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Abstract

We consider the removability of isolated singularities for the curvature equations of the

form Hk½u� ¼ 0; which is determined by the kth elementary symmetric function, in an n-

dimensional domain. We prove that, for 1pkpn � 1; isolated singularities of any viscosity

solutions to the curvature equations are always removable, provided the solution can be

extended continuously at the singularities. We also consider the class of ‘‘generalized

solutions’’ and prove the removability of isolated singularities.
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1. Introduction

We study the removability of the isolated singularity of solutions to the curvature
equations of the form

Hk½u� ¼ Skðk1;y; knÞ ¼ 0 ð1:1Þ

in O \ f0g; where O is a bounded domain in Rn and 0AO: For a function uAC2ðOÞ;
k ¼ ðk1;y; knÞ denotes the principal curvatures of the graph of the function u;
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namely, the eigenvalues of the matrix

C ¼ D
Duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jDuj2
q

0
B@

1
CA ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jDuj2
q I � Du#Du

1þ jDuj2

 !
D2u; ð1:2Þ

and Sk; k ¼ 1;y; n; denotes the kth elementary symmetric function, that is,

SkðkÞ ¼
X

ki1?kik ; ð1:3Þ

where the sum is taken over increasing k-tuples, i1;y; ikCf1;y; ng: The mean,
scalar and Gauss curvatures correspond, respectively, to the special cases k ¼ 1; 2; n

in (1.3).
In this paper, except for the last two sections, we consider the class of viscosity

solutions to (1.1), which are solutions in a certain weak sense. In many non-linear
partial differential equations, the viscosity framework allows us to obtain existence
and uniqueness results under rather mild hypotheses.
We establish results concerning the removability of isolated singularities of a

viscosity solution to (1.1). Here is our main theorem.

Theorem 1.1. Let O be a bounded domain in Rn containing the origin. Let 1pkpn � 1
and u be a viscosity solution of (1.1). We assume that u can be extended to the

continuous function ũAC0ðOÞ: Then ũ is a viscosity solution of Hk½ũ� ¼ 0 in O:
Consequently, ũAC0;1ðOÞ:

The last part of Theorem 1.1 is a consequence of [25]. Note that one cannot expect
much better regularity for a viscosity solution in general. In fact, let kX2 and A be a

positive constant. uðxÞ ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
1 þ?þ x2

k�1

q
(x ¼ ðx1;y; xnÞ) satisfies Hk½u� ¼ 0 in

the viscosity sense, but is only Lipschitz continuous. Moreover, Urbas [29] proved
that for any positive continuous function c; there exist an e40 and a viscosity

solution of Hk½u� ¼ c in Be ¼ fjxjoeg which does not belong to C1;aðBeÞ for any
a41� 2

k
:

For the case of k ¼ 1; which corresponds to the minimal surface equation in (1.1),
such removability result was proved by Bers [2], Nitsche [20], and De Giorgi and
Stampacchia [13]. Serrin [22,23] studied the same problem for a more general class of
quasilinear equations of mean curvature type. He proved that any weak solution u

of the mean curvature type equation in O \ K can be extended to weak solution in O
if the singular set K is a compact set of vanishing ðn � 1Þ-dimensional Hausdorff
measure. For various semilinear and quasilinear equations, such problems were
extensively studied. See [4,5,30] and references therein.
Here we remark that (1.1) is a quasilinear equation for k ¼ 1 while it is a fully non-

linear equation for kX2: It is much harder to study the fully non-linear equations’
case. For Monge–Ampère equations’ case, there are some results about the
removability of isolated singularities (see, for example, [3,14,21]). But, to the best
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of our knowledge, no results are known for other types of fully non-linear elliptic
PDEs except for the recent work of Labutin [16,17] (for the case of uniformly elliptic
equations) [18] (for the case of Hessian equations). Therefore our main result,
Theorem 1.1, is new for 2pkpn � 1:
In the results of Bers, Serrin and others, no restrictions are imposed on the

behaviour of solutions near the singularity. Therefore our result is weaker than theirs
for the case of k ¼ 1; but that is because their arguments rely on the quasilinear
nature of the equation.
There is a standard notion of weak solutions to (1.1) for the case of k ¼ 1; but it

does not make sense for kX2: Hence, when we study the removability of isolated
singularities, we consider the problem in the framework of the theory of viscosity
solutions. In this framework, comparison principles play important roles. Our idea
of the proof of Theorem 1.1 is adapted from that of Labutin [16], except that we have
to deal with the extra difficulty coming from the non-uniform ellipticity of the
equations.
We note that the case k ¼ n; which corresponds to the Gauss curvature case, is

excluded from Theorem 1.1. There exist solutions of (1.1) with non-removable
singularities at 0: It is easily checked that a function

uðxÞ ¼ aðjxj � 1Þ; xAO ¼ B1 ¼ fjxjo1g; ð1:4Þ

where a40; satisfies Eq. (1.1) with k ¼ n: However, u does not satisfy Hn½u� ¼ 0 in
B1 in the viscosity sense. In fact, it follows that

Hn½u� ¼
affiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
p
� n

ond0 ð1:5Þ

in the generalized sense, where on denotes the volume of the unit ball in Rn; and d0 is
the Dirac measure at 0. Accordingly there is a considerable difference between the
cases 1pkpn � 1 and k ¼ n:
We also consider the removability of isolated singularities of the generalized

solutions to (1.1), the notion of which was introduced by Takimoto [24]. Note that
this is a weaker notion of solutions than viscosity solutions. We prove that for

1pkpn � 1; if uAC0ðO \ f0gÞ is a generalized solution of Hk½u� ¼ 0 in any convex
domain which is contained in O \ f0g; then u can be extended to a generalized
solution of Hk½u� ¼ 0 in O: The technique to prove this assertion is completely
different from that in the proof of Theorem 1.1.
This paper is organized as follows. In the following section, we describe basic

properties of viscosity solutions. In addition to the standard comparison principle
that is found, e.g. in [25], we present another form of the comparison principle
(Proposition 2.2). Both of them are important materials for the next section. In
Section 3, we prove Theorem 1.1. In Section 4, we discuss the removability of
solutions in the class of generalized solutions as mentioned above. Finally, in Section
5, we state remarks on some conjectures and other open problems.

ARTICLE IN PRESS
K. Takimoto / J. Differential Equations 197 (2004) 275–292 277



2. The notion of viscosity solutions

In this section, we define the notion of viscosity solutions of the equation

Hk½u� ¼ cðxÞ in O; ð2:1Þ

where O is an arbitrary domain in Rn and cAC0ðOÞ is a non-negative function.
The theory of viscosity solutions to the first-order equations and the second
order ones was developed in the 1980s by Crandall, Evans, Ishii, Lions and others.
See, for example, [10–12,19]. For the curvature equations of the form (2.1),
Trudinger [25] established existence theorems for Lipschitz solutions in the viscosity
sense.
Let O be a domain in Rn: First, we define the admissible set of elementary

symmetric function Sk by

Gk ¼fkARn j Skðkþ ZÞXSkðkÞ for all ZiX0g

¼fkARn j SjðkÞX0; j ¼ 1;y; kg: ð2:2Þ

We say that a function uAC2ðOÞ is k-admissible for the operator Hk if k ¼
ðk1;y; knÞ belongs to Gk for every point xAO: Except for the case k ¼ 1; Eq. (2.1) is

not elliptic on all functions uAC2ðOÞ; but Caffarelli et al. [6,7] have shown that (2.1)
is degenerate elliptic for k-admissible functions. Obviously,

G1*G2*?*Gn ¼ Gþ ¼ fkARn j kiX0; i ¼ 1;y; ng; ð2:3Þ

and alternative characterizations of Gk are also known (see [15]).

We define a viscosity solution of (2.1). A function uAC0ðOÞ is said to be a viscosity

subsolution (resp. viscosity supersolution) of (2.1) if for any k-admissible function

jAC2ðOÞ and any point x0AO which is a maximum (resp. minimum) point of u � j;
we have

Hk½j�ðx0ÞXcðx0Þ ðresp:pcðx0ÞÞ: ð2:4Þ

A function u is said to be a viscosity solution of (2.1) if it is both a viscosity
subsolution and supersolution. We note that the notion of viscosity subsolution does

not change if all C2ðOÞ functions are allowed as comparison functions j: One can
prove that a function uAC2ðOÞ is a viscosity solution of (2.1) if and only if it is a k-
admissible classical solution.
The following theorem is a comparison principle for viscosity solutions of (2.1).

Theorem 2.1. Let O be a bounded domain. Let c be a non-negative continuous function

in %O and u; v be C0ð %OÞ functions satisfying Hk½u�Xcþ d; Hk½v�pc in O in the viscosity
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sense, for some positive constant d: Then

sup
O

ðu � vÞpmax
@O

ðu � vÞþ: ð2:5Þ

The proof of this theorem is given in [25]. In this paper we use another type of
comparison principle as follows.

Proposition 2.2. Let O be a bounded domain. Let c be a non-negative continuous

function in %O; uAC0ð %OÞ be a viscosity subsolution of Hk½u� ¼ c; and vAC2ð %OÞ
satisfying

k½vðxÞ�eflAGk j SkðlÞXcðxÞg ð2:6Þ

for all xAO; where k½vðxÞ� denotes the principal curvatures of v at x: Then (2.5) holds.

Proof. We assume (2.5) does not hold. Then there exists a point xAO such that

sup
O

ðu � vÞ ¼ uðxÞ � vðxÞ: ð2:7Þ

Since u is a viscosity subsolution of Hk½u� ¼ c; it follows that Hk½v�ðxÞXcðxÞ: From
(2.6) we have k½vðxÞ�eGk: For simplicity, we write k ¼ ðk1;y; knÞ instead of k½vðxÞ�:
Thus, it follows that there exists iAf1;y; ng such that Sk�1;iðkÞo0; where

Sk�1;iðkÞ ¼ @SkðkÞ
@ki

(for, if SkðkÞX0 and Sk�1;iðkÞX0 for all iAf1;y; ng; we get that
Skðkþ ZÞXSkðkÞ for all ZiX0; which implies kASk:). Without loss of generality, we
may suppose i ¼ 1:
Then, we see that for KAR

Skðk1 þ K; k2;y;knÞ ¼ SkðkÞ þ KSk�1;1ðkÞ: ð2:8Þ

Thus if we assume

K4
SkðkÞ

�Sk�1;1ðkÞ
ðfg40Þ; ð2:9Þ

it holds that Skðk1 þ K ; k2;y; knÞo0: We fix a constant K satisfying (2.9).
We denote

X ¼ I � DvðxÞ#DvðxÞ
1þ jDvðxÞj2

 !1=2

: ð2:10Þ

Rotating the coordinate in Rn; we may suppose

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jDvðxÞj2

q X ðD2vðxÞÞX ¼ diag ðk1;y; knÞ: ð2:11Þ
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We find the quadratic polynomial V which satisfies VðxÞ ¼ 0; DVðxÞ ¼ 0 and

D2V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jDvðxÞj2

q
X�1 diagðK ; 0;y; 0ÞX�1: ð2:12Þ

Since VX0 in O and VðxÞ ¼ 0; u � ðv þ VÞ attains a maximum value at x:
Moreover, from a simple calculation, we get that the principal curvatures of v þ V at
x are k1 þ K ; k2;y; kn: Hence

Hk½v þ V �ðxÞ ¼ Skðk1 þ K ; k2;y; knÞo0pcðxÞ: ð2:13Þ

This cannot hold since u satisfies Hk½u�Xc in the viscosity sense. Therefore, we
obtained the required inequality (2.5). &

3. Proof of Theorem 1.1

Now we prove Theorem 1.1. Without loss of generality, we may assume that
O ¼ B1; the unit ball in Rn:
We show that ũ is a viscosity solution of (1.1) in B1: For the sake of simplicity, we

denote u as an extended function in B1:

Lemma 3.1. Let lðxÞ ¼ uð0Þ þ
Pn

i¼1 bixi; where b1;y; bnAR: Then there exist

sequences fzjg; f *zjgCB1 \ f0g such that zj ; *zj-0 as j-N and

lim inf
j-N

uðzjÞ � lðzjÞ
jzjj

p0; ð3:1Þ

lim sup
j-N

uð *zjÞ � lð *zjÞ
j *zjj

X0: ð3:2Þ

Proof. First we prove (3.1). To the contrary, we suppose that there exists an affine

function lðxÞ ¼ uð0Þ þ
Pn

i¼1 bixi such that

uðxÞ4lðxÞ þ mjxj for xABr \ f0g; ð3:3Þ

for some m; r40: Rotating the coordinate system in Rnþ1 if necessary, we may
assume that DlðxÞ ¼ 0; that is, lðxÞ  uð0Þ:
We first deal with the case kpn

2
: We fix a constant e40 and consider the auxiliary

function we in Rn
\ Be as follows:

weðxÞ ¼ uð0Þ þ C1 þ C2jxj2 þ C3ðeÞfeðxÞ; ð3:4Þ
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where C1;C2;C3ðeÞ are positive constants to be determined later, and

feðxÞ ¼
Z jxj

r0

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
e

� �2ðn�kÞ
k �1

r ¼:

Z jxj

r0

ds

gðsÞ ð3:5Þ

is a radially symmetric solution of (1.1) where r040 will be also determined later. We
write weðxÞ ¼ w̃eðjxjÞ: The principal curvatures of we are

k1 ¼
w̃00
e ðrÞ

ð1þ ðw̃0
eðrÞÞ

2Þ3=2
¼ 2C2 �

C3
n�k

k
r
e

� �2ðn�kÞ
k

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
e

� �2ðn�kÞ
k �1

r 3

0
BBB@

1
CCCAA�3=2; ð3:6Þ

k2 ¼ ? ¼ kn ¼ w̃0
eðrÞ

rð1þ ðw̃0
eðrÞÞ

2Þ1=2

¼ 2C2 þ
C3

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

e

� �2ðn�kÞ
k �1

s
0
BBBB@

1
CCCCAA�1=2; ð3:7Þ

where r ¼ jxj and A is defined by

A ¼ 1þ ðw̃0
eðrÞÞ

2 ¼ 1þ 2C2r þ
C3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
e

� �2ðn�kÞ
k �1

r
0
BB@

1
CCA

2

: ð3:8Þ

Thus, we obtain that

Hk½we� ¼ kk�1
2

n�1
k�1
� �

k1 þ n�1
k

� �
k2

� �

Xkk�1
2 A�3=2 �

n�1
k�1
� �

C3
n�k

k
r
e

� �2ðn�kÞ
k

rgðrÞ3
þ

n�1
k

� �
C3

rgðrÞ

 !
A

0
B@

1
CA

þ kk�1
2 A�3=2 n

k

� �
2C2 ¼: M1 þ M2: ð3:9Þ
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We claim that M1 is positive if C341: Indeed,

M1 ¼
kk�1
2 A�3=2 n�1

k

� �
C3

rgðrÞ �
r
e

� �2ðn�kÞ
k

gðrÞ2
þ A

0
B@

1
CA

X
kk�1
2 A�3=2 n�1

k

� �
C3

rgðrÞ �
r
eð Þ
2ðn�kÞ

k

gðrÞ2 þ 1þ C3

gðrÞ

� �2� 0
@

1
A

¼
kk�1
2 A�3=2 n�1

k

� �
C3

rgðrÞ
C2
3 � 1

gðrÞ2
40: ð3:10Þ

This implies that if C240;C341;

Hk½we�Xd40 in 2eojxjor; ð3:11Þ

where d is a positive constant depending only on e;C2;C3; r; k; n: One can easily
check that k ¼ ðk1;y; knÞAGk; i.e., we is k-admissible.
Next we choose constants r0;C1;C2;C3 which have not determined yet. First, we

fix C240: Second, we choose r0Að0; rÞ so small that

C2jxj2p
m

4
jxj in Br0 ; ð3:12Þ

and we set C1 ¼ m
4

r0: From now on, we may assume that eor0
2
: Finally, we take the

constant C so that

CfeðyÞ ¼ �mr0 for jyj ¼ 2e; ð3:13Þ

and we set C3 ¼ maxfC; 1g: We find that a direct calculation implies

C3 ¼
Oðe�1Þ if kon

2
;

Oððe log 1=eÞ�1Þ if k ¼ n
2
;

(
ð3:14Þ

for sufficiently small e:
Then, we obtain that

wepuð0Þ þ m
4
r0 þ m

4
r0ouð0Þ þ mr0ou on @Br0 ; ð3:15Þ

and that

wepuð0Þ þ m

4
r0 þ

m

4
r0 � mr0ouð0Þou on @B2e: ð3:16Þ

From (3.11), (3.15), (3.16) and the comparison principle Theorem 2.1, we obtain

wepu in Br0 \ B2e: ð3:17Þ
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Now we fix xABr0 \ f0g; it follows that

uðxÞXweðxÞXuð0Þ þ m

4
r0 þ C3feðxÞ: ð3:18Þ

One can compute that

jfeðxÞj ¼
O e

n
k
�1

� �
r
2�n

k
0 � jxj2�

n
k

� 
if kon

2
;

OðeÞ log r0=jxj if k ¼ n
2
;

8<
: ð3:19Þ

for sufficiently small e: Thus we obtain from (3.14) and (3.19),

lim inf
e-0

C3 feðxÞ ¼ 0: ð3:20Þ

As e tends to 0 in (3.18), we conclude from (3.20) that

uðxÞXuð0Þ þ m

4
r0; ð3:21Þ

which contradicts the continuity of u at 0.
Next we consider the case k4n

2
: For that case, we claim that

uðxÞXuð0Þ þ C̃jxj2�
n
k for xABr \ f0g; ð3:22Þ

for some positive constant C̃: To prove this claim, we introduce the auxiliary
function ge of the form

geðxÞ ¼ uð0Þ þ mrþ C0ðeÞ
Z jxj

r

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
e

� �2ðn�kÞ
k �1

r ; ð3:23Þ

where C0ðeÞ is some positive constant. By the same manner with the above
discussion, one can see that ge is k-admissible and that Hk½ge�Xd holds for some
positive constant d depending only on e;C0; r; k; n; provided C041: Now we
determine the constant C0 by

C0
Z r

2e

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
e

� �2ðn�kÞ
k �1

r ¼ mr: ð3:24Þ

We remark that C041 for sufficiently small e since C0ðeÞ ¼ Oðe1�
n
kÞ: Thus we

obtain that geou on @Br,@B2e from an argument similar to (3.15) and (3.16).

From the comparison principle it follows that gepu in Br \ B2e: For fixed xABr \ f0g
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we obtain that

uðxÞXgeðxÞ ¼ uð0Þ þ C0
Z jxj

2e

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
e

� �2ðn�kÞ
k �1

r : ð3:25Þ

From now on the symbol C denotes a positive constant depending only on n and k:
Since it holds that

C0 ¼ mr
Z r

2e

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
e

� �2ðn�kÞ
k �1

r
0
BB@

1
CCA

�1

XCm
r
e

� �n�k
k
; ð3:26Þ

and that Z jxj

2e

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
e

� �2ðn�kÞ
k �1

r XCe
n�k

k jxj2�
n
k; ð3:27Þ

for sufficiently small e (say, eojxj=2), it follows that

uðxÞXuð0Þ þ Cmr
n�k

k jxj2�
n
k; ð3:28Þ

for sufficiently small e: Therefore our claim has proved.
Now we introduce another auxiliary function we as follows:

weðxÞ ¼ uð0Þ þ C1 þ C2jxjg þ C3ðeÞ
Z jxj

r0

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
e

� �2�1q ; ð3:29Þ

where C1;C2;C3ðeÞ; r0 are positive constants to be determined later, and we fix a
constant g such that

2� n

k
ogo1: ð3:30Þ

We get that the principal curvatures of we are

k1 ¼ C2gðg� 1Þrg�2 �
C3

r
e

� �2
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
e

� �2�1q 3

0
B@

1
CAA�3=2; ð3:31Þ

k2 ¼ ? ¼ kn ¼ C2grg�2 þ C3

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
e

� �2�1q
0
B@

1
CAA�1=2: ð3:32Þ
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where r ¼ jxj and

A ¼ 1þ C2grg�1 þ C3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
e

� �2�1q
0
B@

1
CA

2

: ð3:33Þ

Therefore, we deduce that

Hk½we� ¼ kk�1
2 A�3=2grg�2

n � k

k
A þ ðg� 1Þ

� 

þ kk�1
2 A�3=2 C3

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
e

� �2�1q n � k

k
A �

r
e

� �2
r
e

� �2�1
 !

ð3:34Þ

We define M1 ¼ n�k
k

A þ ðg� 1Þ and M2 ¼ n�k
k

A �
r
e

� �2
r
e

� �2�1: Then we see that

M1Xg� 2� n

k

� �
40 ðfrom ð3:30ÞÞ ð3:35Þ

M2X
n � k

k
1þ C2

2r2ðg�1Þ þ C3

r
e

� �2�1
 !

�
r
e

� �2
r
e

� �2�1
X

r
e

� �2
C2
2g

2r2ðg�1Þ � ð2� n
k
Þ

� �
þ n�k

k
C2
3 � 1� C2

2r2ðg�1Þ
� �

ðr
eÞ
2 � 1

4 0; ð3:36Þ

assuming that roR0 for sufficiently small R0Að0; rÞ depending only on C2; g; k; n;

and that C341þ C2r
g�1: Under these assumptions, it follows that we is a k-

admissible function satisfying

Hk½we�Xd40 in 2eojxjoR0 ð3:37Þ

for some positive constant d:
We take constants r0;C1;C2;C3:We fix C240: From (3.30) we can take r0Að0;R0Þ

such that

C2jxjgp
C̃

4
jxj2�

n
k in Br0 ; ð3:38Þ
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where C̃ is a constant in the previous claim, and we set C1 ¼ C̃
4
r
2�n

k
0 : Then we take C3

so that

C3

Z r0

2e

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
e

� �2�1q ¼ C̃r
2�n

k
0 : ð3:39Þ

From (3.14), C3 ¼ O ðe log 1=eÞ�1
� �

; so that if rAð2e; r0Þ; C341þ C2r
g�1 holds for

small e: Since it holds that weou on @Br0,@B2e; which we can prove as (3.15) and

(3.16), we find that wepu in Br0 \ B2e from the comparison principle.

We repeat an argument similar to (3.19), (3.20), (3.21). Fixing xABr0 \ f0g and
taking e-0; we obtain that

uðxÞXuð0Þ þ C1 ¼ uð0Þ þ C̃

4
r
2�n

k
0 : ð3:40Þ

This is contradictory to the continuity of u: The proof that there exists a sequence
fzjg satisfying (3.1) is complete.

It remains to show that there exists a sequence f *zjg such that (3.2) holds. But we

can prove it similarly. For example, in the case of kpn
2
; we use the auxiliary function

of the form

weðxÞ ¼ uð0Þ � C1 � C2jxj2 � C3

Z jxj

r0

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
e

� �2ðn�kÞ
k �1

r ; ð3:41Þ

and Proposition 2.2 as the comparison principle instead of Theorem 2.1. Then we

can see that k½we�eGk and weXu on @Br0,@B2e; which implies that weXu in Br0 \ B2e

from Proposition 2.2. We omit its proof. &

We proceed to prove Theorem 1.1. To show that u is a viscosity subsolution of
(1.1) in B1; we need to prove that

Hk½P�X0 ð3:42Þ

for any k-admissible quadratic polynomial P satisfying uð0Þ ¼ Pð0Þ and upP in Br0

for some r040 (we say that P touches u at 0 from above). First we fix d40 and set

PdðxÞ ¼ PðxÞ þ d
2
jxj2: Then PdðxÞ satisfies the following properties:

Pdð0Þ ¼ uð0Þ; Pd4u in Br0 \ f0g: ð3:43Þ

Next there exists e ¼ eðdÞ40 such that Pd;eðxÞ ¼ PdðxÞ � eðx1 þ?þ xnÞ satisfies

Pd;eð0Þ ¼ uð0Þ; uoPd;e on @Br0 : ð3:44Þ

ARTICLE IN PRESS
K. Takimoto / J. Differential Equations 197 (2004) 275–292286



We notice that eðdÞ-0 as d-0: Now we apply Lemma 3.1 for lðxÞ ¼
/DPdð0Þ; xSþ Pdð0Þ: Passing to a subsequence if necessary, there exists a sequence
fzjg; zj-0 as j-N such that all coordinates of every zj are non-negative, and

uðzjÞ � Pd;eðzjÞ40 ð3:45Þ

for any sufficiently large j: Thus from (3.44) there exists a point xeABr0 \ f0g such

that

uðxeÞ � Pd;eðxeÞ ¼ max
Br0

ðu � Pd;eÞ40: ð3:46Þ

We introduce the polynomial

Qd;eðxÞ ¼ Pd;eðxÞ þ uðxeÞ � Pd;eðxeÞ: ð3:47Þ

From (3.44), (3.46), we see that Qd;e touches u at xea0 from above. Since u is a

subsolution of (1.1) in B1 \ f0g; we deduce that

0pHk½Q� ¼ Hk P þ d
2
jxj2 � eðx1 þ?þ xnÞ

� �
: ð3:48Þ

Finally, as d-0; we conclude that (3.42) holds.
It can be proved by analogous arguments that u is a supersolution of (1.1) in B1:

This completes the proof of Theorem 1.1.

4. Isolated singularities of generalized solutions

For a large class of elliptic PDEs, there are various notions of solutions in a
generalized sense, such as weak solutions for quasilinear equations, distributional

solutions for semilinear equations, and viscosity solutions for fully non-linear
equations. Weak solutions and distributional solutions have an integral nature, and
this makes it difficult to define such concepts of solutions for fully non-linear PDEs.
However, for some special types of fully non-linear PDEs, one can introduce an
appropriate notion of ‘‘solutions’’ that have an integral nature. For example, for
Monge–Ampère type equations, the notion of generalized solutions was introduced
and their properties have been studied intensively by Aleksandrov, Pogorelov,
Bakel’man, Cheng and Yau, and others. For details, see [1,8]. Recently, Colesanti
and Salani [9] considered generalized solutions in the case of Hessian equations (see
also [26–28]). For the curvature equations, Takimoto [24] introduced the notion of
generalized solutions which form a wider class than viscosity solutions under the
convexity assumptions. Hence, it is natural to ask if the removability of singularities
also holds in the framework of generalized solutions to (1.1).
First we define generalized solutions of (1.1). We assume that O is an open, convex

and bounded subset of Rn and we look for solutions in the class of convex and
(uniformly) Lipschitz functions defined on O: For a point xAO; let Norðu; xÞ be the
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set of downward normal unit vectors to u at ðx; uðxÞÞ: For a non-negative number r
and a Borel subset Z of O; we set

Qrðu; ZÞ ¼ fzARn j z ¼ x þ rv; xAZ; vAguðxÞg; ð4:1Þ

where guðxÞ is a subset of Rn defined by

guðxÞ ¼ fða1;y; anÞ j ða1;y; an; anþ1ÞANorðu; xÞg: ð4:2Þ

The following theorem, which the author has proved in [24], plays a key role in the
definition of generalized solutions.

Theorem 4.1. Let O be an open convex bounded set in Rn; and let u be a convex and

Lipschitz function defined on O: Then the following hold.
(i) For every Borel subset Z of O and for every rX0; the set Qrðu; ZÞ is Lebesgue

measurable.
(ii) There exist n þ 1 non-negative, finite Borel measures s0ðu; �Þ;y; snðu; �Þ such

that

LnðQrðu; ZÞÞ ¼
Xn

m¼0

n

m

� 
smðu; ZÞrm ð4:3Þ

for every rX0 and for every Borel subset Z of O; where Ln denotes the Lebesgue n-

dimensional measure.

One can prove that if u is a C2ðOÞ function, the Radon–Nikodym deriva-
tive of ðn

k
Þskðu; �Þ is Hk½u� (see [24, Proposition 2.1]). Therefore, we can say

that for k ¼ 0;y; n; the measure ðn
k
Þskðu; �Þ generalizes the integral of the function

Hk½u�:
We state the definition of a generalized solution of curvature equations.

Definition 4.2. Let O be an open convex bounded set in Rn and let n be a non-

negative, finite Borel measure in O: A convex and Lipschitz function uAC0;1ðOÞ is
said to be a generalized solution of

Hk½u� ¼ n in O; ð4:4Þ

if it holds that

n

k

� 
skðu; ZÞ ¼ nðZÞ ð4:5Þ

for every Borel subset Z of O:
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There is a notion of generalized solutions to the Gauss curvature equations which
correspond to the case of k ¼ n in (4.4), since they are in a class of Monge–Ampère
type. As far as the Gauss curvature equation, namely,

detðD2uÞ

ð1þ jDuj2Þ
nþ2
2

¼ n ð4:6Þ

is concerned, the definition of generalized solutions introduced by Aleksandrov and
others coincides with the one stated above.
One can show that if n ¼ cðxÞ dx for a positive continuous function c; a convex

viscosity solution of Hk½u� ¼ c is a generalized solution of Hk½u� ¼ n: Thus, the
notion of generalized solutions is weaker (hence wider) than that of viscosity
solutions under the convexity assumptions.
We show that the removability of isolated singularities also holds for generalized

solutions of (1.1) for 1pkpn � 1: The technique to prove this result is different from
what we have used in the proof of Theorem 1.1. It relies heavily on convexity and the
integral nature of generalized solutions.

Theorem 4.3. Let O be a convex domain in Rn containing the origin. Let 1pkpn � 1
and u be a continuous function in O \ f0g: We assume that for any convex subdomain

O0CO \ f0g; u is a convex function in O0 and a generalized solution of Hk½u� ¼ 0 in O0:
Then u can be defined at the origin as a generalized solution of Hk½u� ¼ 0 in O:

Proof. Since u is locally convex in O \ f0g; one can easily see that u can be defined at
0 continuously and the extended function is convex and Lipschitz in O: (This
assertion is also stated in [21, Lemma 2].) We denote it by the same symbol u: We
may assume that O ¼ B1: Hence Theorem 4.1 implies that there exists a constant
CX0 such that in the generalized sense Hk½u� ¼ Cd0 in B1=2; where d0 is Dirac delta
measure at 0. That is,

n

k

� 
skðu;BrÞ ¼ C ð4:7Þ

for arbitrary rAð0; 1=2Þ:
We deduce from (4.3) and (4.7) that

onðr þ rÞn
XLnðQrðu;BrÞÞ

¼
Xn

m¼0

n

m

� 
smðu;BrÞrm

X
n

k

� 
skðu;BrÞrk ¼ Crk: ð4:8Þ
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The first inequality in (4.8) is due to the fact that Qrðu;BrÞCBrþr; since taking any

zAQrðu;BrÞ; we obtain

jzj ¼ jx þ rvjpjxj þ rjvjpr þ r ð4:9Þ

for some xABr; vAguðxÞ: Taking r-0 in (4.8), we obtain that

onrn
XCrk: ð4:10Þ

Since (4.10) holds for arbitrary rX0; C must be 0. Therefore, we have proved that
Hk½u� ¼ 0 in the entire ball B1=2; so that the origin is removable. &

Remark 4.1. (1) In Theorem 4.3, the inhomogeneous term 0 can be replaced by a

measurable function f which is non-negative and belongs to L1ðOÞ:
(2) We can extend the function space to which u belongs in the theorems and

definition of this section to the space of semiconvex functions (see [24]).

As we have seen in Section 1, Theorem 4.3 does not hold for k ¼ n: One has
generalized solutions of (4.4), where the inhomogeneous term n is a Dirac delta
measure. One may consider the existence and uniqueness of generalized solutions to
the Dirichlet problem for (4.4) in a bounded convex domain when n is a Borel
measure. Many mathematicians have discussed this problem. For details, see [1].
However, there are few results about the solvability of the Dirichlet problem in the
generalized sense for the case of 1pkpn � 1 at present.

5. Final remarks

We conjecture that isolated singularities of (1.1) are always removable without any
assumptions on the behaviour of the solution near the singularities. Our next goal is
to remove the continuity assumption on u in Theorem 1.1. It is also interesting to
study the removability of a singular set whose a-dimensional Hausdorff measure is
zero for some a40:
We would also like to know appropriate conditions on n in (4.4) under which one

can get the solvability of generalized solutions to the Dirichlet problem for the
curvature equations (4.4). (For example, for k ¼ n; one of such conditions is that
nðOÞoon:) We think that this question is closely related to the above problem of
removability of singular sets.
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