Discrete Mathematics 23 (1978) 73-76. © North-Holland Publishing Company

ON DOMINATION AND INDEPENDENT DOMINATION NUMBERS OF A GRAPH

Robert B. ALLAN and Renu LASKAR

Department of Mathematical Sciences, Clemson University, Clemson, SC 29631, U.S.A.

Received 9 June 1977 Revised 15 February 1978

For a graph G, the definitions of domination number, denoted $\gamma(G)$, and independent domination number, denoted i(G), are given, and the following results are obtained:

Theorem. If G does not have an induced subgraph isomorphic to $K_{1,3}$, then $\gamma(G) = i(G)$.

Corollary 1. For any graph G, $\gamma(L(G)) = i(L(G))$, where L(G) is the line graph of G. (This extends the result $\gamma(L(T)) = i(L(T))$, where T is a tree. Hedetniemi and Mitchell, S. E. Conf. Baton Rouge, 1977.)

Corollary 2. For any Graph G, $\gamma(M(G)) = i(M(G))$, where M is the middle graph of G.

0. Introduction

In this paper we shall consider a graph G = (V, E) as finite, undirected, with no multiple edges, and with no loops. All definitions not presented here can be found in [3].

0.1

A number of terms to be used are defined for a given graph G = (V, E), where $V = \{v_1, v_2, \ldots, v_p\}$.

Definition 1. A set $D \subseteq V$ is a dominating set (of G), if $\forall v \in V - D$, $N(v) \cap D \neq \emptyset$.

Definition 2. A set $I \subseteq V$ is an independent set (of G), if $\forall u, v \in I, N(u) \cap \{v\} = \emptyset$.

Definition 3. A set $I \subseteq V$ is an *independent domination set* (of G) if I is both an independent and dominating set.

0.2

The following are two useful results which can be found in [6] and [1] respectively.

Proposition 1. A dominating set D is minimal iff for each $d \in D$ either (i) $N(d) \cap i = \emptyset$ or (ii) $\exists c \in (V-D)$ such that $N(c) \cap D = \{d\}$.

Proposition 2. (i) I is a maximal independent set if and only if [is an independent dominating set.

(ii) If I is a maximal independent set then I is a minimal dom nating set.

0.3

The two invariants of a graph G which are of interest in this paper are now defined as in [2].

Definition 4. The *domination number* (of G), denoted $\gamma(G)$, is the minimum cardinality taken over all minimal dominating sets.

Definition 5. In view of Proposition 2 we define the *independent domination* number (of G), denoted i(G), as the minimum cardinality taken over all independent dominating sets of G.

Definitions 4 and 5, together with Proposition 2 imply the following result:

Proposition 3. For any graph G = (V, E), $\gamma(G) \le i(G)$. We show by example that strict inequality may occur. Let G be determined by the following diagram:

It is easy to see that $\gamma(G) = 2 < 3 = i(G)$.

We now give additional definitions and a result, all of which will be used later.

0.4

Definition 6. The middle graph of a graph G, denoted by M(G), is the intersection graph $\Omega(F)$ on $V(G) = \{v_1, v_2, \ldots, v_p\}$ where $F = \{\{v_1\}, \{v_2\}, \ldots, \{v_p\}\} \cup E(G)$.

Definition 7. The graph G^+ is defined as follows: add to $V = \{v_1, v_2, \ldots, v_p\} p$ vertices u_1, u_2, \ldots, u_p different from the elements of V and from each other. Add the p edges $u_i v_i = \{u_i, v_i\}$ $(i = 1, 2, \ldots, p)$ to E. The graph G^+ is the graph with vertex set $V \cup \{u_1, u_2, \ldots, u_p\}$ and edge set $E \cup \{u_1 v_1, u_2 v_2, \ldots, u_p v_p\}$. The following result is due to Hamada and Yoshimura and can be found in [4].

Proposition 4. For any graph $G, L(G^+)$ is isomorphic to M(G), where $L(G^+)$ denotes the line graph of G^+ .

1. Results

2 52 - 52 8 - 52

Theorem. If G = (V, E) is a graph which does not have an induced subgraph isomorphic to $K_{1,3}$, then $\gamma(G) = i(G)$.

Proof. By Proposition 3, $\gamma(G) \leq i(G)$. We will show that $i(G) \leq \gamma(G)$ and hence the desired equality holds.

Let $m = \gamma(G)$ and let $D_{-1} = \{w_0, w_1, \ldots, w_{i_{\ell}-1}\} \subseteq V$ be a dominating set. Also, for any non-empty $V' \subseteq V$ let a(V') denote the number of edges in the subgraph induced by V'. Clearly $0 \le a(D_{-1}) \le {m \choose 2}$. If $a(L_{-1}) = 0$ then D_{-1} is an independent set, and by proposition 2 $i(G) \le m = \gamma(G)$. Therefore without loss of generality we may assume that $w_0 w_1 \in E$.

Now by Proposition 1, the set $N_0 = \{u \in V - D_{-1} \mid N(u) \cap D_{-1} = \{w_0\}\}$ is not empty. Let u and w be any two distinct elements of N_0 and consider $\{w_0, w_1, u, w\} \subseteq V$. The subgraph induced by this set certainly contains $\{w_0w_1, w_0u, w_0w\}$. By hypothesis $\{w_1u, w_1w, uw\} \cap E \neq \emptyset$, but since $N(u) \cap D_{-1} =$ $\{w_0\} = N(w) \cap D_{-1}$ it must be that $uw \in E$. Now we see that any two distinct elements of $N_0 \cup \{w_0\}$ are adjacent.

Take $u_0 \in N_0$ and consider $D_0 = \{u_0, w_1, \ldots, w_{m-1}\}$. Let $z \in V - D_0 = M \cup K$, where $M = (N_0 - \{u_0\}) \cup \{w_0\}$ and $K = V - (N_0 \cup D_{-1})$. If $z \in M$ then $zu_0 \in E$ and if $z \in K$ then $N(z) \cap D_{-1} \supseteq \{w_i\}$, where $1 \le i \le m-1$, which says $zw_i \in \mathbb{N}$. Hence D_0 is a dominating set such that $|D_0| = m$. Now $N(u_0) \cap D_0 = \emptyset$ and hence $0 \le a(D_0) \le$ $\binom{m-1}{2}$. If $a(D_0) = 0$ then $i(G) \le m = \gamma(G)$ as before. If $a(D_0) > 0$ we can repeat the process used to obtain D_0 to obtain, without loss of generality, a dominating set $D_1 = \{u_0, u_1, w_2, \ldots, w_{m-1}\}$ such that $N(u_i) \cap D_1 = 0$ for i = 0, 1. We then have $0 \le a(D_1) \le \binom{m-2}{2}$. Again if $a(D_1) = 0$ then we are done and if $a(D_1) > 0$ then we repeat the process used to obtain D_0 and then D_1 .

Clearly the repetitions of the process must terminate in at most m-1 steps with a dominating set D_k , $-1 \le k \le m-2$, such that $|D_k| = m = \gamma(G)$ and $a(D_k) = 0$. Hence D_k is an independent dominating set, which by Proposition 2 implies that D_k is a maximal independent set. Whence $i(G) \le |D_k| = m = \gamma(G)$, and the proof is complete.

Since for $K_{1,3}$, $\gamma(K_{1,3}) = 1 = i(K_{1,3})$, we see that the hypothesis of the theorem is not a necessary condition; however, we do have the following:

Corollary 1. For any graph G, $\gamma(L(G)) = i(L(G))$, where L(G) denotes the line graph of G.

R.B. Allun, R. Laskar

Proof. The result is immediate from Theorem 1, since L(G) does not have an induced subgraph isomorphic to $K_{1,3}$. See [3].

This corollary extends the result $\gamma(L(T)) = i(L(T))$, where T is a tree which was established in [5].

Corollary 2. For any graph G, $\gamma(M(G)) = i(M(G))$ where M(G) denotes the middle graph of G.

Proof. By Corollary 1, $\gamma(L(G^+)) = i(L(G^+))$ and by Proposition 4 we have $\gamma(M(G)) = i(M(G))$.

References

- [1] C. Berge, Grapits and Hypergraphs (North-Holland, Amsterdam, 1973) 309.
- [2] E. Cockayne and S. Hedetniemi, Towards a theory of domination in graphs, Networks Fell (1977) 247-261.
- [3] F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1969).
- [4] T. Hamada and I. Yoshimura, Traversability and connectivity of the middle graph of a graph, Discrete Math. 14 (1976) 247-255.
- [5] S. Hedetniemi and S. Mitchell, Independent domination in Trees, Proc. Eighth S.E. Conf. on Combinatorics, Graph Theory, and Computing, Baton Rouge, LA (1977).
- [b] O. Ore, Theory of Graphs (Amer. Math. Soc. Colloquium Pub. Vol. XXXVIII, Amer. Math. Soc., Providence. Rhode Island, 1962) 206.