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Given two Chomsky grammars G and 8, a homomorphism p from G 
to G is, roughly speaking, a map which assigns to every derivation of 
G a derivation of G in such a manner that (o is uniquely determined 
by its restriction to the set of productions of G. Two grammars are 
contained in the same transformational class, if the one can be trans- 
formed into the other by a sequence of homomorphisms. If two gram- 
mars are related in such a manner, then there are two relations, one 
concerning the words of the languages generated and the other regard- 
ing the derivations of these words. We establish several classifications 
of context-free grammars in transformational classes which are re- 
cursively solvable. 

1. INTRODUCTION 

Chomsky grammars are special devices for generating languages. 
They are usually considered to be equivalent, if they produce the same 
language. However, the information included in a grammar concerns 
the words generated as well as the distinct derivations for a word itself. 
The concept pursued in this paper is to examine relations of grammars 
which are stronger than the common notion of equivalence. For exam- 
ple, we consider a classification of grammars, where two grammars fall 
under the same class, if they generate the same language and if, in addi- 
tion, there is a certain correspondence regarding their derivations. 
Furthermore we will investigate relationships of grammars whose 
languages on the one hand do not coincide, but which are related on the 
other hand by a certain correspondence as regards the derivations of 
the grammars. This correspondence of the derivations of two related 
grammars will be specified by the term of homomorphism of grammars 
which is a central notion in our paper. 

The concept of homomorphism is based on a characterization of a 
Chomsky grammar introduced by G. Hotz (1966). He describes the set 
of derivations of a grammar as a free category with an additional monoid 
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multiplication and establishes the notion of a homomorphism of gram- 
mars. I t  is the idea of G. Hotz (1968a and 1968b) to develop this notion 
into a relationship concerning grammars. Without this inducement this 
paper would never have been written. 

In Chapter 2 we will summarize the presentation of derivations given 
by G. ttotz. We will develop this concept as far as it will be used in our 
further considerations. Our concept of transformational classes will 
appear in Chapter 3. We will formulate two transformational problems 
relative to a certain class of homomorphisms. Given two grammars, 
find an Mgorithm to determine whether the one can be transformed into 
the other by a sequence of suriective (bijective) homomorphisms of the 
considered class. In Chapter 4 we will present the central tool in our 
considerations, i.e. an axiomatic property for a class of homomorphisms, 
the reduction property. This property provides a considerable simplifica- 
tion of our problems. Examples of classes of homomorphisms Which 
satisfy the reduction property will be given in the Chapters 5 and 6. 
Finally in the Chapters 7 and 8 we will apply the generalized finite 
automata theory to examine the two transformational problems as re- 
gards context-free grammars. We will establish several classes of homo- 
morphisms for which the first transformational problem is solvable, 
when restricting ourselves to context-free grammars. 

I t  is assumed that the reader is familiar with the common concept of a 
Chomsky grammar and knows the definition of a category (Mitchell ' 
1965). 

2. A FORMAL SYMBOLISM FOR THE DERIVATIONS OF 
CHOMSKY GRAMMARS 

Let G = (0, T, S, P)  be a Chomsky grammar with the alphabet 0, 
the terminal alphabet T c O, the set of initiM symbols S c 0 and the 
set P c O* × 0 .1 of productions. 

I t  has been observed by numerous authors that the common descrip- 
tion of a derivation as a sequence of words is ambiguous, since, for 
example, the productions are not specified. On the other hand this 
description distinguishes derivations which are not essentially different. 
As far as we know, it was M. Paul (1962) who used for the first time 
canonical derivations to specify essentially different derivations. Two 
derivations are called similar by Griffiths (1968), if the one can be ob- 
tained from the other by trivial rearrangement within the sequence of 

1 For any set X the free monoid on X is denoted by X*. 



~ SCHNORR 

productions applied. In  the following we shall s imply write derivation, 
when we mean an equivalence class of similar derivations. Later  on we 
will develop a precise definition of this notion. 

The  notat ion w -% v or a :  w --* v means tha t  a is a derivation f rom 
w to v, i.e. an equivalence class of similar derivations. We denote D0(a)  = 
w, D l ( a )  = v, Do,  D1 being domain and codomain functions. For  
w E O* let id~ be the derivation id~ :w --~ w, where no production is 
applied. 

The  total  set of derivations generated by some Chomsky g rammar  is 
called a derivation sys tem (~)g). 

Le t  us consider the structure of a ~8 in a more detailed manner.  
There are two binary operations on a ~g M. 

The  one operation is the juxtaposit ion of derivations. 
OD. ~2  

I f  vl -o  wl ,  v~ -~ w2 are derivations, then the derivation 

al x a~:vlv2 ~ w~w2 is equivalently described by  the se- (2.1) 

quences v~v~ applying ~ wlv2 applying , ~  wlw~. and 

applying 
viv2 applying a2~ vlw2 ab wlw~ respectively. 

The  operation x is associative and defined for any elements of M, i.e. 
x is a monoid multiplication. 

I n  addition to this we have the postposition of derivations. 

Let  a : v  ~ w, B :w  ~ u be derivations, then ~ o a :v  -~ u is (2.2) 

defined to be the composition v ~-~ w ~-~ u. 

The  operation o is associative and ~ o a is defined, if and only if Do(B)  = 

Dl (a ) .  
The  following relations are easy to verify. 

(2.3) 
id.~¢~) o a = a;  

(o~o ~1) x ( ~ o ~ )  = (o,1 x o~)o  (~1 × ~-~) (2.4) 

if  Do(oL,) = D1(~1) i = 1, 2. 
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The meaning of (2.4) is outlined by  the following sketch. 

X ~ o 

\ p21  ,,a21 al x a~ 

FIG. 1 

A precise definition of a derivation can now be derived f rom the follow- 
ing two propositions s ta ted without  proof. Let  M be a :D8 with the set 
of productions P and the alphabet  0, E being the set of identities on 
elements of 0, E = {ida [ a C 0}. 

(2.5) PROPOSITION. Every derivation a C M can be written as a 
product of elements in  P [J E relative to the operations o and ×. 

(2.6) PnOPOSITIO~. Two products of elements in P U E relative to the 
operations o and × represent the same derivation, iff the one can be trans- 
formed into the other by the relations (2.3) and (2.4). 

Let  us consider an example which illustrates (2.6). I f  al:Vl ---> w l ,  
a2: v2 -*  w2 are derivations, then we can transform al × a2: vlv2 ~ w~w~ 
as follows: 

(id~l x a2)o (al  × id,~) = (id~l o a l )  x (a2 o id~)  

= al x a2 = (a lo id ,1 )  x (id~2oa2) 

= ( a l  x o ( i d , ,  x a s )  

Fur thermore  we state two representat ion theorems for derivations which 
will be useful in some applications. 

(2.7) P~oeosiwmN (Hotz,  1966). Every derivation a E M ,  not being 
an identity, can be written a = fl~ o fl~ o . . .  o ~ with fl~ C E* X P X 
E . 2 i =  1 ,2 ,  . . . , n .  

~1 o ~2 o . . .  o ~ is called a sequential product.  A pair  ( ~ ,  ~i+1) of 
two consecutive factors in a sequential product  is defined to be canoni- 
cal, if the factors can be writ ten ft, = id~  × a ,  x ida, for u = i, i + 1 
such tha t  

l u,+~ I < I u, I + [Do(a , )  I ~. 
For A c M the closure of A relative to X is denoted by A*. 

3 For a word w the length is denoted by [ w 1. 
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A sequential product is defined to be canonical, if every pair of consecu- 
tive factors is canonical. 

(2.8) PROPOSITION (Hotz, 1966). I f  M has either of the following 
properties, and i f  a E M is not an identity, then there is a unique canonical 
product which represents a. 

(i) Do(a) ~ h 4 (a E P) ,  

(ii) D~(~) ~ h (~ E P) .  

The number of factors in a sequential product is an invariant for each 
derivation a and called its length, L (a). Naturally we define L(id~ ) = 0 
for all words w. 

(2.10) DEFINITION. Given two ~55's M1 and Ms with the alphabets 
01, 02 resp. and the sets of productions PI ,  Ps resp., a homomorphism 

: M1 -~ Ms consists of: 

H1 a homomorphism @:01" --~ Os* 

H2 a map @ :M~ --* Ms 

The following axioms are postulated• 

H3 

H4 

H5 

@(~ X a2) = @(~1) X ~(as) a l ,  as E M1 

@(a~oas) = @(~1) o@(a~) a~, as E M~ 

the commutativity relation holds in the diagram 

M1 Do, DI> O1" 

Ms Do, D1) 02* 

(2.11) PROPOSITION (Hotz, 1966). A homomorphism 9:M1 ~ M2 is 
• g~ . . _ >  $ uniquely determined by a homomorph,sm ~ : Oz O~ and a map 9 : PI ---, 

M~ such that commuMtivity holds in the diagram 

P1 Do, D1) 01" 

M2 Do, Dt ) 02* 

4A denotes the empty word. 
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Proof 9:P1 --~ M2 and ,~:01" -~ 02* are extended to a homomorphism 
: M1 --* M2 with the recursive definition 

~(id~) = id~(~) 

x (22) = x 

g~(O~l o (22) = ~P((21) o ~fl((22) 

The relations (2.3) and (2.4) ensure that 9:M1 --> M2 is uniquely de- 
termined by these formulas. 

A more detailed description of the structure of a ~98 can be found in 
(Hotz, 1966). A ~g can be characterized as a category with an addi- 
tional monoid multiplication, called X-category, which is free in the 
sense suggested in (2.11). 

Next we will use this concept to define homomorphisms of grammars. 

(2.11) DEFINITION. Given two grammars G = (0, T, S, P)  and 
4 = ( 0 ,  2P, S, P) ,  a homomorphism~:G--~ 4 is defined to be a homo- 
morphism ~:M -~ 217 relative to the associated ~g's which satisfies 

(i) f ( S )  c 

(ii) c 

To motivate the conditions (i) and (ii) we consider the language L~ 
generated by a grammar d which can be written in our terminology 
Lo = {DI(~) E T* 1(2 E M, D0((2) E S}. The set of derivations which 
produce words inLo will be denoted by Mo.  Mo = {(2 E M ! Do(c~) E S. 
DI(~) E T*}. Then the conditions (i) and (ii) are so chosen as to ensure 
~,(Me) c Mo and hence ~(Lo) c Lo .  

Our formalization of a derivation yields a precise definition of the 
ambiguity (w, G} of a word w relative to a grammar G which is defined by 
<w, a> = 1{(2 c Mo I D,((2) -- wl l?  

A homomorphism ~:G ~ 4 is called surjective, if and only if ~(M °) = 
Mo.  From the surjectivity of ~ we infer ~(La) = Lo.  As regards the 
ambiguity we ha-ce 

(w, 0> < ~ (v,a> (wE T*). 
~(v)=w 

We shall call a homomorphism ~:G ---> 4 injective, if the restriction 

5 I f  X is a set, I X I denotes the cardinality of X.  
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~/Ma:Ma -'-* M~ is injective. I t  follows from the injectivity of ~ that 

(v)  = w  

A homomorphism is ca/led bijective, if it is surjective as well as injee- 
tire. 

In the special ease that ~:G --* G is a homomorphism of two grammars 
with the same terminal alphabet T = T and ~ is identical in T we infer 
from 

the surjectivity of~:  (w, G} < (w, G) (w E T*), 

from the injectivity of ~: (w, G) > (w, G) (w E T*), 

andfromthebi ject ivi tyof~:  (w, G ) =  (w,G> (w E T*). 

Evidently homomorphisms can be composed in a natural way. A 
homomorphism ~:G -~ G is called an isomorphism, if there is a homo- 
morphism r: G --* G such that qr  = ida and r~ = ida. 

To avoid misunderstanding we emphasize that bijective homo- 
morphisms are, in general, not isomorphisms, but on the other hand each 
isomorphism is bijective. 

A homomorphism ~:G --* G is called an inclusion and is denoted by 

G ~ G, if it is induced by inclusions P c /3 and 0 c (). G is called a 
subgrammar of G. 

3. TRANSFORMATIONAL CLASSES OF GRAMMARS 

Two grammars G and G are usually called equivalent, if they produce 
the same language. I t  is a well-known theorem by Bar-Hfllel, Perles and 
Shamir (1961) that this equivalence is not decidable even for context- 
free grammars. On the other hand there is a strong interest in a com- 
parison of grammars relative to their generative power. This is the 
reason, why we introduce another type of an equivalence relation which 
is derived from the notion of homomorphism. 

(3.1) DEFINITION. A category ~ is called a category of grammars, if 
the objects of C are grammars, and if the morphisms from G to G are 
homomorphisms from G to G. The composition law of C is to be the 
composition of homomorphisms. 

Our concept of classifying grammars now appears in the following 
definition. 
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(3.2) DEFINITION. The grammars G and G are to be equivalent 
relative to the category C of grammars, iff there exists for some n a 
sequence G ~- G1 -~ G2 +-- . . .  e-  G:~+I --~ G of surjective homomorph- 
isms in e. 

We take into account that an identity in a category of grammars is 
always surjective. From this it is obvious that (3.2) induces an equiva- 
lence relation. An equivalence class of grammars relative to e is to be 
called a transformational class relative to C. 

To motivate this concept let C r be the category whose set of objects 
is the set of all grammars with the distinguished terminal alphabet T 
and whose morphisms are all those homomorphisms of the above gram- 
mars which are constant in T. The equivalence relative to ~r, which 
falls under the equivalence by reduction in (Hotz, 1968b), implies the 
common equivalence, i.e. grammars that are equivalent relative to C r 
generate the same language. 

We now state what we shall call the first transformational problem. 
Let e be a category of grammars. Given two grammars G and G, find 

an algorithm to decide whether G and G are equivalent relative to C. 
If G and G are grammars, equivalent relative to e, there arises another 

problem as regards the ambiguity of words, i.e. whether a derivation in 
M a  corresponds to a unique derivation in M~ Let us be more precise. 

(3.3) DEFINITION. The grammars G and G are to be strictly equiva- 
lent relative to the category C of grammars, if and only if there exists 
for some n a sequence 

G e -  GI  --~ G2 * -  . . .  * -  G~n+l ---* 

of biiective homomorphisms in C. 

The equivalence relation, given hereby, yields the second transforma- 
tional problem: 

Let C be a category of grammars. Given two grammars G and G, find 
an algorithm to decide whether G and G are strictly equivalent rela- 
tive to C. 

4. REDUCTION PROPERTY 

At first we consider some structures in categories which will be useful 
for our concept. 
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(4.1) DEFINITION. A diagram A1 ~ A ~ A~ in a category C is called 
a product diagram for A1 and As,  if for every commutative diagram 

flit A,, f2 
At "A 

there exists a unique morphism f:  A --> A such that glf = f l  and g~f = f2. 
If for every pair of objects A1 and As in C there exists a product dia- 

gram in ~, then we shall simply say that C has products. 

(4.2) D~FINITION. Given two morphisms f1:A1 --~ A,f~:A2 ~ A with 
a common codomain A, a commutative diagram 

gt ,A' g2 

is called a pullback for fl and f2, if for every pair of morphisms 0~: A~ ~ 
A~ i = 1, 2 such that fl0 ~ = f~O 2, there exists a unique morphism h: ~{ ~ A' 
such that g~h = 0 ~ for i = 1, 2. 

If for every pair of morphisms f and f~ in a category e with a common 
codomain there exists a pullback for fl and f~ in e, then we shall say 
that e has pullbacks. 

I t  follows from the definition that products and pullbacks are unique 
up to isomorphisms, if they exist. 

We will now formulate the crucial property for categories of grammars 
which will simplify the transformational problems. 

(4.3) DEFINITION. A category e of grammars is said to have the 
reduction property, if 

R1 e has products and pullbacks. 
i '  gl ,,,,A ,,g2 
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R2 relative to the pullback 

in e, i f f  I is surjective, then so is g2. 

(4.4) THEOREM. Two grammars G and G are equivalent relative to a 
category which has the reduction property, i f  and only i f  the homomorphisms 
in the product diagram of G and G are surjective. 

Proof. Let G ~-- G1 --~ G~ e-  . . .  G2~ e-  G~+I --* G be a sequence of 
surjective homomorphisms. Suppose that  n > 0. Then we can reduce it to 
a sequence with a smaller n. Consider the diagram 

glz,,G,," 2 

_,,, { 
ft,,u 4 ,.G~ f4 
G/ f2"G~3 \G4 

where 

gl ,Gx,,g2 
I 

f2".. -(3 "k.G[f 

is the pullback diagram for f2 and f3. I t  follows from (R2) that  gl and 
2 g are surjective. Hence the above sequence can be reduced to 

f,gl G ~ G - f~g2) G4 ~-" • " 

This proves that  there is a sequence of two surjective homomorphisms. 

Because of (RI )  we can complete the product diagram G ~ Go ~ G to 
a commutative diagram 

fl//G~,.,.[ 2 

From the surjectivity of y and f2 it follows that  the homomorphisms 
gl and g2 are subjective, too. This proves the one implication of the 
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theorem, whereas the other is trivial. The reduction property is by no 
means a necessary condition for theorem (4.4). In fact, the properties 
of the pullback are not fully utilized in the above proof. The reduction 
property is so interesting, since it can be established in a systematic 
manner for numerous categories of grammars. 

5. THE CATEGORY ~r OF REDUCING HOMOMORPIIISMS 

We will consider a category of grammars which is of special interest 
for our purposes. 

Let e~ be the category whose set of objects is the set of all Chomsky 
grammars and whose set of morphisms is the set of all reducing homo- 
morphisms in the following sense 

A homomorphism ~:G --~ G is to be called reducing, if the conditions 
(5.1) and (5.2) are satisfied. 

~o(a) E 0 U {A} (a E 0) ,  (5.1) 

e (a )  E /3 U L'* (a E P) .  (5.2) 

Condition (5.1) asserts that ~ reduces the length of words. Because of 
(5.2) e also reduces the length of derivations 

To avoid trivialities we assume that there is no production (w, w) in 
any Chomsky grammar. To obtain homogeneous notations we will 
write (w, w) for ida. 

(5.3) T~wOREM. The category e~ has products. 

Proof. Let G~ = (0~ , T~ , S i ,  P~)li = 31, 2 be any Chomsky gram- 
mars. We construct the product G1 d-- G ~-~ G2 (G =(0,  T, S, P) ) as 
follows. Let 0~ = Oi U {A} and 2P~ = T~ U {A} and/51 = Pi  U El* for 
i =  1,2. 

0 g,  Or X O~ -- {(A, A)}, T ~, T1 X T~ -- {(A, A)}, 

S g~ & X S= 

We use the projections pdO* ----> 0~*, which are given by p~(al, a2) = at 
f .a.(al,  a2) E O, i = 1, 2, to define 

P = {(w, v) E O* X o*1 ((pl(w), px(v)), 

(p2(w), p2(v))) E /5  X P,  -- E,* X E,*} 
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It is easy to verify that the finiteness of P follows from the finiteness of 
P1 and P~. 

The projections p~ induce homomorphisms 

gl:G --> G~ (i = 1, 2) 
by the formulas 

gl(a) = p,(a)  (a E O, i = 1, 2), 

g~(w, v) = (p,(w),  p,(v))  ((w, v) E P, i -- 1, 2). 

To show that G1 ~: G ~ G2 is a product we assume a commutative 
diagram 

Suppose in addition that commutativity holds in 

,G 
ol s l 3  " i",," !.g "_J~ 

(D) _pg l  ][ g2~k. - 
L~r~'- (5 -~ "~2  

This implies 

g'g(a) = f i (a )  a E 03, i = 1, 2. (5.4) 

Because of (5.4) g:03* --> O* is uniquely determined. And the relation 

g(w, v) = (g(w),  g(v) ) (w, v) ~ P~ , (5.5) 

which holds for any reducing homomorphism g:G3 --~ G, proves that 
g:G3 ~ G is uniquely determined by the commutativity of (D). 

(5.6) THEOREM. The category e ,  has pullbacks. 

Proof. Let G1 :-~ ~ ~ G~ be any diagram in er and let G1 ~ G h_~ G2 be 
the product diagram constructed above. We construct the pullback 
diagram 

(D1) 6 F  ~L 
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= (0, T, S, P )  is to be a subgrammar of G. Using the above repre- 
sentation of G we define. 

0 = {(al, a2) C 0 C 01 X 02 ]fl(a~) = f2(a2)} 

i'= TnO, ~ SNO, P =  P n O * X  O*. 

Evidently there is a natural inclusion G c G. 
The homomorphisms g~ are to be the compositions h*j = g', i = 1, 2. 

I t  is e~sy to verify that (D1) is commutative. To prove that (D1) is a 
pullback diagram we consider any commutative diagram 

G' gll/,,/ "" ,g, 2 
/ "x 

,;\, ,4 
The argument is quite the same as in the proof of theorem (5.3) con- 
eerning the product diagram. 

' : G '  If there is a homomorphism g --* 0 such that commutativity 
holds in the completed diagram (D2), then g' is uniquely determined 
by the relations: 

g~g'(a) = g"(a) (a E 0') ,  

g'(w, v) = (g'(w), g'(v)) ((w, v) E P') .  

and these relations can be regarded as a definition of an appropriate g'. 

(5.7) CoRo~LA~r. 
I/ 

g,,G,,q2 
G,~ wk_ I • , / '~2  

fJ ~ / ' i  2 

is a pullback in e , ,  then for every pair of derivation8 o~ of G~ such that 
= f : ~ ) ,  there exists some derivation c~ of G such that g~(~) = ~ 

i =  1,2. 
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Proof. More precisely, we assert tha t  for any pair of words w, v ~ 0* 
such that  g~(w) = Do(ai) and g~(v) = Dl(a~) for i = 1, 2, there exists a 
derivation a of 0 such that  

= g ' ( a )  Do(a) w, Dl (a )  = v and = al for i = 1,2.  

If (al , a2 )  C (P~ UE~*) X (P~ UE2*) - El* XE~* andfI(a~)  = 
f2(a2), then we infer from the construction of the pullback that  there 
ex i s t sa  C P satisfying gi (a)  = a~ for i = 1, 2, D0(a) = w and 
D l ( a )  = v. 

Let  us denote [P~] = Ei* × Pi  X E~* U E~* for i = 1, 2. The assertion 
then follows in the case 

(a~ , a2) E [P1] × [P2] -- E~* × E~*. 

To prove the general case we take into consideration that,  if ~ :G --~ G ~ 
is a reducing homomorphism and if ~(~) = ~1 o ~ 2 ,  there exists a (pos- 
sibly not unique) decomposition ~ = ~ o ~2 with ~ (~ )  = ~ for i = 1, 2. 
By  this argument there exist decompositions for arbi trary a~ 

~ ~ ( i  1, 2 )  a l  ~ a l  o a2  o • • • o a n  

such that  

(a ,  ~, a ,  ~) E [P~] × [P~] E~* × E~* - -  ~ = 1 , 2 ,  . . , n ,  

and 

f ( a i )  2 2 = f ( a , )  t* = 1,2,  . . , n .  

The assertion now follows immediately by induction on n. 

(5.8) COROL~Rr. 

/ f  

gl .,/G ~',,~g 2 

",,G,4 2 

is a pullback in e,  and if  f 1 is surjectwe, then g2 is surjective, too. 

Proof. Let  a2 C Ma2. Because of the surjectivity of f l  there exists 
al E Mal such that  f l ( a l )  = f2(a2). Because of Corollary (5.7) there 
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exists a derivation a of 0 such that g~(a) = al for i = 1, 2. 
From g~(a) E M~ for i = 1, 2 it follows that a E M~. Hence g~ is sur- 
jective. 

Summarizing the theorems and corollaries of this chapter we have 
proved: 

(5.9) T~EOREM. The category C~ has the reducing property. 

6. SUBCATEGORIES OF Cr 

The equivalence relative to C~ represents an extremely weak relation- 
ship between grammars There are only two equivalence classes relative 
to C~. The one consists of all grammars which generate the empty lan- 
guage. Moreover it is not difficult to show that each other grammar is 
equivalent to the grammar which consists of a single symbol s and the 
single production (s, A). However, there are many subcategories of C~ 
which likewise have the reduction property and provide non-trivial 
equivalences of grammars. We give two examples. 

A homomorphism ~:G --+ G is to be called strongly length-preserving, 
if e maps symbols on symbols and productions on productions, i.e. 
~(a) E 0 f o r a l l a  E 0 and~(~) E P f o r a l l a  E P. 

Let el be the category whose set of objects is the set of all Chomsky 
grammars and whose set of morphisms is the set of all strongly length- 
preserving homomorphisms. 

Furthermore we consider the category el * whose set of objects is the 
set of all Chomsky grammars with the distinguished terminal alphabet 
T and whose morphisms are all those morphisms of Cx which are iden- 
tical in T. 

The equivalence relative to el r is a very strong relationship and im- 
plies that the languages generated by equivalent grammars coincide. 

I t  is easy to verify that the categories el and el T have the reduction 
property. The proofs differ only slightly from that given concerning er 
and are to be left to the reader. We win only state how the products in 

el and el * can be represented. Let G1 £ G ~ (]2 be the product in e~ con- 
structed above. 

The product (]1 ~ G P--* (]2 in ex can be constructed as fol- 
lows: 0 = 01 X 02 c O, ~' = T1 X T2 C T, S = $1 X $2 = S, 

D = {a E P]g~(a)  E P~ for i = 1, 2, and a E 0* X 0"}. 
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There is a natural inclusion G & G and the homomorphisms f are to be 
the compositionsf~ = g~' for i -  1,2. 

hl - h2 ~ 

As regards the product  G1 *--- G --* G2 in Cl ~ we know that  T1 = T.~ = 
T. Wedef ine  (~ = 0k X 02 - T X T U T. We identify an element 
(a, a) C 01 X 02 with a so that  () is a subset of the alphabet 0 of G. 

= S and P = {a C P ] ~  C ()* × 0"} complete the definition of G. 

Again there is an inclusion GD G and the homomorphisms h i are to be 
the compositions h ~ g~ = r f o r i =  1,2. 

So products in CA and e~ r respectively are, roughly speaking, restric- 
tions of the product in e~. On the other hand every such restriction of a 
product  in er can be considered as a product in some subcategory of e~ 
which has the reduction property. 

7. CONTEXT-FREE GRAMMARS 

In the precediag chapters no sufficient conditions are derived as to 
decide the transformational problems. We will now, in a few words, dis- 
cuss the situation as regards context-sensitive grammars and then eoa- 
sider the essential ease of context-free grammars. 

• • 6 A Chomsky grammars G = (0, T, S, P )  is called context-sensitive, if 
1 < I Do(a) { <_- 1Dl(a)  I for all a C P. G is called context-free, 7 if 
PcOXO*.  

I t  is shown in (Schnorr, 1967) that  there is no algorithm to decide, 
given a homomorphism ~,:G --+ 0 of context-sensitive grammars, whether 

is surjeetive. And there is no algorithm, even if ~ is strictly length- 
preserving aud ~ ( P )  = /5. From this it is not  difficult to show that  the 

first transformational problem is not recursively solvable regarding the 
categories e~ and el  r respectively, when restricting ourselves to context- 

sensitive grammars. On the other hand the situation is quite favorable 
eoncerning context-free grammars. 

Algorithms which decide whether a strictly length-preserving homo- 
morphism of context-free grammars is surjeetive and injective respec- 
t ively can be derived from the generalized finite automata theory which 

6 Our definition differs sl ightly from tha t  of Chomsky in that  we allow all length 
increasing rules. 

7 This definition is an insignificant extension of that given by Chomsky, since 
we allow erasing rules sad rules which have terminals on the left side. 
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is developed in papers of J. B. Wright, J. W. Thatcher and S. Eilenberg. 
Let M be the ~3 of some context-free grammar. 

(7.1) D~I~ITION. A finite automaton a relative to the ~3 M is a 
tripel e = (A, h, a0), where 

(i) A is a finite set of states. 
(ii) au E A is the initial state. 

(iii) h is a function which assigns to each production a E P a map 
h~ :A '~(~)1 __~ A I~0(~)I. h is called the direct transition function. 

h is extended to the transition function which is defined for all a E M. 
Postulating that the notation h=(X) always includes X E A wl(~)l, h 
is recursively defined by: 

and naturally 

h,ix,~(X1X2) = h~(X~)h,: (X2)  

h.o, (X)  = h~(h. (X)  ) 

hide(X) = X 

So the inputs of the automaton are derivations in M. Each input deriva- 
tion a E M produces an output word g(a) E A w°(")l defined as follows: 

g(a) = h=(aoWl¢~)l). 

For any set of final states A F c  A, the set of derivations recognized by, 
or the behaviour of, the automaton is defined to be 

bhe(AF) = {~ E M I g(c~) E A~,}. 

There is no essential difference to the concept proposed by J. W. 
Thatcher (1967), characterizing derivation trees of context-free gram- 
mars. We merely profit by the characterization of derivations given in 
Chapter 2. 

(7.2) P~OPOSITIO-N. There is an algorithm for determining, given a 
strictly length-preserving homomorphism of context-free grammars ~:G ---> 
G, whether ~ is surjective. 

This proposition is a consequence of (Thatcher, 1967) Theorems 2, 3 
and Proposition 1. We will only sketch the proof and later on we will use 
the following construction to decide whether a homomorphism is injec- 
tire. 
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Proof.  We construct an automaton relative to the ~$ _M associated 
with 0 which accepts M~ as well as ~(MG), if appropriate final states 
have been chosen. We assume that  G = (0, T, S, P )  and G = (0,  T, S, 
/5) have disjoint alphabets, O n 0 = ~ .  a = (A, h, a0) is defined as 
follows. 

( I )  A = 2 °u~, ao = T l.I 

To specify the direct transition function we introduce the following no- 
tations (a)  and (b).  Let  Y be a set then (2r )  * and 2 (r*) are both mon- 
oids and there is an injeetive homomorphism 

(a)  7rr: (2r)  * -+ 2 (Y*) given by 

~ r ( X )  1--+ X for all X E 2 Y. 

In the following proof we will write ~- = ~'(ouo) • 

(b)  F o r a  E /I~r,X E A IDI(")I, and w E 0 w°(")l 

R(w, ~, X)  = {~ ~ M [ ~(~) = ~, D~(~) ~ ~(X),  D0(~) = w}. 

The notation R (w, a, X ) shall always imply X E Awl (-)1 and w E 0 ID°(")j. 
For  a E /5 the direct transition function is to be defined by: 

n o = ; ~  if D~(~) ~ ~r(X) ( I I )  h ~ ( X )  
t [Do(a)} if D~(a) E ~r(X) 

( I I I )  h~,(X) N 0 = {w C 0 I R(w, ~, X)  ~ 2S}. 

We will profit by  the following properties of the transition function: 

( n ' )  for all ~ C M, ~h~(X) N O* = { ~  it D~(~) E ~(X) 
{Do(a)} if D~(o~) E ~r(X); 

( I n ' )  for all o~ C ~r, ~:h~(X) N O* = {w E O* t ~(w, o~, X) # ~}. 

The proof of ( I I ' )  is very easy and will be left to the reader. We wil 
prove ( I I I ' )  by induction on the length of a. 

For  a ~ /~ there exists either a decomposition a = a~ × a~ or a can 
be written ~ = ~ o m with m E P.  

If  a = a~ × a~, we get with an appropriate decomposition X = X~X~: 

,~h~xo~(X)  = , ~ ( h . ~ ( X O . h o ~ ( X )  ) = , ~ ( Z O . , ~ h ~ ( X ~ ) .  
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By the induction hypothesis applied to al and a~ we obtain: 

= {uxu2 ]R(ulu2,  ,~ × o~2, X l X , )  ~ ;g}. 

If  a = a2 o al with al E /5, it follows by ( I I I ) :  

~rh,~2°,~(Z ) N 0 = ~rh~,~(h,,2(X) ) f'l 0 = {u~ I R(u~, ozl , h~,~(Z) ) ~ 25}. 

This means, if ul C vh,~o,~ (X)  N O, then there exists/31 C M with 
~(~1) = a~, Do(ill) = u~, and DI(/~I) ~ vha2(X). By the induction 
hypothesis ~pplied to a2 it follows R(D~(/~), a2, X)  # ~ .  This means 
tha t  there exists fl~ C M with D0(~2) = D1(/31), ~(/~2) = a2, and 
Dx(fl2) C I t (X) .  Hence /32o/31 E R ( u l ,  o~oal ,  X )  # ~ .  To show 
the converse inclusion let R(u~,  ~ o a ~ ,  X)  # ~ and take 
/3 ~ R(ux,  a~ o ~ ,  X) .  Then there is a decomposition/~ = /3~ o fll such 
that  ~(/~) = a~. I t  follows/~ ~ R(D~(B~), o~, X ) .  From the induction 
hypothesis applied to a ,  we infer DI(/~I)~ ~rh,,~(X). From /~i 
R ( u l ,  o~, h ~ ( X ) )  and from the definition of h ( I I I )  we conclude that  
u~ ~ ~rh,,~(h~(X) ) = ~rh,, o ,~(X) .  Thus, by induction we have estab- 
lished property ( I I I ' )  which combined with ( I I ' )  implies: 

(I-I) for all ~ ] ~ r ,  

~rg(a) f~ 0* = ~ if D~(~) ¢ T* 
{D0(a)} if D,(~) e 

(I-H) for ~ll ~ ~ /~r, ~rg(ot) f~ O* 

ex. /3 ~ M, Do(/~) = w ~ 
= {wE O D~(/3) ~ T*, ~nd ~(fl) = 

/ 

We now choose the sets of final states A~ and A~ with the definitions 

A~--= {H c O ( J O t H N S  ~ O} 

A~ = {H c O UO [ H N S ~ YZf} 

I t  is now easy to verify by (I-I) and (I-H) respectively that  

bho(A~) = M~,  

bh~(A~) = ~(Ma).  

To determine whether ~ is sur]ective we consider the set -4 = Ax (3 A~ -- 
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A1 f-I A2. Because of Mo U~(Ma) - My f3 ~(M~) = bha(ZI) ~ is sur- 
jective, if and only if bh~(fil ) = ~ .  (7.2) follows now from the fact that 
there is an effective procedure for determining whether or not bhe(A ) = 
~ ,  (Thatcher and Wright, 1968) Theorem 7. 

The presupposition in (7.2) that ~ is to be stl~ctly length-preserving 
can be dropped, but we will restrict ourselves within the purpose of this 
paper to reducing homomorphisms. 

(7.3) COROLLARY. Proposition (7.2) holds also as regards reducing 
homomorphisms. 

Proof. Let ~: G --+ G be a reducing homomorphism of context-free 
grammars. We construct a strictly length-preserving homomorphism 
~':G' ~ G which satisfies ~ ( M a ) =  ~'(Ma,). We define G' = 
(0', T', S', P ' )  by 

0 ' =  {aC 0 [ ~ ( a )  ~ A}, T ' - -  T A 0 ' ,  S' = S, 

and using the homomorphism p:O* --~ 0'* which is given by 

p(a )  = a (a C 0'), p(a )  = A (a E O - -  0') ,  

P'  = {(pno(~),  pD~(~)) [ ~ C M,  ~(~) C D} 

I t  is easy to verify that the strictly length-preserving homomorphism 
.J:G' --~ G which is induced by ~'(a)  = ~,(a) a C 0',  has the required 
property ~(Me) = ~'(Ma,). 

This corollary and Theorem (4.4) now lead to the main theorem of 
this paper. 

(7.4) THEOREm. There is an effective procedure for determining, given 
two context-free grammars, whether they are in the same transformational 
class relative to C1 and C1 r respectively. 

Example. Let C~ r be the category in consideration. For simplicity 
reasons the example relates to linear grammars, i.e. P c (0 -- T) X 
T* (0 -- T) T* [J (0 -- T) X T*. The grammars ~re illustrated by dia- 
grams whose edges are either nonterminal symbols or h and the arrows 
stand for productions, ul ~ vl means a production (ul,  wl) with wl C 
T*vy*, i .e .  u~--~ vl stands for a so-called terminal production, iff vl -- 
A. Theindices i and j below the arrows in u~ -~ vl, u ~  -~. v~ have to coin- 
cide, iff the productions a~, a~ resp. which the arrows represent differ 
only in nonterminal symbols, i.e. ~ = ( u., , yv~w ), ~ = ( u: , yv:w ). 
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~- Y3 - ~ - ~ ' ~ -  

,~'',1 :3+ 2 f " , l  2 !  I 
S I -T~, -- "x~" --~-~- x 2.___..~..~'x_ ~kS~ -T~--~I'~ " _~Y2 

I 2 
F~Q. 2 

Gi with the initial symbol s l .  G2 with the initial symbol s~. 

2 
( s l '  s2 ) - 7 " " ( × 1  ' Yl ) - ~ - ~ ' ( x 2 ,  Y2 . . . .  -~ (x3  ,Yl ) 

i J ,, 
II / " I / 

~ , I x  t ) ) 

Fro. 3 

The product grammar of G1 and G2 with the initial symbol (sz, s~). 
The reader will immediately verify, without applying the algorithm 

(7.2), that  the homomorphisms of the associated product diagram are 
surieetive as well as injective, i.e. G1 and G2 are strictly equivalent re- 
lative to ei  r . 

8. THE SECOND TRANSFORMATIONAL PROBLEM 

The second transformational problem seems to be more complicated 
than the first one. We will restrict our investigations to the category 
el and presuppose throughout this chapter that  every production of any 
grammar satisfies D0(s) # A. Thus we can profit by the Proposition 
(2.8). Nevertheless we shall not completely solve the problem, but 
merely transform it into another which seems to be simpler. 

At first we will strengthen corollary (5.7) as regards the category el • 

(8.1) PROPOSITION. / /  

gl,,G, g2 

I,,, /G2 
ft'WkGjf2 

is a pullback in e l ,  then for every pair of derivations al of G~ such that 
fZ ( al ) = / ( a ~ ) ,  there exists a unique derivation c~ of G such that g~ ( (~ ) = 
oL~for i = 1, 2. 
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Proof. Consider the following specification of the above pullback to be 
stated without proof. 

G1 ~ G g-~ G~ is to be defined by:  

0 = {(al ,  a2) E 01 X O~ i l l (a1)  = f~(a,)}, 

i '  = O N T 1 X  T2 , S =  S 1 X S ~ ,  

and using the projections p~: 0* ---> 0¢* 

/5 = {(w,v)  E O X  0 [ ( p , ( w ) , p ~ ( v ) )  E P~ i =  1,2} 

The homomorphisms g~: G --~ G~ are induced by the projections p~ by  
the formulas: 

g ' (a)  = p~(a) (a E O) 

g~(w, v) = ( p , ( w ) ,  p , ( v ) )  ( (w ,  v) E P ) .  

If  a~ E O~ for i = 1, 2 and f l ( a l )  = f2(a2), then there exists a unique 
a E 0 such that  g~(a) = a~ for i = 1, 2, namely, a = (a l ,  a~). Moreover, 
if al E Pi  for i = !, 2 and f l (a l )  = f~(a2), then there exists a unique 
a E t5 such that  g~(a) = ai for i = 1, 2. The assertion of (8.1) is now 
obvious, if a~ E E~* × P x El*. For  arbi trary a~ let a~ = a~ ~ o a~ ~ o • • • o 

i a,~ for i = 1, 2 be the canonical representations of a~. Since the homo- 
morphisms f are strictly length-preserving it  follows that  

, 
. . . .  o f l ( a ~ )  = 1, o f  (~2)o  i 2 

are canonical representations, too. We infer from (2.8) tha t  nl = n2 = n 
and f ( a ~  1) = f 2 ( a 2 )  ~ = 1, . . .  , n. The assertion now follows imme- 
diately by induction on n. 

The proposition (8.1) implies the following corollary analogous to 
(5.8). 

(8.2) COROLLARY. Relative to the pullbacl~ 

g! 

in e l ,  i f  f l  is injective, then so is g=. 
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Proof. In contradiction to the assertion we assume that  there exist two 
distinct derivations ~, a E M~ such tha t  g~(~) = g2(a). Since gl(a) = 
gl(a) would be in contradiction to the term 'unique' in (8.1), it follows 
gi(a) ~ g~(a). The commutativity of the pullback ensures flg1(a) = 
flg~(a), contrary to the hypothesis that  f l  is injective. 

(8.3) THEOREM. Let C be a subeategory of C1 which has the reduction 
property. Two grammars G1 and G2 are strictly equivalent relative to C, i f  
and only i f  there exists a diagram G1 e-- G --~ Ge of bijective homomorphisms 
inC.  

Obviously (8.2) holds for any subeategory of el having pullbacks. 
From this we infer that  an arbitrary chain of bijective homomorphisms 
in C can be reduced to a chain consisting of two homomorphisms only. 

Theorem (8.3) gives a hint to solve the second transformational prob- 

lem in e. Let G1 ~ G Y-* G, consist of bijective homomorphisms and let 
h I h ~ 

GI e -  G --~ G2 be the product in C, then it follows that  f is injective rela- 
tive to the commutative diagram 

f2 
"I ~ 2 \  

The homomorphisms h ~ provide a one to one correspondence of f ( M o )  
and Mo~ for i = 1, 2. 

When restricting on context-free grammars, f ( M o )  is recognizable. 
On the other hand, given a recognizable set R c M~ it is easy to con- 
struct an in]ective homomorphism ~:G' --* G such that  ~(Ma,)  = R. 
Hence the second transformational problem relative to context-free 
grammars amounts to search for a recognizable set R c M~ so that  the 
homomorphisms h ~ provide a one to one correspondence of R and Ma~ 
for i = 1, 2. In doing so we can profit by the following theorem. 

(8.4) THEORV, M. There is an effwxricw peoxwsuew doe swrwemininf, 
given a strictZy length-preserving homomorphism ~: G ----> G of context-free 
grammars, whether ~ is injective. 

Proof. We construct an automaton relative to the 5)8 M associated 
with G which accepts exactly those derivations in Mo which have more 
than one inverse image in M~.  a = (A, h, a0) is defined as follows. 
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Let the set O' be in one to one correspondence with the alphabet 0 of 
G. a' is to be the corresponding element of a E O. 

(I)  A = 2 °u°', ao = T. 

To specify the direct transition function we will use the homomorphism 
v : (2(°u° ' ) )* -~  2 ((°u°')*) (7.2) (a) as well as the notation (7.2) (b): 
for ~ E M, X E A wl(~)l and w E 0 wl(~)l, 

R(w, ~, X )  = {~ E M IDo(fl) = w, Dl(fl) E ~r(X), ?(fl) = ~}. 

The transition function is now given by the relations ( I I ) - ( I I I ) .  

( II)  for~  E tS, h~(Z) n O  = {a E OIR(a ,o~ ,X)  # ~} ;  

( I I I )  a' is to be contained in h,~(X) N O r, iff either of the following 
relations holds: 

(a) t R ( a , ~ , X ) l  > 1, 

(b) there exists ~ ~ R(a, o~, X )  such that D0(fl) can be written 

Do(fl) = wuv with wu'v E ~r(X). 

The proof of (8.4) now depends on the following properties of the 
transition function. 

(II ' )  for a l l a E  ~,~h,~(X) n o * =  {wE O * l R ( w , , ~ , x )  ~ ~} ;  

(III ' )  for all ~ C ~r with D0(s) C 0, 

g(~) n o' = {a' ~ o ' [ I  R(a, ~, T j~'c~j) I > 1}. 

Because of the similarity of (II)  and ( I I ' )  above with ( I I I )  and (III ' )  
in the proof of (7.2) it should be obvious that (II ' )  above holds by the 
same reasons which proved (I I I ' )  (7.2) to be true. 

Both inclusions of (III ' )  are proved by induction on the length of a. 
, , c "  Let a = a2 o a~ with a~ E /5. If a' E g(a), then a' E h~g(o~) 

and by the definition of the direct transition function either (a) or (b) 
holds in ( I I I )  above. At first we assume that (a) holds. This means 
JR(a, a~, g(~2))l > 1. Take fl~, ~ E R(a, a~, g(a2)) with fl~ # ~2. 
Because of Dl(fli) E ~g(a2) we infer from (II ' )  that R(DI(~) ,  
a~, T w~(~)I) # ~ .  Take ~, E R(D~(~),  a2, TI'~(~)i). It is easy to ver- 
i fythat  ~ofl~. E R(a,a, T w~(~)l) f o r / =  1, 2. HenceIR(a,a , Tl'~('~)l)l> 1. 

Supposing now that a' E h~g(a2) and (b) holds in (III)  we know 
that there exists ~ E R(a, al,  g(a~)) such that D~(/~) can be written 
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DgB) wlw2 w~ with wl E 0 andwl ' E ~rg(a2). - :  . . . . . .  W r - l W r  W ~ + I  " " " Wn 

Because of DI(B) E rrg(a2) it follows from ( I I ' )  that  R(DI(¢~), as ,  
T wl(~>l ) ¢ ~ .  Look at the decompositions ~rg(a~) = I I i ~ l  g(~) ,  
R(DI(~), oe~, T w~(~j) = ~-~in~ 1 X R ( W i ,  ~ i ,  T IDI(~i)]) with as = 
~1 × " '"  x ~ and D0(~) E O From w~' E g(~,) and from the induction 
hypothesis applied to ~ we infer JR(w, ,  ~ ,  Tw~<~'>I) 1 > 1. Hence 
[ R(DI(~),  a2, TIDI(~I)I ;> 1. From this and fl E R(a, al ,  g(a~)) we 
conclude ] R(a, a~ o al ,  T 1~(~>1 )1 > 1. I t  remains the converse inclusion 
of ( I I I ' )  to be proved. 

I !  ,,D Suppose that  a = a2 o al with al E /5 and [ R(a, a, T ID~(~I )1 > 1. 
Take % fl E R(a, ~, T wl(~l) with ~ ~ % There are decomposi- 
tions fl = fl~oCh and-y  = ~2ovl  such that  ~(~i) = e(Ti) = a i .  
If fl~ ~ ~,~, then I R(a, a~ g(a~)) i > 1; hence by ( I I I )  (a) 
a' ~ ho~(g(~))  = g(~). 

Let now fl~ = ~1 and ~ ~ ~ .  We denote w = D~(fll). Look at the 
decomposition 

R(w, a~, T I~<~>I) = 12[ × R(w~, ~ ,  TI'~<~')'). 
i = 1  

w i t h w  = w~w~. . .w~,a~  = ~t × . - .  x ~ , a n d D 0 ( ~ i )  E 0. Because 
of fl~, "~E R(w, a2, T w~(~>l) there exists r such that  IR(w~, 
~ ,  T I m ( ~  )1 > 1. From the induction hypothesis applied to ~ we infer 
w; E g(~,). I t  is now easy to verify that  the relation ( I I I ) ( b )  holds as 
regards ~1 E R(a, a~, g(a2)); hence a' ~ g(a). Thus we have proved 
( I I I ' ) .  

Taking into account the relations ( I I ' )  and ( I I I ' )  it is not difficult 
to choose a set of final states A~ such that  bha(A~,) = {~ E Mo].  
I e-~(a) n Mo I > 1}. Because ~ is iniective , if and only if bh~(A~, ) = 2/, 
Theorem (8.4) follows from the fact that  there is an effective solution 
of the emptiness problem (Thatcher and Wright, 1968, Theorem 7). 

I t  is easy to verify that  A~ can be chosen as follows: A subset 
B c 0 U O' is to be an element of A~,  iff either of the following rela- 
tions hold: 

(i) B n o '  ¢ ~ ,  

(ii) [B n SI  > 1. 

RECEIVED: September 30, 1968 
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