ai2 and bi1 < bi2 . Since ψ

2 is
strictly increasing in each coordinate, we have that

ψ2(ai1 , bi1) < ψ2(ai1 , bi2) < ψ2(ai2 , bi2) and ψ2(ai1 , bi1) < ψ2(ai2 , bi1) < ψ2(ai2 , bi2).

Then, we obtain

min

ψ2(ai1 , bi1), ψ

2(ai2 , bi2)


= ψ2(ai1 , bi1) < min

ψ2(ai1 , bi2), ψ

2(ai2 , bi1)


max

ψ2(ai1 , bi1), ψ

2(ai2 , bi2)


= ψ2(ai2 , bi2) > max

ψ2(ai1 , bi2), ψ

2(ai2 , bi1)

.

Thus, if we rearrange a by switching the indexes i1 and i2, we obtain a new matrix X ′ for which ψ(X ′) has the maximal
component decreased and the minimal component increased. Note thatψ(X ′) is different fromψ(X̃) as, for some j, the j-th
greatest component ofψ(X ′) is strictly smaller than the j-th greatest component ofψ(X̃). Being the setP (X) finite, repeating
the above procedure on the columns of X̃ we can pass from the matrix X̃ to a matrix X∗

∈ Oψ (X) in a finite number of steps,
obtaining that

min
1≤i≤n

ψ(X∗)i = min
1≤i≤n

ψ2(x∗

i, j,ψ−j(X
∗)i) ≥ min

1≤i≤n
ψ2(x̃i, j,ψ−j(X̃)i) = min

1≤i≤n
ψ(X̃)i.

max
1≤i≤n

ψ(X∗)i = max
1≤i≤n

ψ2(x∗

i, j,ψ−j(X
∗)i) ≤ max

1≤i≤n
ψ2(x̃i, j,ψ−j(X̃)i) = max

1≤i≤n
ψ(X̃)i.

Consequently, we can restrict the domains of the problems in (2.1) and (2.2) to the set Oψ (X). �

The proof of Theorem 2.1 indicates a simple algorithm to find elements in Oψ (X) and, hence, possible solutions to (2.1)
and (2.2). This algorithm is a more general version of the algorithm described in Section 3 in [7].

Rearrangement algorithm to find elements in Oψ (X). Start with any X̃ ∈ P (X). Define
X̃1 by iteratively rearranging its j-th column X̃(j) such that X̃(j) ⊥ ψ−j(X̃), for 1 ≤ j ≤ d.
Then, repeat using X̃1 as the initial matrix until an element X∗

∈ Oψ (X) is found.

The rearrangement algorithm can be used also when the function ψ is non-strictly increasing, provided that the set
Oψ (X) is nonempty. If this is the case, it is always possible to rearrange finitely many times the columns of a matrix
X̃ ∈ P (X) \ Oψ (X) in order to obtain a matrix X∗

∈ Oψ (X) such that ψ(X∗)[n] ≥ ψ(X̃)[n] and ψ(X∗)[1] ≤ ψ(X̃)[1]. In
Section 4.1, we illustrate the relevant cases that ψ = max and ψ = min.

3. Numerical approximation

In the remainder, let F−1
j (α) := sup


x ∈ R : Fj(x) ≤ α


, α ∈ [0, 1] be the generalized inverse of Fj, 1 ≤ j ≤ d. For

a subset A ⊂ [0, 1], we denote by F−1
j |A the restriction of F−1

j to A. We write fj ∼ F−1
j |A to indicate that the function

fj : A → R is a rearrangement of F−1
j |A. We refer to [1] for a basic introduction to the theory of rearrangements. The

following representation of (1.1) is given in Theorem 2 in [1].
If U is a random variable uniformly distributed in [0, 1], then

Mψ (s) = sup

P(ψ( f1(U), . . . , fd(U)) ≥ s) : fj ∼ F−1

j , 1 ≤ j ≤ d

, (3.1a)

mψ (s) = inf

P(ψ( f1(U), . . . , fd(U)) > s) : fj ∼ F−1

j , 1 ≤ j ≤ d

. (3.1b)

In order to establish a link between (3.1) and the rearrangement algorithm described in Section 2, we need the following
theorem.

Theorem 3.1. If the function ψ is increasing in each coordinate, then, for all s ∈ R, we have that

Mψ (s) = 1 − inf

α : there exist f αj ∼ F−1

j |[α, 1], 1 ≤ j ≤ d s.t. ψ( f α1 , . . . , f
α
d ) ≥ s


, (3.2a)

mψ (s) = 1 − sup

α : there exist f αj ∼ F−1

j |[0, α], 1 ≤ j ≤ d s.t. ψ( f α1 , . . . , f
α
d ) ≤ s


. (3.2b)



1836 G. Puccetti, L. Rüschendorf / Journal of Computational and Applied Mathematics 236 (2012) 1833–1840

Proof. First, we prove (3.2a). If there exist such f αj ’s, we can easily extend them to rearrangements of F−1
j |[0, 1] and, by (3.1),

Mψ (s) ≥ 1 − α, hence (3.2a) holds with ≥. For the ≤ inequality, we use a similar argument as in Proposition 3(c) in [2]. Let
f ∗

j ∼ F−1
j be solutions of (3.1a) and define the set

A = {u ∈ [0, 1] : ψ( f ∗

1 (u), . . . , f
∗

d (u)) ≥ s}.

Then, the Lebesgue measure of A is λ(A) = Mψ (s). With α = 1 − Mψ (s), there exists a λ-preserving transformation
φ : [0, 1] → [0, 1] such that A = φ([α, 1]). Therefore, we can assume w.l.o.g. that A = [α, 1]. Moreover, there exist
φj : [0, 1] → [0, 1], φj ∼ F−1

j , 1 ≤ j ≤ d, such that f αj = φj|[α, 1] ∼ F−1
j |[α, 1] and f αj (u) ≥ f ∗

j (u), u ∈ [α, 1]. Define, for
example,

A∗

j = {u ∈ [α, 1] : f ∗

j (u) ≥ F−1
j (α)},

and f αj |[α, 1] = f ∗

j 1{A∗
j } + F−1

j 1{[α,1]\A∗
j }, 1 ≤ j ≤ d. For the functions φj, we can use an extension of f αj |[α, 1] to [0, 1] such

that f αj ∼ F−1
j . This implies, by monotonicity of ψ , and since A = [α, 1], that, for u ∈ [α, 1], we have

ψ( f α1 (u), . . . , f
α
d (u)) ≥ ψ( f ∗

1 (u), . . . , f
∗

d (u)) ≥ s.

The proof for (3.2b) is analogous, considering thatmψ (s) = 1 − sup{P(ψ(X1, . . . , Xd) ≤ s) : Xj ∼ Fj, 1 ≤ j ≤ d}. �

The rearrangement algorithm can be applied to find solutions of (3.2) when the marginal distributions Fj are (rational)
discrete. Assume that each F−1

j |[α, 1] takes only the n real values xαj = {xαi, j, 1 ≤ i ≤ n}, for 1 ≤ j ≤ d. We may assume, by
using repetitions, that all the xαi, j’s have the sameprobability (1−α)/n. The rearrangements f αj of F−1

j |[α, 1] are then replaced
by the rearrangements of the components of xαj . For instance, if the components of each xαj are arranged in increasing
order, the columns of the matrix Xα = (xαi, j) represent the increasing rearrangement (F−1

1 |[α, 1], . . . , F−1
d |[α, 1]). Since,

in the following, we only consider order induced rearrangements like increasing or decreasing order rearrangements, the
transition to rearrangements of the components of the discrete vectors is justified.

Therefore, all the possible rearrangements ( f α1 , . . . , f
α
d ) in (3.2a) can be represented by a rearrangement of the columns

of Xα , that is, using the notation introduced in Section 2, by a matrix X̃α ∈ P (Xα). Thus, the condition ψ( f α1 , . . . , f
α
d ) ≥ s

becomes ψ(X̃α)[n] ≥ s. In conclusion, we can rewrite (3.2a) as

Mψ (s) = 1 − inf

α : there exist X̃α ∈ P (Xα) s.t. ψ(X̃α)[n] ≥ s


= 1 − inf


α : Gψ (Xα) ≥ s


, (3.3)

whereXα is thematrix having as columns the increasing rearrangements of the points of the domains F−1
j ([α, 1]), 1 ≤ j ≤ d.

Analogously, we can rewrite (3.2b) as

mψ (s) = 1 − sup

α : there exist X̃α ∈ P (Xα) s.t. ψ(X̃α)[1] ≤ s


= 1 − sup


α : Hψ (Xα) ≤ s


, (3.4)

whereXα is thematrix having as columns the increasing rearrangements of the points of the domains F−1
j ([0, α]), 1 ≤ j ≤ d.

The representations (3.3) and (3.4) hold only when the Fj’s are discrete, yet they are useful also in the case of arbitrary
marginals. Indeed, we can always find two discrete distribution functions which approximate any Fj from below and from
above. For instance, we define the discrete distributions F j and F j as

F j(x) =
1
n

n−1−
r=0

1[qr ,+∞)(x) and F j(x) =
1
n

n−
r=1

1[qr ,+∞)(x), (3.5)

where the jump points qr are defined by qr := F−1
j (r/n), 0 ≤ r ≤ n. Since F j ≥ Fj ≥ F j and ψ is increasing, it follows that,

for every real s,

Mψ (s) ≤ Mψ (s) ≤ Mψ (s),

mψ (s) ≤ mψ (s) ≤ mψ (s)

wheremψ (s) (respectivelymψ (s)) is the analogous of (1.1b) when Fj = F j (resp. Fj = F j). Analogously,Mψ (s) (resp.Mψ (s))
is the analogous of (1.1a) when Fj = F j (resp. Fj = F j).

Note that we can always choose a different number of points nj in the support of the discrete distributions F j and F j so

that, for 1 ≤ j ≤ d, the increasing rearrangement of the supports F−1
j ([α, 1]) and F

−1
j ([α, 1]) all have the same number n
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of components. Using (3.3), it is possible to write

Mψ (s) = 1 − inf{α : Gψ (Xα) ≥ s},

Mψ (s) = 1 − inf{α : Gψ (X
α
) ≥ s},

where Xα , respectively X
α
, are the (n × d)-matrix having as columns the increasing rearrangements of the supports

F−1
j ([α, 1]), respectively F

−1
j ([α, 1]), for 1 ≤ j ≤ d.

Similarly,

mψ (s) = 1 − sup{α : Hψ (Xα) ≤ s},

mψ (s) = 1 − sup{α : Hψ (Xα) ≤ s},

where Xα , respectively Xα , are the (n × d)-matrix having as columns the increasing rearrangements of the supports
F−1
j ([0, α]), respectively F

−1
j ([0, α]), for 1 ≤ j ≤ d.

At this point, the algorithm described at the end of Section 2 can be used to find numerical ranges for the sharp bounds
Mψ and mψ . Define

Gψ (X) =

ψ(X∗)[n] : X∗

∈ Oψ (X)


and Hψ (X) =

ψ(X∗)[1] : X∗

∈ Oψ (X)

,

the set of possible values for the max in (2.1) and, respectively, the min in (2.2). First, we illustrate how to obtain a range
on Mψ (s). Start selecting randomly a matrix X̃α ∈ P (Xα). Define X̃α1 by rearranging the j-th column X̃α(j) of X̃

α such that
X̃α(j) ⊥ ψ−j(X̃

α), for all j = 1, . . . , d. Then, repeat using X̃α1 as the initial matrix, until an element g(α) ∈ Gψ (Xα) is found.
Denote by

α(s) = inf{α ∈ [0, 1] : g(α) ≥ s}.

α(s) can be computed numerically in several ways, as for example by iteratively bisecting the interval [0, 1] and checking
the condition g(α) ≥ s. From (2.1), we have that Gψ (Xα) ≥ g(α). Therefore, it follows that inf{α : Gψ (Xα) ≥ s} ≤ α(s) and,
finally,

Mψ (s) ≥ Mψ (s) ≥ 1 − α(s). (3.6)

In order to find an upper bound onMψ , we proceed analogously by finding an element g(α) ∈ Gψ (X
α
). Denote by

α(s) = inf{α ∈ [0, 1] : g(α) ≥ s}.

If g(α) is optimal, that is g(α) = Gψ (X
α
), we obtain

Mψ (s) ≤ Mψ (s) = 1 − α(s). (3.7)

Note that, while (3.6) is always satisfied, (3.6)may fail to hold if g(α) is not optimal. However, if g(α) is a good approximation
for Gψ (X

α
), α(s) represents a good approximation forMψ (s). In conclusion, combining (3.6) and (3.7), we obtain

1 − α(s) ≤ Mψ (s) ≃ 1 − α(s). (3.8)

In order to find a range for the sharp bound mψ (s), we proceed analogously. Applying the algorithm to some matrices
X̃α ∈ P (Xα) and X̃α ∈ P (Xα), we find elements h(α) ∈ Hψ (Xα) and h(α) ∈ Hψ (Xα). Defining

β(s) = sup{α ∈ [0, 1] : h(α) ≤ s},

β(s) = sup{α ∈ [0, 1] : h(α) ≤ s},

it follows that

1 − β(s) ≃ mψ (s) ≤ 1 − β(s). (3.9)

For a fixed function ψ and marginals Fj, 1 ≤ j ≤ d, the accuracy of the approximations given in (3.8) and in (3.9) can be
increased by choosing:

– a larger value of n, so that the approximation to Fj given by the discrete distributions F j and F j is more accurate;
– a number of different random starting matrices in order to find different elements in the sets Gψ (X) and Hψ (X).

Having mainly applications to quantitative risk management in mind, in the following we will always compute the ranges
(3.8) and (3.9) for continuousmarginal distributions Fj. In these cases, we always find that any element in Gψ (X) andHψ (X)
yields a very good approximation of the real solutions Gψ (X) and Hψ (X), and the algorithm works very well with a single
starting point and a high value for n.
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Fig. 1. Upper dual bound on P[X1 + · · · + Xd ≥ s], calculated using Theorem 4.2 in [4], when the X ′

j s are all Pareto(2)-distributed. We set d = 3 (left), and
d = 30 (right). In both figures, the range forM+(s), calculated using (3.8), is provided at some threshold of interest.

Table 1
Range form+(s) andM+(s) for the sum of three Pareto(2) random variables. Values for the upper dual bound onM+(s), as defined in [4], are also provided.

1 − β(s) 1 − β(s) 1 − α(s) Dual bound 1 − α(s)

s = 0.5 0.5101929 0.51025391 s = 10 0.1419678 0.142011834319527 0.1420288
s = 1.0 0.2500000 0.25006104 s = 15 0.0740356 0.074074074074074 0.0740967
s = 1.5 0.1599731 0.16003418 s = 20 0.0453491 0.045368620037807 0.0454102
s = 2.0 0.1110840 0.11114502 s = 25 0.0305786 0.030612244897959 0.0306397
s = 2.5 0.0816040 0.08166504 s = 30 0.0220337 0.022038567493113 0.0220947

Table 2
Range form×(s) and M×(s) for the product of five Pareto(θj) random variables. We set θ = (1.5, 1.8, 2.0, 2.2, 2.5)′ .

1 − β(s) 1 − β(s) 1 − α(s) 1 − α(s)

s = 0.001 0.16113281 0.16210938 s = 100 0.2158203 0.2167969
s = 0.002 0.09852281 0.09863281 s = 200 0.1787109 0.1796875
s = 0.003 0.06347656 0.06445312 s = 300 0.1591797 0.1601562
s = 0.004 0.04101562 0.04199219 s = 400 0.1464844 0.1474609
s = 0.005 0.02441406 0.02539062 s = 500 0.1376953 0.1386719

4. Applications

In this section, we compute the ranges defined in (3.8) and in (3.9) for different functionals ψ and sets of marginals
Fj, 1 ≤ j ≤ d. In order to test the quality of the dual bound, Embrechts and Puccetti [4] calculate a numerical range forM+(s)
via two linear problems and using a discretization of the Fj’s identical to the one described in (3.5). Note that Embrechts and
Puccetti [4] obtain bounds on P(X1 + · · · + Xd < s) instead of P(X1 + · · · + Xd ≥ s).

Being only based on the iterative rearrangements of the columns of a matrix, an operation which can be performed
efficiently with R, our algorithm turns out to be less demanding, in terms of computational time and memory, than the
numerical procedure described in [4]. Indeed, both methods use discrete versions of the marginals with n points in their
supports, and calculate M+(s) with an error that approximately decreases as o(1/n). However, here we were able to use
n = 105 as compared to n = 180 in [4]. In the case ofψ = +, using n = 105 givesM+(s)with an absolute error of about 10−4.

In Fig. 1, we plot the dual bound functional introduced in [4] for the sum of d random variables being all Pareto(θ )-
distributed, that is P(Xj ≤ x) = 1 − (1 + x)−θ , x > 0. We set θ = 2 and d = 3 (Fig. 1, left) and d = 30 (right). In the
same figure, we provide the bounds obtained using (3.8), at some threshold of interest. Fig. 1 seems to indicate that the dual
bound functional introduced in [4] is sharp.

In Table 1, we report the numerical ranges form+(s) andM+(s), obtained using (3.8) and (3.9), under the samemarginal
assumptions, for d = 3. We used n = 105, and each figure is obtained within two minutes. In Table 2, we report the
numerical range for m×(s) and M×(s), where ψ = × is the product operator. Here we use different marginal distributions,
for d = 5 and n = 105.

The results obtained for n = 105 and d = 3 in a two-minute time can be considered reasonably accurate. However, an
important feature of our algorithm is that it can handle larger values of n and d without memory issues. Indeed, changing
n and d means changing the dimensions of the matrices representing the rearrangements of the discrete marginals used. If
extra-accuracy is required, with n = 106 one can obtain an estimate forMψ (s) in about forty minutes. If one needs only two
decimals forMψ (s), using n = 104 provides an estimate in about 3 s. An analogous reasoning can be applied to an increase of
the number of random variables d. With n = 105 we can handle up to d = 30 differentmarginals keeping the computational
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Table 3
Range for mmax(s) and Mmax(s) for the max of three Pareto(2) random variables. Values for the sharp bounds mmax(s) and Mmax(s), as given in [8], are also
provided.

1 − β(s) Sharp bound 1 − β(s) 1 − α(s) Sharp bound 1 − α(s)

s = 1 0.25000000 0.25000000 0.25000000 s = 1 0.75000000 0.75000000 0.75000000
s = 2 0.11035156 0.11111111 0.11132812 s = 2 0.33300781 0.33333333 0.33398438
s = 3 0.06250000 0.06250000 0.06250000 s = 3 0.18750000 0.18750000 0.18750000
s = 4 0.03906250 0.04000000 0.04003906 s = 4 0.11914062 0.12000000 0.12011719
s = 5 0.02734375 0.02777777 0.02832031 s = 5 0.08300781 0.08333333 0.08398438

time under 40 min. If one needs to compute Mψ (s) and mψ (s) at different thresholds s, the average computational time for
a single estimate can be reduced by knowing the bounds calculated at a different threshold.

Though the dual bound given in [4] is mainly analytic and the rearrangement method in this paper is entirely numerical,
it is useful tomake a final comparison between the two. A dual upper bound onMψ (s) has been given in [4] for homogeneous
marginals (Fj = F , 1 ≤ j ≤ d), and extended to generalmarginal settings in [5,6].While the dual bound is stated for arbitrary
marginals, its computational complexity increases with the number of different marginals used. It is easy to calculate the
dual bound with an arbitrary number d of homogeneous random variables, while it is much more complicated to deal
with a relatively small number d ≤ 10 of non homogeneous marginals. Moreover, the dual bound functional has been
introduced only for the sum operator. The algorithm introduced in this paper can handle more general functionals ψ and
inhomogeneous marginals. It approximates the sharp upper and lower bounds Mψ (s),mψ (s) numerically while the dual
bounds are constructed only as upper bounds for Mψ (s). However, the rearrangement method in this paper cannot be
practically used to handle dimensions d > 100, where the computation of dual bounds is possible with homogeneous
marginals. In the examples considered, the dual bounds in [4] for Mψ (s) seem to be sharp. It would be interesting to prove
sharpness for certain classes of distributions.

4.1. Max and min operators

In the cases that ψ = max and ψ = min it is possible to write explicitly solutions for the problems Gψ (X) and Hψ (X)
in (2.1). As an example, we consider the case that ψ = max, for which sharp bounds have been given analytically in [8].
A solution to the problem Gmax(X) is given by any matrix X∗ in which each of the first n greatest components of X appear
in a different row. The problem Hmax(X) is trivial as the optimal value is given the greatest element of X . Combining the
above solutions with the discretization procedure described in Section 3, one obtains, in the limit as n goes to infinity, the
sharp bounds given in [8]. Analogous considerations hold for the case ψ = min, for which sharp bounds have been given
analytically in [9]. As remarked at the end of Section 2, the rearrangement algorithm can be successfully applied to case
ψ = max. In Table 3we report the numerical ranges formmax(s) andMmax(s), as well as the sharp bounds calculated in [8,9].

5. Conclusions and forthcoming research

In this paper, we introduce the rearrangement algorithm to calculate numerically the sharp boundsMψ (s) andmψ (s) on
the distribution of a function of dependent random variables having fixedmarginals. This algorithm is accurate, fast and can
be used to handle random variables with inhomogeneous marginals, in moderately high dimensions. It provides evidence
that the dual bounds in [4] are sharp for some classes of homogeneous distributions. Problems (1.1) have a wide range of
application in quantitative risk management. For an overview of this kind of application, we refer the reader to [5,3].

In a forthcoming paper, we will describe how to use the rearrangement algorithm also in the case of overlapping
marginals. Moreover, the authors propose to prove sharpness of the dual bounds in [4] in the case of the sum of risks,
for some classes of homogeneous distributions. It is well known that the bound Mψ (s) and mψ (s) can be improved if, for
instance, the randomvariable X1, . . . , Xd are known to be positively dependent. How to handle this extra informationwithin
the rearrangement algorithm will be the object of future research.
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