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We prove an integral version of the classical Albert–Brauer–Hasse–
Noether theorem regarding quaternion algebras over number fields.
Let K be a number field with ring of integers OK , and let A be a
quaternion algebra over K satisfying the Eichler condition. Let Ω

be a commutative, quadratic OK -order and let R ⊂ A be an order
of full rank. Assume that there exists an embedding of Ω into R.
We describe a number of criteria which imply that every order
in the genus of R admits an embedding of Ω . In the case that
the relative discriminant ideal of Ω is coprime to the level of R
and the level of R is coprime to the discriminant of A, we give
necessary and sufficient conditions for an order in the genus of
R to admit an embedding of Ω . We explicitly parameterize the
isomorphism classes of orders in the genus of R which admit an
embedding of Ω . In particular, we show that the proportion of the
genus of R admitting an embedding of Ω is either 0, 1/2 or 1.
Analogous statements are proven for optimal embeddings.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The study of non-commutative algebras has a long and rich history with applications in class field
theory, modular forms and geometry. One of the high points of this history came in 1932, when much
of the field’s foundational work was being done, with the publication of the Brauer–Hasse–Noether
theorem. Although his name did not appear on the publication, many of the results contained in
the Brauer–Hasse–Noether theorem were proven independently by Adrian Albert in 1931. We are
interested in the quaternionic version of their theorem:
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Theorem 1.1 (Albert–Brauer–Hasse–Noether). Let A be a quaternion algebra over a number field K and let L
be a quadratic field extension of K . Then there is an embedding of L into A if and only if no prime of K which
ramifies in A splits in L.

In this paper we consider an integral refinement of the Albert–Brauer–Hasse–Noether theorem. Let
A be a quaternion algebra defined over a number field K which satisfies the Eichler condition; that
is, there exists an archimedean prime of K which does not ramify in A. Let L be a quadratic field
extension of K and Ω a quadratic order of L. Finally, let R ⊂ A be an OK -order of full rank. We are
interested in the question of when there exists an embedding of Ω into R.

Chinburg and Friedman considered a special case of this question in their paper [4], where they
determined the maximal orders into which Ω can be embedded. We now state a simplified version
of their main theorem (see [4] for notation):

Theorem 1.2 (Chinburg–Friedman). Let L be a quadratic field extension of K which embeds into the quater-
nion algebra A, and assume that A satisfies the Eichler condition. Then a quadratic OK -order Ω ⊂ L can be
embedded into either all of the maximal OK -orders D ⊂ A, or into all those belonging to exactly half of the
isomorphism types of maximal OK -orders in A. In the latter case the maximal orders admitting an embedding
of Ω may be described as follows. If R and S are maximal orders and R admits an embedding of Ω , then
S admits an embedding of Ω if and only if the image by the reciprocity map FrobL/K of the distance ideal
ρ(R,S) is the trivial element of Gal(L/K ).

Theorem 1.2 is especially significant because of its applications, particularly its applications to dif-
ferential geometry. As our results will have similar applications, we give a brief sketch of the relevant
construction. Suppose that K �= Q is totally real and that A is unramified at a unique real place of K .
Let R1,R2 be two orders of A which lie in the same genus (i.e. have locally isomorphic completions
at all finite primes of K ) but represent distinct isomorphism classes. Vigneras [10] used R1 and R2
to construct compact, non-isometric hyperbolic 2-manifolds M1 and M2. Further, she showed that M1
and M2 are isospectral (have the same spectra with respect to the Laplace–Beltrami operator) if there
did not exist a quadratic OK -order Ω which could be embedded into exactly one of the Ri . When
R1 and R2 are taken to be maximal orders, Theorem 1.2 can be used to determine necessary and
sufficient conditions for M1 and M2 to be isospectral.

Chinburg and Friedman’s theorem was later generalized to Eichler orders independently by Guo
and Qin [5] and Chan and Xu [2]. It is interesting to note that whereas Guo and Qin make use of
tree-theoretic techniques (as Chinburg and Friedman did) in their generalization, Chan and Xu instead
use the representation theory of spinor genera.

In this paper we obtain a number of generalizations of Chinburg and Friedman’s theorem. Central
to our arguments will be the class field K (R) associated to the order R (defined in Section 3 im-
mediately after the proof of Theorem 3.3). The class field K (R) is an abelian extension of K whose
degree is the number of isomorphism classes in the genus of R, whose Galois group is of exponent 2
and whose conductor is divisible only by the prime divisors of the level ideal NR of R (defined in
Section 2); that is, the primes ν of K for which Rν is not maximal.

In Section 5.1 we consider arbitrary orders R ⊂ A and describe a number of criteria which, if
satisfied, imply that every order in the genus of R admits an embedding of a given commutative,
quadratic OK -order Ω . The main result of the section is

Theorem 1.3. Let L be a maximal subfield of A, Ω ⊂ L a quadratic OK -order and assume that an embedding
of Ω into R exists.

(1) If L �⊂ K (R), then every order in the genus of R admits an embedding of Ω .
(2) If L ⊂ K (R), then the proportion of isomorphism classes in the genus of R whose representatives admit

an embedding of Ω is at least 1/2.

An easy consequence of Theorem 1.3 is that if Ω embeds into an order R, then every representa-
tive of at least half of the isomorphism classes in the genus of R admits an embedding of Ω . Another
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consequence is that if any prime of K which does not divide the level ideal NR ramifies in L then
every order in the genus of R admits an embedding of Ω . This is especially nice in applications be-
cause in practice the computation of K (R) can be quite difficult. In a future publication we will apply
Theorem 1.3 in order to construct isospectral towers of hyperbolic manifolds; that is, pairs of infinite
towers {Mi}, {Ni} of finite covers of hyperbolic manifolds M and N such that the covers M j and N j
are isospectral, but not isometric for every j.

In Section 5.2 we constrain slightly the class of orders R ⊂ A that we consider and provide nec-
essary and sufficient conditions for an order Ω to embed into some, but not all, orders in the genus
of R. The main result of Section 5.2 is:

Theorem 1.4. Assume that an embedding of Ω into R exists. Assume as well that the relative discriminant
ideal dΩ/OK of Ω is coprime to the level ideal NR of R and that the set of primes dividing NR is disjoint from
the set of primes ramifying in A. Then every order in the genus of R admits an embedding of Ω except when
the following conditions hold:

(1) Ω is an integral domain whose quotient field L is a quadratic field extension of K which is contained in A.
(2) There is a containment of fields L ⊂ K (R).
(3) All primes of K which divide the relative discriminant ideal dΩ/OK of Ω split in L/K .

Suppose now that (1)–(3) hold. Then the isomorphism classes in the genus of R whose representatives
admit an embedding of Ω comprise exactly half of the isomorphism classes. If R admits an embedding of Ω

and E is another order in the genus of R, then E admits an embedding of Ω if and only if FrobL/K (ρ(R,E))

is the trivial element of Gal(L/K ).

The proof of Theorem 1.4 makes extensive use of the tree of maximal orders of M2(k) (for k a local
field), allowing us to parameterize explicitly the orders in the genus of R admitting an embedding
of Ω , explicit enough to specify them via the local–global correspondence.

In Section 6 we consider the related question of when there exists an optimal embedding of Ω

into R. Maclachlan [8] considered Eichler orders of square-free level and proved that the proportion
of isomorphism classes of orders in the genus of R admitting an optimal embedding of Ω is equal to
0, 1

2 or 1. We show that Theorems 1.3 and 1.4 hold not only for embeddings but for optimal embed-
dings as well. These theorems are of independent interest however, in part because of the ubiquity
of optimal embeddings in number theory. For example, optimal embeddings play an important role
in Hijikata’s [6] formula for the trace of Hecke operators acting on spaces of R×-automorphic cusp
forms.

2. Notation

In this section we fix the notation concerning quaternion algebras and their orders that will be
used throughout this paper.

Let K be a number field with ring of integers OK . Let A be a quaternion algebra over K with
reduced norm n. We denote by Kν the completion of K at a prime ν of K . If ν is a non-archimedean
prime, we let OKν be the valuation ring of Kν and πν a fixed uniformizer. When there will be no
confusion we will write Oν in place of OKν . We denote by Aν the Kν -algebra A ⊗K Kν and by A1

(resp. A1
ν ) the elements of A (resp. Aν ) having reduced norm equal to 1. We let J K denote the idele

group of K and JA the idele group of A.
Given an OK -order R⊂ A (having maximal rank) and a prime ν of K , we define the completions

Rν ⊂ Aν by:

Rν =
{R⊗OK Oν if ν is non-archimedean,

R⊗OK Kν = Aν if ν is archimedean.

For almost all finite primes ν of K , Aν
∼= M2(Kν) and Rν

∼= M2(Oν), so we will identify Aν

with M2(Kν). Define the normalizer of Rν in A×
ν to be N(Rν) = {x ∈ A×

ν : xRνx−1 = Rν}. This
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normalizer, along with its image under the reduced norm, is central to determining whether the class
field associated to R admits finite ramification. We therefore note that whenever ν is a finite prime
of K which is unramified in A and Rν is a maximal order of Aν , its normalizer is conjugate to
GL2(Oν)K ×

ν and hence, n(N(Rν)) =O×
ν K ×

ν
2.

We define the level ideal NR of R to be the order-ideal [9, p. 49] of the OK -module M/R, where
M is any maximal order of A containing R. This definition is independent of the choice of maximal
order M.

3. The class field associated to an order

Let A be a quaternion algebra over a number field K satisfying the Eichler condition; that is, there
exists an archimedean prime of K which splits in A. The reason for this assumption, as will soon be
made clear, is that it is only in this context that the Strong Approximation theorem may be applied.

We say that two orders R1 and R2 are of the same genus if R1ν is Oν -isomorphic to R2ν for all
finite primes ν of K . The type number t(R) of an order R is defined to be the number of isomorphism
classes of orders in the genus of R.

Example 3.1. Let M ⊂ A be a maximal order (of full rank). For every finite prime ν of K , Mν is a
maximal order of Aν . If ν is a finite prime splitting in A, then it is well known that every maximal
order of Aν is conjugate to Mν . If ν is a finite prime ramifying in A, then Mν is the unique maximal
order of Aν . It follows that the collection of all maximal orders of A comprise the genus of M.

Example 3.2. Let E ⊂ A be an Eichler order of level N (where N is coprime to the discriminant of A).
Recall that this means that E is an order of A (of full rank) with the property that Eν is maximal if
ν ramifies in A, and if ν splits in A then Eν is conjugate to

(
Oν Oν

NOν Oν

)
.

It follows that the genus of E is the collection of all Eichler orders of level N.

Let R⊂ A be an order (of maximal rank). The isomorphism classes of orders in the genus of R are
in one-to-one correspondence with points in the double coset space A×\ JA/N(R), where N(R) =
JA ∩ ∏

ν N(Rν). This bijection is induced by the map sending an order E belonging to the genus of
R to the double coset A× x̃EN(R), where x̃E = (xEν ) is an element of JA such that xEνEνx−1

Eν
= Rν

for all ν .

Theorem 3.3. The reduced norm induces a bijection of sets

n :A×\ JA/N(R) −→ K ×\ J K /n
(
N(R)

)
.

Proof. The induced map is defined in the obvious way: n(A×α̃N(R)) = K ×n(α̃)n(N(R)).
We first show that n is surjective. Let β̃ ∈ J K . We may assume, by the weak approximation the-

orem, that βν > 0 for every infinite prime ν ramifying in A. The reduced norm is locally surjective
at all finite primes and at the infinite primes not ramifying in A. At the infinite primes ramifying in
A the image of the reduced norm consists of the non-negative reals. We construct an idele α̃ ∈ JA
such that n(A×α̃N(R)) = K ×β̃n(N(R)). For all but finitely many non-archimedean primes ν of K ,
βν ∈ O×

ν and Rν
∼= M2(Oν). For each such prime ν , let αν be the conjugate of the diagonal matrix

diag(βν,1) lying in Rν . For the other primes, define αν to be any element in the preimage of βν . The
constructed element α̃ = (αν)ν is easily seen to lie in JA and establishes surjectivity.

We now show that n is injective. Denote by J 1
A

the kernel of the reduced norm map n : JA → J K .
We show that A× J 1

A
N(R) is the preimage of K ×n(N(R)). It is obvious that A× J 1

A
N(R) is contained
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in the preimage. Let γ̃ ∈ JA be such that n(A×γ̃N(R)) = K ×n(N(R)). Then n(γ̃ ) = k · n(r̃) where
k ∈ K × and r̃ ∈ N(R). If ν is an infinite prime ramifying in A then n(γν),n(rν) > 0. Thus kν > 0 as
well. The Hasse–Schilling–Maass theorem (Theorem 33.15 of [9]) implies that there exists b ∈ A× such
that n(b) = k and n(γ̃ ) = n(b)n(r̃), hence n(b−1)n(γ̃ )n(r̃−1) = (1) ∈ J K . This shows that A×γ̃N(R) =
A×b−1γ̃ r̃−1N(R) ∈ A× J 1

A
N(R) as claimed.

We now continue with our proof of injectivity. Suppose that there exist α̃, β̃ ∈ JA such
that n(A×α̃N(R)) = n(A×β̃N(R)). Then n(α̃−1β̃) ∈ K ×n(N(R)) and by the above claim α̃−1β̃ ∈
A× J 1

A
N(R). Making use of the fact that A× J 1

A
is a normal subgroup of JA , we see that β̃ ∈

α̃A× J 1
A
N(R) =A× J 1

A
α̃N(R).

Let S be the set of archimedean places of K and define A1
S = ∏

ν∈S A
1
ν . Recall the Strong Approxi-

mation theorem [11, Theorem 4.3]: If A1
S is not compact, then A1A1

S is dense in J 1
A

. Recalling that A1
ν

is compact if and only if ν ramifies in A, our assumption that A satisfy the Eichler condition implies
that there exists an archimedean prime ν of K such that A1

ν is not compact. It follows that A1
S is

not compact. For any γ̃ ∈ JA , γ̃N(R)γ̃ −1 contains a neighborhood of the identity and is therefore an
open subgroup of JA containing A1

S , hence J 1
A

⊂ A×γ̃N(R)γ̃ −1. Choosing γ̃ = α̃, we have

β̃ ∈A× J 1
Aα̃N(R) ⊂ A×α̃N(R).

Therefore A×β̃N(R) ⊂A×α̃N(R), and by symmetry, we have equality. �
We have shown that the isomorphism classes comprising the genus of a fixed order R ⊂ A

are in one-to-one correspondence with the double cosets of the group K ×\ J K /n(N(R)). Set HR =
K ×n(N(R)) and GR = J K /HR . As J K is abelian, GR ∼= K ×\ J K /n(N(R)). Since HR is an open sub-
group of J K , associated to it is a class field K (R) whose arithmetic is intimately related to the
arithmetic of R in A. The basic properties of K (R) are given by the standard theorems of class field
theory (see for example Chapter 11 of [7]). In particular, we note that the conductor of K (R) is
divisible only by prime divisors of the level ideal NR of R.

We now prove that GR can be generated by elements having a very simple form and that in fact,
GR is an elementary abelian group of exponent 2.

Lemma 3.4. GR is generated by cosets having representatives of the form eνi = (1, . . . ,1,πνi ,1, . . .). If S is
any finite set of primes of K , then the representatives {eνi } can be taken so that νi /∈ S for all i.

Proof. The Chebotarev density theorem guarantees that every element of Gal(K (R)/K ) has infinitely
many prime ideals in its preimage under the Artin map. As these prime ideals correspond to ide-
les of the form (1,1, . . . ,1,πνi ,1, . . .), GR can be generated by cosets having representatives of the
form eνi . Only finitely many primes of K lie in S and a given element of GR has infinitely many
prime ideals in its preimage, so each νi can be chosen so that νi /∈ S . �
Proposition 3.5. The group GR is an elementary abelian group of exponent 2.

Proof. This is clear since J 2
K ⊂ n(N(R)). �

Given orders D,E in the genus of R, we define the distance ρ(D,E) as follows. Let x̃D ,
x̃E be defined as in the paragraph preceding Theorem 3.3. We define ρ(D,E) to be the coset
n(x̃−1

D x̃E )HR in GR . By Proposition 3.5 this is the same coset as n(x̃D x̃E )HR . It is not difficult
to see that our definition of ρ(−,−) is well-defined. Indeed, let x̃′

D, x̃′
E be another pair of ideles

such that x′
Dν

Dν(x′
Dν

)−1 = Rν = x′
Eν
Eν(x′

Eν
)−1 for all ν . It is clear from Theorem 3.3 and the para-

graph preceding it that this implies A× x̃DN(R) = A× x̃′
DN(R) and A× x̃EN(R) = A× x̃′

EN(R), hence
n(x̃D x̃E )HR = n(x̃′

D x̃′
E )HR . Similar arguments show that the following elementary properties are sat-

isfied.
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Proposition 3.6. Let D,E,E ′ lie in the genus of R.

(1) ρ(D,E) = ρ(E,D).
(2) ρ(D,E) is trivial if and only if D ∼= E .
(3) If E ∼= E ′ then ρ(D,E) = ρ(D,E ′).

Let L be a quadratic field extension of K . We have shown that GR is an elementary abelian group
of exponent 2 with generators eνi = eνi HR . We now show that the generators {eνi } can be chosen so
that the primes νi have certain splitting properties in L/K .

Lemma 3.7. Let notation be as above.

(1) If L �⊂ K (R), then GR is generated by elements {eνi } where νi splits in L for all i.
(2) If L ⊂ K (R), then GR is generated by elements {eνi } where νi splits in L for all i > 1, and ν1 is inert in L.

Proof. We first suppose that L �⊂ K (R). By the Chebotarev density theorem we may generate
Gal(K (R)L/L) with the Frobenius elements associated to primes of L having degree one over K (since
the set of primes of L with degree greater than one over K has density zero). As Gal(K (R)L/L) is
isomorphic to Gal(K (R)/K ) via restriction to K (R), we may generate the latter group with Frobenius
elements associated to primes of K splitting completely in L/K . These automorphisms correspond,
via the Artin map, to the generators {eν j }m

j=1 of GR . We have therefore proven the first assertion.
Suppose now that L ⊂ K (R). Let λ be a prime of K which is inert in the extension L/K

and set ν1 = λ. Indeed, viewing Gal(K (R)/L) as a subgroup of Gal(K (R)/K ), consider the
set {(λ, K (R)/K ), {(ν j, K (R)/K )}m

j=2} where {(ν j, K (R)/K )}m
j=2 is an m − 1 element generat-

ing set of Gal(K (R)/L). We claim that this set generates Gal(K (R)/K ). As Gal(K (R)/K ) and
Gal(K (R)/L) are elementary abelian groups of exponent 2, they are F2-vector spaces. The set
{(ν j, K (R)/K )}m

j=2 is therefore a basis of Gal(K (R)/L), hence linearly independent. To show that
{(λ, K (R)/K ), {(ν j, K (R)/K )}m

j=2} is a basis for Gal(K (R)/K ), it suffices to show that (λ, K (R)/K ) is
not an F2-linear combination of elements of {(ν j, K (R)/K )}m

j=2. But this is clear as all of the elements
of {(ν j, K (R)/K )}m

j=2 restrict to the trivial element of Gal(L/K ) while (λ, K (R)/K ) does not. �
4. Parameterizing the genus of R

Let {eνi }m
i=1 ⊂ J K be such that {eνi }m

i=1 generate GR = J K /K ×n(N(R)) ∼= (Z/2Z)m . By Lemma 3.4
one may choose this generating set so that each νi is non-archimedean and split in A and so that Rνi

is maximal for 1 � i � m. Throughout the remainder of this paper we will only consider generating
sets {eνi }m

i=1 of GR which satisfy these properties. For each 1 � i � m, let R′
νi

be a maximal order of
Aνi which is adjacent to Rνi in the tree of maximal orders of Aνi

∼= M2(Kνi ). For the basic definitions
and properties concerning the tree of maximal orders of M2(k) (for k a local field) we refer the reader
to Section 2.2 of [11].

Given γ = (γi) ∈ (Z/2Z)m , we define the order Dγ (via the local–global correspondence) as having
the following local factors

Dγ
ν =

⎧⎨
⎩
Rνi if ν = νi and γi = 0,

R′
νi

if ν = νi and γi = 1,

Rν otherwise.

We will show that the set {Dγ }γ ∈(Z/2Z)m consists of representatives of all 2m isomorphism classes
in the genus of R. We therefore call {Dγ }γ ∈(Z/2Z)m a parameterization of the genus of R. Note that
by construction, if γ = (0,0, . . .), Dγ is R.



B. Linowitz / Journal of Number Theory 132 (2012) 1425–1437 1431
Proposition 4.1. Let notation be as above. The orders of {Dγ }γ ∈(Z/2Z)m are pairwise non-isomorphic and

represent all isomorphism classes of the genus of R. In particular, Dγ ∼=Dγ ′
if and only if γ = γ ′ .

Proof. It follows from [11, Section 2.2] that if 1 � i � m and x ∈ A×
νi

is such that xR′
νi

x−1 = Rνi

then ordνi (n(x)) ≡ 1 (mod 2). Using this, it is easy to see that ρ(Dγ ,Dγ ′
) = ∏m

i=1 e
γi+γ ′

i (mod 2)
νi . By

Proposition 3.6, Dγ ∼=Dγ ′
if and only if ρ(Dγ ,Dγ ′

) is trivial. As there are 2m non-isomorphic orders
Dγ and 2m isomorphism classes in the genus of R, the proposition follows. �
5. Selectivity

Let Ω be a commutative, quadratic OK -order and assume that an embedding of Ω into R exists.
We are interested in determining the proportion of isomorphism classes in the genus of R whose
representatives admit an embedding of Ω . As in [4], we shall say that Ω is selective for the genus of
R if Ω does not embed into every order in the genus of R.

Remark 5.1. Suppose that E is an order in the genus of R, Ω is an integral domain and ϕ is an
embedding of Ω into E . Then ϕ extends to an embedding of the quotient field of Ω into A. Such an
embedding is, by the Skolem–Noether theorem, given by conjugation by an element of A× . Thus an
order E in the genus of R admits an embedding of Ω if and only if it contains a conjugate of Ω .

5.1. Obstructions to selectivity

In this section we describe several easy to check criteria that, if satisfied, preclude the possibility
of selectivity. In order to show that in these cases Ω can be embedded into every order in the genus
of R, we employ the following strategy.

Let {eνi }m
i=1 ⊂ J K be such that {eνi } generate GR = J K /K × · n(N(R)). Note that by Lemma 3.4 we

may assume that each νi is non-archimedean, that no νi ramifies in A and that Rνi is maximal for
all i. For each νi , we will construct two distinct local maximal orders Dνi and D′

νi
which both contain

Ω (that is, Ω ⊂Dνi ∩D′
νi

for all νi ) and are adjacent in the tree of maximal orders of Aνi
∼= M2(Kνi ).

By hypothesis R also contains Ω . Then for each γ ∈ (Z/2Z)m , let Dγ be the global order defined by
the local factors

Dγ
ν =

⎧⎨
⎩
Dνi if ν = νi and γi = 0,

D′
νi

if ν = νi and γi = 1,

Rν otherwise.

As Ω is contained in every completion of Dγ (for each γ ∈ (Z/2Z)m), Ω is contained in Dγ as
well. These 2m orders represent all isomorphism classes of orders in the genus of R and each contains
a conjugate of Ω . Hence Ω can be embedded into all orders in the genus of R.

Remark 5.2. The strategy outlined above was used in [4] by Chinburg and Friedman in order to prove
the theorem in the case that R was a maximal order. The same strategy was used by Guo and Qin in
[5] to extend the theorem to Eichler orders of arbitrary level.

Proposition 5.3. If Ω is not an integral domain then every order in the genus of R admits an embedding of Ω .

Proof. If Ω is not an integral domain then A ∼= M2(K ) and Ω is conjugate to a subring of

Ω0 =
{(

a 0
0 b

)
: a,b ∈ OK

}
or Ω J =

{(
a b
0 a

)
: a ∈ OK , b ∈ J

}

for J a fractional ideal of K .
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We may, without loss of generality, assume that Ω ⊂ Ω0 or Ω ⊂ Ω J .
If Ω ⊂ Ω0, set

Dνi =
(
Oνi Oνi

Oνi Oνi

)
, D′

νi
=

(
Oνi π−1

νi
Oνi

πνiOνi Oνi

)
.

If Ω ⊂ Ω J for a fractional ideal J of K , set

Dνi =
(

Oνi JOνi

J−1Oνi Oνi

)
, D′

νi
=

( Oνi π−1
νi

JOνi

πνi J−1Oνi Oνi

)
.

In both cases Dνi is conjugate to D′
νi

by
( 1 0

0 πνi

)
and Ω ⊂Dνi ∩D′

νi
. As this holds for all i and Ω ⊂Dν

for all ν �= νi for any i by definition of D, we have, for every γ , Ω ⊂ ⋂
ν(A∩Dγ

ν ) =Dγ . Thus Ω can
be embedded into representatives of every isomorphism class in the genus of R. �

In light of Proposition 5.3 we henceforth assume that Ω is an integral domain with quotient
field L.

Proposition 5.4. If L �⊂ K (R), then every order in the genus of R admits an embedding of Ω .

Proof. By Lemma 3.7 we can choose primes νi of K which split in L such that {eνi } generate GR . Let
λ = νi for some i. As λ splits in L/K , Aλ must be split (this is immediate from the Albert–Brauer–
Hasse–Noether theorem), so there is a Kλ-isomorphism fλ : Aλ → M2(Kλ) such that

fλ(L) ⊂
(

Kλ 0

0 Kλ

)

by Lemma 2.2 of [1]. Then

fλ(Ω) ⊂ fλ(OL) ⊂
(
OKλ 0

0 OKλ

)
.

Choose Dλ and D′
λ so that

Dλ = f −1
λ

((
OKλ OKλ

OKλ OKλ

))
, D′

λ = f −1
λ

((
OKλ π−1

λ OKλ

πλOKλ OKλ

))
.

As λ ranges over all νi , we see that Ω ⊂Dνi ∩D′
νi

for all i. By the strategy outlined in the beginning
of this section, Ω can be embedded into representatives of every isomorphism class in the genus
of R. �

Recalling that the conductor of K (R) is divisible only by the prime divisors of the level ideal NR
of R, we have the following immediate corollary to Proposition 5.4.

Corollary 5.5. If any finite prime of K not dividing NR ramifies in L, then every order in the genus of R admits
an embedding of Ω .

That Corollary 5.5 allows one to preclude the possibility of selectivity without computing the class
field K (R)/K is especially nice, as in practice such a computation may be quite difficult.
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Having dealt with the case that L �⊂ K (R), we now suppose that L ⊂ K (R).

Proposition 5.6. If L ⊂ K (R), then the proportion of isomorphism classes in the genus of R whose represen-
tatives admit an embedding of Ω is at least 1/2.

Proof. Identify Ω with its image in R so that Ω ⊂ R. We may choose, by Lemma 3.7, a generating
set {eνi }m

i=1 of GR for which ν1 is inert in L/K , and νi splits in L/K whenever i > 1. Let {Dγ } be
a parameterization of the genus of R associated to this generating set. The proof of Proposition 5.4
shows that the parameterization {Dγ } can be constructed so that for all γ , Ω is contained in Dγ

νi

whenever i > 1. As the set of orders {Dγ : Dγ
ν1 = Rν1 } represent half of the isomorphism classes in

the genus of R and each of these orders contains Ω , we’re done. �
We summarize Propositions 5.4 and 5.6 as a theorem.

Theorem 5.7. Assume that an embedding of Ω into R exists.

(1) If L �⊂ K (R), then every order in the genus of R admits an embedding of Ω .
(2) If L ⊂ K (R), then the proportion of isomorphism classes in the genus of R whose representatives admit

an embedding of Ω is at least 1/2.

5.2. A selectivity theorem

In this section we constrain slightly the class of orders R ⊂ A that we consider and provide nec-
essary and sufficient conditions for an order Ω to be selective for the genus of R. In the case that Ω

is selective for the genus of R, we shall see that representatives of exactly 1/2 of the isomorphism
classes of the genus of R admit an embedding of Ω . The constraints which we shall impose on R
are the following:

(5.1) The relative discriminant ideal dΩ/OK of Ω is coprime to the level ideal NR of R.
(5.2) The set of primes dividing NR is disjoint from the set of primes ramifying in A.

Theorem 5.8. Assume that an embedding of Ω into R exists. Then every order in the genus of R admits an
embedding of Ω except when the following conditions hold:

(1) Ω is an integral domain whose quotient field L is a quadratic field extension of K which is contained in A.
(2) There is a containment of fields L ⊂ K (R).
(3) All primes of K which divide the relative discriminant ideal dΩ/OK of Ω split in L/K .

Suppose now that (1)–(3) hold. Then the isomorphism classes in the genus of R whose representatives
admit an embedding of Ω comprise exactly half of the isomorphism classes. If R admits an embedding of Ω

and E is another order in the genus of R, then E admits an embedding of Ω if and only if FrobL/K (ρ(R,E))

is the trivial element of Gal(L/K ).

Remark 5.9. Although our condition (2) is not the same as that which appears in [2,4,5], it is equiva-
lent whenever R is an Eichler order. Indeed, this equivalence plays an important role in the proofs of
the aforementioned theorems.

Example 5.10. Let K be a number field and A be a quaternion algebra over K which satisfies the
Eichler condition and has no finite ramification. Let L be a maximal subfield of A and Ω = OL . If R
is any quaternion order in A containing Ω for which assumption (5.1) holds, then by Theorem 5.8,
the proportion of isomorphism classes in the genus of R whose representatives admit an embedding
of Ω is [K (R) ∩ L : K ]−1. This generalizes the n = 2 case of a theorem of Chevalley [3], who showed
that if L is a maximal subfield of Mn(K ) then the ratio of the isomorphism classes of maximal orders
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of Mn(K ) into which OL can be embedded to the total number of isomorphism classes of maximal
orders is [H K ∩ L : K ]−1, where H K is the Hilbert class field of K .

We prove Theorem 5.8 as a series of propositions. We have seen in Propositions 5.3 and 5.4 that
if either (1) or (2) fail to hold then every order in the genus of R admits an embedding of R. We
henceforth assume that conditions (1) and (2) hold.

Proposition 5.11. Both L/K and A are unramified at all finite primes of K and ramify at the same (possibly
empty) set of real primes.

Proof. If a finite prime ν of K ramifies in A then by assumption (5.2), Rν must be maximal, hence
n(N(Rν)) = K ×

ν . It follows that ν splits completely in K (R) and thus in L/K as well. As L embeds
into A we obtain a contradiction to the Albert–Brauer–Hasse–Noether theorem. If ν is a finite prime
of K which ramifies in L/K then ν ramifies in K (R)/K and thus divides the level ideal NR . As ν also
divides dΩ/OK we have a contradiction to assumption (5.1). That L/K is ramified at every real prime
which ramifies in A follows from the Albert–Brauer–Hasse–Noether theorem. If ν is a real prime of
K which is unramified in A then n(N(Rν)) = R× , hence ν splits completely in K (R)/K and thus in
L/K as well. �
Remark 5.12. That L/K and A are unramified at all finite primes and ramify at exactly the same set
of real primes appeared as condition (2) in [4,5] and may very well be a necessary condition for
selectivity to occur at all in A.

Proposition 5.13. If condition (3) does not hold, then every order in the genus of R admits an embedding
of Ω .

Proof. If condition (3) does not hold, there exists a finite prime λ of K with λ | dΩ/OK and which does
not split in L/K . By Proposition 5.11, λ is unramified in L/K , so λ is inert in L. By assumption (5.1),
(dΩ/OK , NR) = 1 and since λ | dΩ/OK , we have λ � NR which implies that Rλ is maximal. Finally,
since λ is finite, Proposition 5.11 implies that Aλ

∼= M2(Kλ).
Because condition (2) holds, L ⊂ K (R) and by Lemma 3.7 we may choose ν2, . . . , νm such that

{eλ, eν2 , . . . , eνm } generate GR , where νi splits in L/K for i = 2, . . . ,m. We also assume that the νi
are chosen so that Rνi is maximal for all i. As the νi all split in L, for each i we may pick two
adjacent maximal orders of Aνi containing Ω (as in the proof of Proposition 5.4).

Since Lλ/Kλ is a quadratic unramified extension and λ divides dΩ/OK , Ω ⊂ Ω ⊗OK OKλ ⊂ OKλ +
πλOLλ . Let Dλ be some maximal order of Aλ containing OLλ and consequently, Ω . All maximal

orders of Aλ are conjugate, so we may assume that Dλ = (OKλ
OKλ

OKλ
OKλ

)
. Now consider the maximal

order D′
λ = ( OKλ

π−1
λ OKλ

πλOKλ
OKλ

)
. It is clear that πλDλ ⊂ D′

λ (viewed as OKλ -modules), so πλOLλ ⊂ D′
λ .

Then Ω ⊂D′
λ .

Hence Ω ⊂ Dν ∩D′
ν for all ν ∈ {λ,ν2, . . . , νm} and thus can be embedded into representatives of

every isomorphism class in the genus of R. �
We now assume that conditions (1)–(3) hold.

Proposition 5.14. Let notation be as above and suppose that conditions (1)–(3) hold. Then the orders in the
genus of R admitting an embedding of Ω represent exactly half of the isomorphism classes. If E is another
order in the genus of R, then E admits an embedding of Ω if and only if FrobL/K (ρ(R,E)) is the trivial
element of Gal(L/K ).

Proof. By assumption, Ω is contained in R. Let E be an order in the genus of R. We may choose,
by Lemma 3.7, a generating set {eνi }m

i=1 of GR for which ν1 is inert in L/K , and νi splits in L/K
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whenever i > 1. Let {Dγ } be the parameterization of the genus of R associated to this generating
set. As the {Dγ } span the isomorphism classes in the genus of R, there exists a γ such that E ∼=Dγ .
Then E contains a conjugate of Ω if and only if Dγ contains a conjugate of Ω , so we may suppose
without loss of generality that E =Dγ .

The proof of Proposition 5.4 shows that the parameterization {Dγ } can be constructed so that for
all γ , Ω is contained in Dγ

νi whenever i > 1. Suppose that FrobL/K (ρ(R,Dγ )) is trivial in Gal(L/K ).
Since ρ(R,Dγ ) = ∏m

i=1 eνi
γi , this implies that FrobL/K (eν1

γ1 ) is trivial (as νi splits in L/K whenever
i > 1). As FrobL/K (eν1) is the non-trivial element of Gal(L/K ), we deduce that γ1 = 0. Therefore Ω ⊂
Dγ

ν1 and Ω ⊂Dγ
ν for all primes ν of K , hence Ω ⊂Dγ .

In order to prove the converse we will need a lemma.

Lemma 5.15. If ν is a finite prime of K which is inert in L, then OLν is contained in a unique maximal order
of Aν .

Proof. By Proposition 5.11, ν is unramified in A so that we may identify Aν with M2(Kν). Suppose
that OLν is contained in distinct maximal orders M1, M2 of Aν . All of the maximal orders of M2(Kν)

are conjugate, so there exists an element x ∈ A×
ν such that M2 = xM1x−1. Because ν is inert in L/K

we may write OLν = OKν [α] for some α ∈ O×
Lν

. Because α ∈ M×
1 ∩ M×

2 , conjugation by α fixes
both M1 and M2 and hence every vertex in the unique path joining M1 and M2 in the tree of
maximal orders of Aν . Thus α fixes an edge in the tree of maximal orders of Aν . But this contradicts
Lemma 2.2 of [4], proving the lemma. �

We now continue the proof of Proposition 5.14 and suppose now that E contains a conjugate of
Ω but FrobL/K (ρ(R,E)) is not trivial. By conjugating E we may assume that Ω is contained in E , as
FrobL/K (ρ(R,E)) is unchanged if E is replaced with a conjugate order (by Proposition 3.6). We claim
that there is a finite prime ν which is inert in L/K and for which Rν and Eν are not equal. Suppose
to the contrary that Eμ = Rμ for all primes μ that are inert in L/K . Let y = ỹE ∈ JA be such that
Eλ = yλRλ y−1

λ for all primes λ of K . By hypothesis we may take yμ = 1 for all primes μ which are
inert in L/K . We may also take yμ = 1 for all archimedean primes μ of K . Consider the element
ρ(R,E) = n(y)HR of GR . Its image under FrobL/K is clearly trivial since n(yμ) = 1 whenever μ is
inert in L/K (here we have used the fact that by Proposition 5.11, L/K is unramified at all finite
primes). This contradicts our assumption that FrobL/K (ρ(R,E)) be non-trivial and proves our claim.

Let ν be a finite prime which is inert in L/K and such that Rν �= Eν . By Proposition 5.11 ν
is unramified in A. Because condition (3) holds, Ων = OLν . Locally we see that Ων ⊂ Rν ⊂ Mν

for some maximal order Mν of Aν . Writing Eν = yνRν y−1
ν , we have Ων ⊂ Eν ⊂ yνMν y−1

ν . By
Lemma 5.15, Mν = yνMν y−1

ν , so that Mν is fixed by yν . An element of Aν whose reduced norm
has odd valuation fixes no maximal order, so it must be the case that ordν(n(yν)) is even. If this holds
for every inert prime ν for which Rν �= Eν , then FrobL/K (ρ(R,E)) would be trivial. This contradiction
finishes the proof. �
6. An optimal embedding theorem

Let Ω be an integral domain whose quotient field L is a quadratic extension of K . Recall that an
embedding σ : L →A is an optimal embedding of Ω into R if σ(L)∩R= σ(Ω). Given a finite prime
ν of K and an embedding σ : L → A, extension of scalars yields an embedding σν : Lν → Aν . The
following lemma makes clear the relationship between the optimality of an embedding σ and the
optimality of the induced embeddings {σν}, where ν ranges over the finite primes of K .

Lemma 6.1. Let notation be as above. Then σ is an optimal embedding of Ω into R if and only if for every
finite prime ν of K , σν is an optimal embedding of Ων into Rν .
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Proof. Identify L and Ω with their images in A under σ . We must show that L ∩R = Ω if and only
if Lν ∩ Rν = Ων for all ν < ∞. This follows from the Corollary on p. 85 of [12], which implies that
(L ∩R)ν = Lν ∩Rν for all finite primes ν of K . �

All of the results in Section 5 hold for optimal embeddings as well. We begin by proving a few
general results in which there are no restrictions on the orders Ω or R. Assume there is an optimal
embedding σ of Ω into R.

Proposition 6.2. If L �⊂ K (R), then every order in the genus of R admits an optimal embedding of Ω .

Proof. If L �⊂ K (R), we may choose a generating set {eνi }m
i=1 of GR such that both Rνi and Ωνi are

maximal for all i. As in the proof of Proposition 5.4, we may construct a parameterization {Dγ } of the
genus of R such that each Dγ

νi contains σνi (Ωνi ). However every embedding of a maximal quadratic
order into a quaternion order is optimal. In particular, σνi is an optimal embedding of Ωνi into Dγ

νi

for all γ and for i = 1, . . . ,m. As σ is an optimal embedding of Ω into R, Lemma 6.1 implies that σν

is an optimal embedding of Ων into Rν for all ν . As Dγ
ν = Rν whenever ν /∈ {νi}, we conclude from

Lemma 6.1 that σ is an optimal embedding of Ω into Dγ . �
Proposition 6.3. If L ⊂ K (R), then the proportion of isomorphism classes in the genus of R whose represen-
tatives admit an optimal embedding of Ω is at least 1/2.

Proof. Let {Dγ } be a parameterization of the genus of R and let Dγ0 ∈ {Dγ } contain σ(Ω) (i.e. σ
is an embedding of Ω into Dγ0 ). We show that for every finite prime ν of K , σν is an optimal
embedding of Ων into Dγ0

ν . If ν /∈ {νi} then Dγ0
ν = Rν and σν is optimal by Lemma 6.1. As Ωνi

can be taken to be the maximal order of Lνi (by suitably choosing the generators {eνi } of GR) and
every embedding of a maximal quadratic order into a quaternion order is optimal, we see that the
embeddings {σνi }m

i=1 are optimal as well. By Lemma 6.1 σ is an optimal embedding of Ω into Dγ0 ,
finishing our proof. �

We now adopt the assumptions outlined in the beginning Section 5.2 and prove an analog of
Theorem 5.8 for optimal embeddings.

Theorem 6.4. Let notation be as above and suppose that assumptions (5.1) and (5.2) are satisfied. If an optimal
embedding of Ω into R exists then every order in the genus of R admits an optimal embedding of Ω except
when the following conditions hold:

(1) We have a containment of fields L ⊂ K (R).
(2) All primes of K which divide the relative discriminant ideal dΩ/OK of Ω split in L/K .

Suppose now that (1) and (2) hold. Then the isomorphism classes in the genus of R whose representatives
admit an optimal embedding of Ω comprise exactly half of the isomorphism classes. If R admits an optimal
embedding of Ω and E is another order in the genus of R, then E admits an optimal embedding of Ω if and
only if FrobL/K (ρ(R,E)) is the trivial element of Gal(L/K ).

Proof. If condition (1) fails then Proposition 6.2 shows that every order in the genus of R admits an
optimal embedding of Ω .

If condition (1) is satisfied and condition (2) fails, then we may choose a generating set {eνi }m
i=1 of

GR such that both Rνi and Ωνi are maximal for all i. The proof of Theorem 5.8 again proceeds by
constructing a parameterization {Dγ } of the genus of R such that for every i, σ(Ωνi ) ⊂ Rνi ∩ R′

νi
,

where Dγ
νi equals either Rνi or R′

νi
, depending on the parity of γi . The argument used to prove

Proposition 6.2 shows that σ is an optimal embedding of Ω into every order in the genus of R.
We now assume that (1) and (2) are both satisfied and show that the orders in the genus of

R admitting an optimal embedding of Ω represent exactly one half of the isomorphism classes.
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Proposition 6.3 shows that the representatives of at least half of the isomorphism classes of orders in
the genus of R admit an optimal embedding of Ω . By Theorem 5.8, the orders E in the genus of R
admitting an embedding of Ω are precisely those for which FrobL/K (ρ(R,E)) is the trivial element
of Gal(L/K ) and represent exactly half of the isomorphism classes. An order in the genus of R cannot
admit an optimal embedding of Ω if it admits no embedding of Ω , so the isomorphism classes whose
representatives admit an optimal embedding of Ω are precisely those whose representatives admit
an embedding of Ω , finishing our proof. �
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