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Abstract

We consider the removability of isolated singularities for the curvature equations of the
form Hj[u] =0, which is determined by the kth elementary symmetric function, in an n-
dimensional domain. We prove that, for 1<k<n — 1, isolated singularities of any viscosity
solutions to the curvature equations are always removable, provided the solution can be
extended continuously at the singularities. We also consider the class of “generalized
solutions” and prove the removability of isolated singularities.
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1. Introduction

We study the removability of the isolated singularity of solutions to the curvature
equations of the form

Hilu] = Sk(x1, ..., kq) =0 (1.1)

in Q\ {0}, where Q is a bounded domain in R” and 0 Q. For a function ue C*(Q),
Kk = (K1, ...,k,) denotes the principal curvatures of the graph of the function u,
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namely, the eigenvalues of the matrix

c-pl—2« _|-__1 (I—Du@DL;>D2u, (1.2)

and Sy, k=1, ...,n, denotes the kth elementary symmetric function, that is,
Sk(K)ZZKil---K,-k, (1.3)
where the sum is taken over increasing k-tuples, iy, ...,ix={1,...,n}. The mean,

scalar and Gauss curvatures correspond, respectively, to the special cases k = 1,2,n
in (1.3).

In this paper, except for the last two sections, we consider the class of viscosity
solutions to (1.1), which are solutions in a certain weak sense. In many non-linear
partial differential equations, the viscosity framework allows us to obtain existence
and uniqueness results under rather mild hypotheses.

We establish results concerning the removability of isolated singularities of a
viscosity solution to (1.1). Here is our main theorem.

Theorem 1.1. Let Q be a bounded domain in R" containing the origin. Let 1 <k<n — 1
and u be a viscosity solution of (1.1). We assume that u can be extended to the
continuous function i€ C°(Q). Then i is a viscosity solution of H[d] =0 in Q.
Consequently, iie C™'(Q).

The last part of Theorem 1.1 is a consequence of [25]. Note that one cannot expect
much better regularity for a viscosity solution in general. In fact, let k>2 and 4 be a
positive constant. u(x) = Ay/x7 + -+ +x7_; (x = (x1, ..., x,)) satisfies Hi[u] =0 in
the viscosity sense, but is only Lipschitz continuous. Moreover, Urbas [29] proved
that for any positive continuous function , there exist an ¢>0 and a viscosity
solution of Hj[u] = in B, = {|x|<e} which does not belong to C'*(B,) for any
o>1— %

For the case of k = 1, which corresponds to the minimal surface equation in (1.1),
such removability result was proved by Bers [2], Nitsche [20], and De Giorgi and
Stampacchia [13]. Serrin [22,23] studied the same problem for a more general class of
quasilinear equations of mean curvature type. He proved that any weak solution u
of the mean curvature type equation in Q\ K can be extended to weak solution in Q
if the singular set K is a compact set of vanishing (n — 1)-dimensional Hausdorff
measure. For various semilinear and quasilinear equations, such problems were
extensively studied. See [4,5,30] and references therein.

Here we remark that (1.1) is a quasilinear equation for k = 1 while it is a fully non-
linear equation for k>2. It is much harder to study the fully non-linear equations’
case. For Monge-Ampére equations’ case, there are some results about the
removability of isolated singularities (see, for example, [3,14,21]). But, to the best
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of our knowledge, no results are known for other types of fully non-linear elliptic
PDEs except for the recent work of Labutin [16,17] (for the case of uniformly elliptic
equations) [18] (for the case of Hessian equations). Therefore our main result,
Theorem 1.1, is new for 2<k<n — 1.

In the results of Bers, Serrin and others, no restrictions are imposed on the
behaviour of solutions near the singularity. Therefore our result is weaker than theirs
for the case of k = 1, but that is because their arguments rely on the quasilinear
nature of the equation.

There is a standard notion of weak solutions to (1.1) for the case of k = 1, but it
does not make sense for k>2. Hence, when we study the removability of isolated
singularities, we consider the problem in the framework of the theory of viscosity
solutions. In this framework, comparison principles play important roles. Our idea
of the proof of Theorem 1.1 is adapted from that of Labutin [16], except that we have
to deal with the extra difficulty coming from the non-uniform ellipticity of the
equations.

We note that the case k = n, which corresponds to the Gauss curvature case, is
excluded from Theorem 1.1. There exist solutions of (1.1) with non-removable
singularities at 0. It is easily checked that a function

ulx)=a(lx| - 1), xeQ=B; ={|x|<l}, (1.4)

where a >0, satisfies Eq. (1.1) with k£ = n. However, u does not satisfy H,[u] = 0 in
By in the viscosity sense. In fact, it follows that

H, ] = (ﬁ)w% (15)

in the generalized sense, where w, denotes the volume of the unit ball in R”, and J is
the Dirac measure at 0. Accordingly there is a considerable difference between the
cases 1<k<n—1and k=n.

We also consider the removability of isolated singularities of the generalized
solutions to (1.1), the notion of which was introduced by Takimoto [24]. Note that
this is a weaker notion of solutions than viscosity solutions. We prove that for
1<k<n—1,if ue C°(Q\ {0}) is a generalized solution of Hy[u] = 0 in any convex
domain which is contained in @\ {0}, then u can be extended to a generalized
solution of Hi[u] =0 in Q. The technique to prove this assertion is completely
different from that in the proof of Theorem 1.1.

This paper is organized as follows. In the following section, we describe basic
properties of viscosity solutions. In addition to the standard comparison principle
that is found, e.g. in [25], we present another form of the comparison principle
(Proposition 2.2). Both of them are important materials for the next section. In
Section 3, we prove Theorem 1.1. In Section 4, we discuss the removability of
solutions in the class of generalized solutions as mentioned above. Finally, in Section
5, we state remarks on some conjectures and other open problems.
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2. The notion of viscosity solutions

In this section, we define the notion of viscosity solutions of the equation
Hilu) = y(x) in 2, (2.1)

where Q is an arbitrary domain in R” and y e C°(Q) is a non-negative function.
The theory of viscosity solutions to the first-order equations and the second
order ones was developed in the 1980s by Crandall, Evans, Ishii, Lions and others.
See, for example, [10-12,19]. For the curvature equations of the form (2.1),
Trudinger [25] established existence theorems for Lipschitz solutions in the viscosity
sense.

Let @ be a domain in R". First, we define the admissible set of elementary
symmetric function S; by

Iy ={keR"| Sk(x +n)=Sk(x) for all ,>0}

={keR"|S;(x)=0, j=1,...,k}. (2.2)

We say that a function ue C?*(Q) is k-admissible for the operator Hj if x =
(x1, ..., Kk,) belongs to I' for every point xe Q. Except for the case k = 1, Eq. (2.1) is
not elliptic on all functions ue C?(Q), but Caffarelli et al. [6,7] have shown that (2.1)
is degenerate elliptic for k-admissible functions. Obviously,

INolro--oly =T, ={keR"|x;20, i=1,...,n}, (2.3)

and alternative characterizations of I'; are also known (see [15]).

We define a viscosity solution of (2.1). A function ue C°(Q) is said to be a viscosity
subsolution (resp. viscosity supersolution) of (2.1) if for any k-admissible function
@€ C*(Q) and any point xq € Q which is a maximum (resp. minimum) point of u — ¢,
we have

H[p)(x0) Z¥(x0)  (resp. <y(xo))- (2:4)

A function u is said to be a viscosity solution of (2.1) if it is both a viscosity
subsolution and supersolution. We note that the notion of viscosity subsolution does
not change if all C?(Q) functions are allowed as comparison functions ¢. One can
prove that a function ue C?(Q) is a viscosity solution of (2.1) if and only if it is a k-
admissible classical solution.

The following theorem is a comparison principle for viscosity solutions of (2.1).

Theorem 2.1. Let Q be a bounded domain. Let y be a non-negative continuous function
in Q and u, v be C°(Q) functions satisfying Hy[u] =y + 6, Hy[v] < in Q in the viscosity



K. Takimoto | J. Differential Equations 197 (2004) 275-292 279

sense, for some positive constant 6. Then

sup (u—v)< max (u—v)". (2.5)
Q oQ

The proof of this theorem is given in [25]. In this paper we use another type of
comparison principle as follows.

Proposition 2.2. Let Q be a bounded domain. Let \ be a non-negative continuous
function in Q, ue C°(Q) be a viscosity subsolution of Hj[u] =, and ve C*(Q)
satisfying

K[o(x)]¢{Aelk | Sk(2) = (x)} (2.6)
for all xe Q, where x[v(x)] denotes the principal curvatures of v at x. Then (2.5) holds.

Proof. We assume (2.5) does not hold. Then there exists a point xeQ such that

sup (u —v) = u(x) — v(x). (2.7)
Q

Since u is a viscosity subsolution of Hy[u] =y, it follows that H[v](x)=y(x). From

(2.6) we have k[v(x)] ¢ I'r.. For simplicity, we write k = (i, ..., k,) instead of x[v(x)].
Thus, it follows that there exists ie{l,...,n} such that S;_;;(x)<0, where
Sk—1.i(K) = 0%—}5’") (for, if Si(x)=0 and Sy_y,/(x) >0 for all ie{1,...,n}, we get that

Si(x + 1) =Sk (k) for all y,>0, which implies k € Sy.). Without loss of generality, we
may suppose i = 1.
Then, we see that for KeR

Sk(k1 + K, K2, ..., k) = Si() + KSk—1.1 (k). (2.8)
Thus if we assume
Sk(K?)
K>——~—({}>0), 2.9
5 (>0 (2.9)

it holds that Sy (x; + K, k2, ..., k,) <0. We fix a constant K satisfying (2.9).
We denote

12
X = (10"(X)®D”(f)> . (2.10)
1 + |Do(x)|

Rotating the coordinate in R"”, we may suppose
1

o )|2X(Dzv(x))X:diag (K1y oeeyKp). (2.11)
+ |Dv(x
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We find the quadratic polynomial 7 which satisfies V(x) = 0, DV (x) = 0 and

D>V =\/1+|Dv(x)? X" diag(K,0, ...,0)X " (2.12)

Since V=0 in Q and V(x)=0, u— (v+ V) attains a maximum value at x.
Moreover, from a simple calculation, we get that the principal curvatures of v + V" at
x are k1 + K, 12, ..., k,. Hence

Hiv+ V](x) = Si(ic1 + K, K2, ..., k) <O (). (2.13)

This cannot hold since u satisfies Hy[u]>y in the viscosity sense. Therefore, we
obtained the required inequality (2.5). O

3. Proof of Theorem 1.1

Now we prove Theorem 1.1. Without loss of generality, we may assume that
Q = By, the unit ball in R".

We show that # is a viscosity solution of (1.1) in B;. For the sake of simplicity, we
denote u as an extended function in Bj.

Lemma 3.1. Ler [(x)=u(0)+ > i, Bixi, where By, ...,B,€R. Then there exist
sequences {z;},{Z;} = By \ {0} such that z;,Z;—0 as j— oo and

liminf Y50 =G <o (3.1)
oo |l

lim sup M}O. (3.2)
jo0 121

Proof. First we prove (3.1). To the contrary, we suppose that there exists an affine
function /(x) = u(0) + >_7_, fix; such that

u(x)>1I(x) +m|x| for xeB,\ {0}, (3.3)
for some m,p>0. Rotating the coordinate system in R"*! if necessary, we may
assume that D/(x) = 0, that is, /(x) = u(0).

We first deal with the case k <7. We fix a constant £>0 and consider the auxiliary
function w, in R"\ B, as follows:

we(x) = u(0) + Cp + Go|x|* + C3(e)fi(x), (3.4)
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where C}, C,, Cs(¢) are positive constants to be determined later, and

/\/ﬂsik /M & (3.5)

is a radially symmetric solution of (1.1) where ry >0 will be also determined later. We
write w,(x) = Ww,(|x|). The principal curvatures of w, are

2(n—k)

Wy (r) G %(ﬁ) k -3/2
N |G e A 69
(L+ (7, (r)7) 2k
r\f(f) F -l
w,(r)
kp=r =k = o 12
r(1+ (W(r)")
=26+ = A2 (3.7)
2(n—k)

2
IENG G3
A=14+ 0w (r) =14+ |2Cr+ (3.8)
2(n—k)
(B & -1
Thus, we obtain that
Hilwe] = w3 ()1 + (" )2)
1 g 2 1
K§—1A—3/2 (Z:I)C3 %gz{) K + ("2 )C3 Y
rg(r) rg(r)

+ i3 AT ()26 = My + M. (3.9)
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We claim that M is positive if C3> 1. Indeed,

2(n—k)
k— — n—1 r
M, _f 4 3/2( k )C3 (5) k +4
rg(r) g(r)?
K142 nll) 2(”1;1‘)

rg(r

(
)
B k1A 3/(2(; e C:(r_)21>0 (3.10)

This implies that if C;>0,C3>1,

Hi[w:]=206>0 1in 2e<|x|<p, (3.11)
where 0 is a positive constant depending only on ¢, Cy, Cs, p, k,n. One can easily
check that k = (ky, ..., x,) €k, i.e., w, is k-admissible.

Next we choose constants ry, C;, Co, C; which have not determined yet. First, we
fix C;>0. Second, we choose rye (0, p) so small that

cz\x|2<%x| in B,,, (3.12)

and we set C; =% ry. From now on, we may assume that ¢ <. Finally, we take the
constant C so that

Cf.(y) = —mry for |y| = 2¢, (3.13)

and we set C; = max{C, 1}. We find that a direct calculation implies

O(e7h) if k<%,
W= . (3.14)
O((elogl/e)™) if k=%
for sufficiently small e.
Then, we obtain that
we <u(0) +4ro +4ro<u(0) +mro<u on 0By, (3.15)
and that
m m
we <u(0) + —ro + —r9g — mro<u(0)<u on OBy,. (3.16)

4 4
From (3.11), (3.15), (3.16) and the comparison principle Theorem 2.1, we obtain

w.<u in B, \ Ba. (3.17)
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Now we fix xe By, \ {0}, it follows that

m

u(x)=wy(x)=u(0) + y) ro + Cife(x). (3.18)
One can compute that
n 22 n
o(d ) (7 - Z—k) if <z,
o= { OEN(E ) s (3.19)
O(e) logro/| x| if k=1,

for sufficiently small &. Thus we obtain from (3.14) and (3.19),

lim iélf Cs fi(x) = 0. (3.20)
As ¢ tends to 0 in (3.18), we conclude from (3.20) that

ro, (3.21)

which contradicts the continuity of u at 0.
Next we consider the case k>3%. For that case, we claim that

u(x)=u(0) + C|x|2_% for xeB,\ {0}, (3.22)

for some positive constant C. To prove this claim, we introduce the auxiliary
function g, of the form

i 3
0(0) = u(0) +mp+ ) [ (3.23)

where C’(¢) is some positive constant. By the same manner with the above
discussion, one can see that g, is k-admissible and that Hy[g.] >0 holds for some
positive constant § depending only on ¢, C',p,k,n, provided C'>1. Now we
determine the constant C’ by

P ds
o
2¢ 2(n—k) e
) F -1

We remark that C'>1 for sufficiently small ¢ since C'(¢) = O(sl_%). Thus we
obtain that g.<u on 0B, 0B, from an argument similar to (3.15) and (3.16).

From the comparison principle it follows that g, <u in B, \ By,. For fixed xe B, \ {0}

(3.24)
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we obtain that

S

s
2(n—k) '
O F -

From now on the symbol C denotes a positive constant depending only on n and k.
Since it holds that

u(x)=g.(x) = u(0) + /2|X| (3.25)

-1

' P ds p nk;k
C = - >Cm|*= , 3.26
e /26 2(n—k) m(s) (3.26)
(g) |
&
and that
Il d. n—k n
/ & ST xR, (3.27)
2¢ 2(n—k)
yor -
for sufficiently small ¢ (say, e<|x|/2), it follows that
n—k
u(x)=u(0) + CmpT\x|2_%7 (3.28)

for sufficiently small ¢. Therefore our claim has proved.
Now we introduce another auxiliary function w, as follows:

ds
Ver-t

where C), Cy, C3(¢),rg are positive constants to be determined later, and we fix a
constant y such that

I
we(x) = u(0) + Cy + Go|x|" + Cs(e) / (3.29)

n

2’/{

<y<l. (3.30)

We get that the principal curvatures of w, are

2
C r
k= | Cy - 1)%27%3 A2, (3.31)
2
ry/ (6 -1
K= =ky= [ Copr' P+ & A7V (3.32)
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where r = |x| and
C
A=1+|Cpr'+——=_| . (3.33)

Therefore, we deduce that

, —k
] =t a (U A - )

. G (n—k ©’
ka3 ( - A—( o (3.34)

(0
(-1

M=y — (2 - g) >0 (from (3.30)) (3.35)

We define My =54+ (y— 1) and M, =254 — . Then we see that

M2>n;k<l+cgrz(~,1)+ -C3 >( :

L OGP0 — -] +1H(G -1 - Gr0TY)

>0, (3.36)

assuming that r< Ry for sufficiently small Rye (0, p) depending only on C»,7,k,n,
and that C3>1+ Co"~!. Under these assumptions, it follows that w, is a k-
admissible function satisfying

Hi[w:]=206>0 1in 2e<|x|<Ro (3.37)

for some positive constant 9.
We take constants rg, C;, Ca, C3. We fix C; >0. From (3.30) we can take ro e (0, Ry)
such that

, C n
C2|x|'<2|x|2_k in B, (3.38)
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~ . . . . 522
where C'is a constant in the previous claim, and we set C| = %’0 k. Then we take Cy
so that

To .o
03/ B e (3.39)
2

From (3.14), C3 = O(((0 log 1/8)_1)7 so that if re (2e,79), C3>1+ Cpr’~! holds for

small ¢. Since it holds that w, <u on 0B,, U0B,;, which we can prove as (3.15) and
(3.16), we find that w,<u in B,,\ By, from the comparison principle.

We repeat an argument similar to (3.19), (3.20), (3.21). Fixing xe B, \ {0} and
taking é— 0, we obtain that

Carn
u(x)=u(0) + C; = u(0) + 77 k. (3.40)

This is contradictory to the continuity of u. The proof that there exists a sequence
{z;} satisfying (3.1) is complete.

It remains to show that there exists a sequence {Z;} such that (3.2) holds. But we
can prove it similarly. For example, in the case of k<%, we use the auxiliary function

of the form
|x| ds
e AN e / S
ro 2(n—k)
() * -1

and Proposition 2.2 as the comparison principle instead of Theorem 2.1. Then we
can see that x[w;| ¢ I’y and w, >u on OB, U 0By, which implies that w, >u in B,, \ Ba,
from Proposition 2.2. We omit its proof. [

we(x) = u(0) (3.41)

We proceed to prove Theorem 1.1. To show that u is a viscosity subsolution of
(1.1) in By, we need to prove that

H[P]>0 (3.42)

for any k-admissible quadratic polynomial P satisfying u(0) = P(0) and u<P in B,,
for some ry>0 (we say that P touches u at 0 from above). First we fix 6 >0 and set
Ps(x) = P(x)+ §|x\2. Then Ps(x) satisfies the following properties:

Ps(0) =u(0), Ps>u in B, \{0}. (3.43)
Next there exists ¢ = ¢(d) >0 such that Ps,(x) = Ps(x) —e(x; + --- + x,,) satisfies

P;5:(0) =u(0), u<P;s; on 0B,. (3.44)
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We notice that ¢(0)—>0 as d—0. Now we apply Lemma 3.1 for /(x)=
{DPs(0),x» + Ps(0). Passing to a subsequence if necessary, there exists a sequence
{z;}, zi—0 as j— oo such that all coordinates of every z; are non-negative, and

u(z;) — Pso(z;)>0 (3.45)

for any sufficiently large j. Thus from (3.44) there exists a point x°€ B, \ {0} such
that

u(x’) — Ps.(x*) = max (u— Ps,)>0. (3.46)

0
We introduce the polynomial
Os.:(x) = Pso(x) + u(x®) — Pso(x°). (3.47)

From (3.44), (3.46), we see that Qs touches u at x*#0 from above. Since u is a
subsolution of (1.1) in B;\ {0}, we deduce that

b
0< H[Q] = Hy P+§|x|2 —e(x1+ - +x0) ] (3.48)

Finally, as 6 >0, we conclude that (3.42) holds.
It can be proved by analogous arguments that u is a supersolution of (1.1) in Bj.
This completes the proof of Theorem 1.1.

4. Isolated singularities of generalized solutions

For a large class of elliptic PDEs, there are various notions of solutions in a
generalized sense, such as weak solutions for quasilinear equations, distributional
solutions for semilinear equations, and wviscosity solutions for fully non-linear
equations. Weak solutions and distributional solutions have an integral nature, and
this makes it difficult to define such concepts of solutions for fully non-linear PDEs.
However, for some special types of fully non-linear PDEs, one can introduce an
appropriate notion of “solutions” that have an integral nature. For example, for
Monge-Ampeére type equations, the notion of generalized solutions was introduced
and their properties have been studied intensively by Aleksandrov, Pogorelov,
Bakel’'man, Cheng and Yau, and others. For details, see [1,8]. Recently, Colesanti
and Salani [9] considered generalized solutions in the case of Hessian equations (see
also [26-28]). For the curvature equations, Takimoto [24] introduced the notion of
generalized solutions which form a wider class than viscosity solutions under the
convexity assumptions. Hence, it is natural to ask if the removability of singularities
also holds in the framework of generalized solutions to (1.1).

First we define generalized solutions of (1.1). We assume that Q is an open, convex
and bounded subset of R" and we look for solutions in the class of convex and
(uniformly) Lipschitz functions defined on Q. For a point xe Q, let Nor(u; x) be the



288 K. Takimoto | J. Differential Equations 197 (2004) 275-292

set of downward normal unit vectors to u at (x, u(x)). For a non-negative number p
and a Borel subset n of Q, we set

Qp(u;n) = {zeR" |z = x+pv, xen, vey,(x)}, (4.1)

where y,(x) is a subset of R" defined by
v,(x) ={(ar, ...,an) | (ai, ..., @y, ayy1) € Nor (u; x) }. (4.2)

The following theorem, which the author has proved in [24], plays a key role in the
definition of generalized solutions.

Theorem 4.1. Let Q be an open convex bounded set in R", and let u be a convex and
Lipschitz function defined on Q. Then the following hold.

(i) For every Borel subset n of Q and for every p=0, the set Q,(u;n) is Lebesgue
measurable.

(ii) There exist n+ 1 non-negative, finite Borel measures oo(u;-), ..., a,(u;-) such
that
" (n
L(Qp(u;m)) = Z(m)am(u;n)p”’ (4.3)
m=0

for every p=0 and for every Borel subset n of Q, where L" denotes the Lebesgue n-
dimensional measure.

One can prove that if u is a C*(Q) function, the Radon-Nikodym deriva-
tive of (})ox(u;-) is Hi[u] (see [24, Proposition 2.1]). Therefore, we can say
that for k = 0, ..., n, the measure (})ox(u;-) generalizes the integral of the function
Hk[u]

We state the definition of a generalized solution of curvature equations.

Definition 4.2. Let Q be an open convex bounded set in R" and let v be a non-
negative, finite Borel measure in Q. A convex and Lipschitz function ue C%!(Q) is
said to be a generalized solution of

Hiul=v in Q, (4.4)
if it holds that
(3 Joetusn =vtn @5)

for every Borel subset # of Q.
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There is a notion of generalized solutions to the Gauss curvature equations which
correspond to the case of k = n in (4.4), since they are in a class of Monge—Ampeére
type. As far as the Gauss curvature equation, namely,

det(D*u)

sk (4.6)
(1+|Dul”) 2

is concerned, the definition of generalized solutions introduced by Aleksandrov and

others coincides with the one stated above.

One can show that if v = /(x) dx for a positive continuous function i, a convex
viscosity solution of Hi[u] = is a generalized solution of Hj[u] =v. Thus, the
notion of generalized solutions is weaker (hence wider) than that of viscosity
solutions under the convexity assumptions.

We show that the removability of isolated singularities also holds for generalized
solutions of (1.1) for 1 <k<n — 1. The technique to prove this result is different from
what we have used in the proof of Theorem 1.1. It relies heavily on convexity and the
integral nature of generalized solutions.

Theorem 4.3. Let Q be a convex domain in R" containing the origin. Let 1<k<n —1
and u be a continuous function in Q\ {0}. We assume that for any convex subdomain
Q' =0\ {0}, u is a convex function in Q' and a generalized solution of Hylu] = 0 in '
Then u can be defined at the origin as a generalized solution of Hylu] =0 in Q.

Proof. Since u is locally convex in Q\ {0}, one can easily see that u can be defined at
0 continuously and the extended function is convex and Lipschitz in Q. (This
assertion is also stated in [21, Lemma 2].) We denote it by the same symbol u. We
may assume that Q@ = B). Hence Theorem 4.1 implies that there exists a constant
C=0 such that in the generalized sense Hy[u] = Cd in B, /,, where 0 is Dirac delta
measure at 0. That is,

(Z) or(u; By) = C (4.7)

for arbitrary re(0,1/2).
We deduce from (4.3) and (4.7) that

y(r + p)n = L"(Qp(u; B,))

=3 ( 1 Yot B

m=0

> (Z)ok(u; Bt = Cp*. (4.8)
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The first inequality in (4.8) is due to the fact that Q,(u; B,) = B,,, since taking any
z€ Q,(u; B,), we obtain

|zl = |x + pv|<|x[ + plv|<r+p (4.9)
for some xe B,, vey,(x). Taking r—0 in (4.8), we obtain that
wp" = CpF. (4.10)

Since (4.10) holds for arbitrary p >0, C must be 0. Therefore, we have proved that
Hy[u] = 0 in the entire ball B),, so that the origin is removable. [

Remark 4.1. (1) In Theorem 4.3, the inhomogeneous term 0 can be replaced by a
measurable function f which is non-negative and belongs to L'(Q).

(2) We can extend the function space to which u belongs in the theorems and
definition of this section to the space of semiconvex functions (see [24]).

As we have seen in Section 1, Theorem 4.3 does not hold for kX = n. One has
generalized solutions of (4.4), where the inhomogeneous term v is a Dirac delta
measure. One may consider the existence and uniqueness of generalized solutions to
the Dirichlet problem for (4.4) in a bounded convex domain when v is a Borel
measure. Many mathematicians have discussed this problem. For details, see [1].
However, there are few results about the solvability of the Dirichlet problem in the
generalized sense for the case of 1<k<n —1 at present.

5. Final remarks

We conjecture that isolated singularities of (1.1) are always removable without any
assumptions on the behaviour of the solution near the singularities. Our next goal is
to remove the continuity assumption on u in Theorem 1.1. It is also interesting to
study the removability of a singular set whose o-dimensional Hausdorff measure is
zero for some o> 0.

We would also like to know appropriate conditions on v in (4.4) under which one
can get the solvability of generalized solutions to the Dirichlet problem for the
curvature equations (4.4). (For example, for k£ = n, one of such conditions is that
v(Q)<w,.) We think that this question is closely related to the above problem of
removability of singular sets.
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