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For a graph G, the definitions of doknation number, denoted y(G), and independent 
domination number, denoted i(G), are given, and the following results are obtained: 

oorollrrg 1. For any graph G, y(L(G)) = i@(G)), where Z,(G) is the line graph of G. (This 
$xh!s t.lic rtsult ~(L(T))~i(L(T)), h w ere T is a tree. Hedetoiemi and Mitchell, S. E. Conf. 
B.awn .Roue, 1977.) 

OyroRaq 2. For any Graph G, y(M(G)) = 104(G)), where A4 is tFil. middle graph of G. 

In this paper we shall consider a graph G = (V, E) as fmite, undirected, with no 
multiple e:dges, arsd with no loops. Al1 definitions not presented here can be foun,d 
in [3]. 

0.1 

A number of terms to be &d are defined for a given graph G = (V, E), where 
V={q, 2)2,. . . , UP}. 

DerGnition 1. A set D E V is a domimting set (of G), if Vu E V-D, N(v) n Df 8. 

DefhutIon 2. A set Ic V is an independent set (of G), if Vu, v E I, N(u) n (v} = pl. 

Dt&Mon 3. .4 set Ic V is an independent domination set (of G) if I is both a.n 
independent and dominating set. 

0.2 

The following are two useful results which can bc found in [63 and [l] 
respectively. 
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2,. (i). I is a maximal independent set if and only if .I is an independent 
++&&_g ,&#t, 

.’ 

(ii) If P is Q wzaxima! inde&nt .set then I is a minimal dom,kating &, 

0;3 

The two invariants of a graph G lvhich are of interest in this paper are now 
defined as in [2:23. 

D&&#on 4, The domination number (of G), denoted r(G), .is the minimum 
cardinality taken over all minimal dominating sets. 

. 
l.lqWhm &. In view of Proposition 2 we defme- the independent domination 
number (of G), denoted i(G), as the n&mum cardinality taken over all ,indepen- 
dent dominating se& of G. 

Definitions 4 and 5, together with Proposition 2 imply tha3 following result: 

PrqmtMm 3, For any graph G = (V, E), r(G) s i(G). We show by ex&mpZe that 
strict inequality may occur. Lrrt 6 be determined by the foElowing diagram: 

It is easy ta see that y(G) = 2 < 3 = i(G). 

We no~v give additior.al defirC\ions and a result, all of which will be used later. 

0.4 

D 6. The middle graph of a graph G, denoted by M(G), is the 
intersection graph W) on where F= ({q], 
(VA - 

V(G) ={q, D2,. . *, up} 

. . , bp)) u E(G). 
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U&&ion 7. The graph G+ is defined as %Riows: add to V= {u,, Do,. “. , v,} p 
vertices ul, u2, . . . , up different from the elements of V and from each other. Add 
the p edges &vi ={Q, Ui} (i =: I,&. . . , p) to E. The graph G’ is the graph with 
vertex set VU{rr,, u2, . . . , t+.} and edge set EU{I.QZQ, U~ZJ~, . . . , upv,}. The fol- 
lowing result is due to Hamaria and Yoshimur,a and can be found in [a]. 

Prop&tk~~ 4. For aviy graph G, L(G’) is isomorphic to AI(G), where L(G’) 

denotes the fine gmph of G+. 

Tlheorem. If G = (V, E) is a graph which does not have an induced subgraph 
isomorphic to Kl,3, then y(G) = i(G). 

PFOO~. By Proposition 3, y(G)<i(G). We will show that i(G)<?(G) and hence 
the desired equality holds. 

Let m = r(G) and let D_1 ={wO, wl,. . . , w,; --1}~ V be a dominating set. Also, 
for any non-empty V’ c V let a( V’) denote the number of edges in the subgraph 
induced by V’. Clearly 0~ a(D_,) d (T). If a(L _J = 0 then D_1 is an independent 
set, and by proposition 2 i(G) d m = y(G). Therefore without loss of generality 
we may. assume that wow1 E E. 

Now by Proposition 1, the set N,={uE V-D_, 1 N(u)nI.l_, ={wct}j is not 
empty. Let u and w be any two distinct elements of N, and consider 
{w,, wl, u, tv)~ V. The stlbgraph induced by this set certainly contains 
{wowI, w,u, wow). By hypothesis.{w,u, wlw, uw}nEf@, but since N(u)nD.-, = 
{wO} = N(w)f7D_, it must be that uw E E. Now we see that any two disiinct 
elements of No IJ { wo} are adjacent. 

Take u,,EN~ and consider Do=(uo, wl,. . ., w,-~}. Let ZE: V-Do= MUK, 
where M=(N,-{uo})U(wo} and K- V-(NoUD_,). If ZEM then ZU~EE and if 
z E K then N(z) fl D_, ~{y}, where 1 s is m - 1, which says ZWi c -3. Hence D,, 
is a dominating set such that IDo1 = m. NOW N(u,) n Do = fl and hence 0 G t7(Do) d 

(“y’). If a(D,) = 0 then i(G) s m = r(G) as before. If a(DO) > 0 we can repeat the 

process used to obtain Do to obtain, withou.t loss of generality, a dominating set 

~1={~O&,W2,..., w,,,_,} such that N(q) n D1 = 0 for i = 0,l. We then have 
0~ a(D1)<(m;2). Again if a(Q) = 0 then we are done and if a(D,)>O then we 
repeat the process used to obtain Do and then D,. 

Clearly the repetitions of the process must terminate in at most m - 1 steps with 

a dominating set Dk, -l<k<m-2, such that ID,I=m=y(G) and a(D,)==C). 

Hence Pk. is an independent dominating sel. which by Proposition 2 implies that 
Dk is a maximal independent set. Whence i(G)< ID,\ = m := -y(G), and the prol)f 

is compkte. 

Since for KIm3, Y(K,.~) = 1 = i(K,,,), we set that the hypothesis o ’ the theorem is 

not a necessary condition; however, we do ha\e the folkMing: 
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