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Mirror dark matter provides a simple framework for which to explain the DAMA/LIBRA annual
modulation signal consistently with the null results of the other direct detection experiments. The
simplest possibility involves ordinary matter interacting with mirror dark matter via photon–mirror
photon kinetic mixing of strength ε ∼ 10−9. We confirm that photon–mirror photon mixing of this
magnitude is consistent with constraints from ordinary Big Bang nucleosynthesis as well as the more
stringent constraints from cosmic microwave background measurements and large scale structure
considerations.

© 2009 Elsevier B.V. All rights reserved.
A mirror sector of particles and forces can be well motivated
from fundamental considerations in particle physics, since its exis-
tence allows for improper Lorentz symmetries, such as space–time
parity and time reversal, to be exact unbroken microscopic sym-
metries [1]. The idea is to introduce a hidden (mirror) sector of
particles and forces, exactly duplicating the known particles and
forces, except that in the mirror sector the roles of left and right
chiral fields are interchanged. It follows that the masses of the
mirror particles are fixed to be the same as their ordinary coun-
terparts. We shall denote the mirror particles with a prime (′). In
such a theory, the mirror protons and nuclei are naturally dark,
stable and massive, and provide an excellent candidate for dark
matter consistent with all observations and experiments [2–16].
For a review, see e.g. Ref. [17]. Dark matter from a generic hidden
sector is also possible, see e.g. Ref. [18] for a recent study.

It has been shown in Ref. [19], up-dating earlier studies [20],
that the mirror dark matter candidate is capable of explaining the
positive dark matter signal obtained in the DAMA/Libra experiment
[21], while also being consistent with the null results of the other

* Corresponding author.
E-mail addresses: paolo.ciarcelluti@ulg.ac.be (P. Ciarcelluti),

rfoot@unimelb.edu.au (R. Foot).
0370-2693/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.physletb.2009.07.052
direct detection experiments. The simplest possibility sees the mir-
ror particles coupling to the ordinary particles via renormalizable
photon–mirror photon kinetic mixing [22] (such mixing can also
be induced radiatively if heavy particles exist charged under both
ordinary and mirror U (1)em [23]):

Lmix = ε

2
F μν F ′

μν (1)

where F μν = ∂μ Aν − ∂ν Aμ and F ′μν = ∂μ A′ν − ∂ν A′μ . This mix-
ing enables mirror charged particles to couple to ordinary photons
with charge εqe, where q = −1 for e′ , q = +1 for p′ , etc. The
mirror dark matter interpretation of the DAMA/Libra experiment
requires [19] ε ∼ 10−9, which is consistent with laboratory and
astrophysical constraints [24]. It will be tested further by on-going
direct detection experiments, and potentially laboratory experi-
ments involving orthopositronium studies [25,26].

The purpose of this note is to study the implications of such
mixing for the early Universe. In particular, we will check that
this kinetic mixing is consistent with constraints from ordinary Big
Bang nucleosynthesis (BBN) as well as more stringent constraints
from cosmic microwave background (CMB) and large scale struc-
ture (LSS) considerations.

In the mirror dark matter scenario, it is assumed there is a
temperature asymmetry (T ′ < T ) between the ordinary and mir-
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ror radiation sectors in the early Universe due to some physics at
early times (for specific models, see e.g. [27]). This is required in
order to explain ordinary BBN, which suggests that T ′/T � 0.6. In
addition, several analyses [7,8] based on numerical simulations of
CMB and LSS suggest T ′/T � 0.3. However, if photon–mirror pho-
ton kinetic mixing exists, it can potentially thermally populate the
mirror sector. For example, Carlson and Glashow [28] derived the
approximate bound of ε � 3 × 10−8 from requiring that the mirror
sector does not come into thermal equilibrium with the ordinary
sector, prior to BBN. The inferred value of ε ∼ 10−9 is consistent
with this bound, so that we expect the kinetic mixing to populate
the mirror sector, but with T ′ < T . Assuming an effective initial
condition T ′ � T , we can estimate the evolution of T ′/T in the
early Universe as a function of ε , and thereby check the compati-
bility of the theory with the BBN and CMB/LSS constraints on T ′/T .

Photon–mirror photon kinetic mixing can populate the mirror
sector in the early Universe via the process e+e− → e′+e′− . This
leads to the generation of energy density in the mirror sector of:

∂ρ ′

∂t
= ne+ne−〈σ vMøl E 〉, (2)

where E is the energy transferred in the process, vmøl is the Møller
velocity (see e.g. Ref. [29]), and ne− 	 ne+ 	 3ζ(3)

2π2 T 3.
It is useful to consider the quantity: ρ ′/ρ , in order to cancel

the time dependence due to the expansion of the Universe [recall
ρ = π2 gT 4/30]. Using the time temperature relation:

t = 0.3g−1/2 MPl

T 2
(3)

with g = 10.75 and MPl 	 1.22 × 1022 MeV, we find that:

d(ρ ′/ρ)

dT
= −ne−ne+〈σ vMøl E 〉

π2 gT 4/30

0.6MPl√
gT 3

. (4)

Let us focus on 〈σ vMøl E 〉. This quantity is:

〈σ vMøl E 〉 =
∫

σ vMøl(E1 + E2)
1

1+eE1/T
1

1+eE2/T d3 p1 d3 p2∫ 1
1+eE1/T

1
1+eE2/T d3 p1 d3 p2

, (5)

where we have neglected Pauli blocking effects. If one makes the
simplifying assumption of using Maxwellian statistics instead of
Fermi–Dirac statistics then one can show (see Appendix A) that
in the massless electron limit:

〈σ vMøl E 〉 = 2πα2ε2

3T
, (6)

and Eq. (4) reduces to:

d(ρ ′/ρ)

dT
= −A

T 2
, (7)

where

A = 27ζ(3)2α2ε2MPl

π5 g
√

g
. (8)

Note that the e′± will thermalize with γ ′ . However, because most
of the e′± are produced in the low T ′ � 5 MeV region, mirror
weak interactions are too weak to significantly populate the ν ′

e,μ,τ

[i.e. one can easily verify a posteriori that the evolution of T ′/T

for the parameter space of interest is such that G2
F T ′ 5 �

√
g T 2

0.3MPl
].

Thus to a good approximation the radiation content of the mir-
ror sector consists of e′±, γ ′ leading to g′ = 11/2 and hence
ρ ′/ρ = (g′/g)(T ′ 4/T 4), with g′/g ≈ 22/43.

Eq. (7) has the analytic solution:
Fig. 1. Evolution of x = T ′/T for ε = 8.5 × 10−10. The solid line is the numerical
solution including the effects of the electron mass, while the dashed line is the an-
alytic result [using Eq. (9)], which holds in the massless electron limit. As expected
the two solutions agree in the T � 1 MeV region, where the effects of the electron
mass should be negligible.

T ′

T
=

(
g

g′ A

)1/4[ 1

T
− 1

Ti

]1/4

, (9)

where we have assumed the initial condition T ′ = 0 at T = Ti .
Let us now include the effects of the electron mass. With non-

zero electron mass, the evolution of T ′/T cannot be solved analyt-
ically, but Eq. (4) can be solved numerically. Note that the number
density is:

ne− = 1

π2

∞∫
me

√
E2 − m2

e E

1 + exp(E/T )
dE (10)

and, as we discuss in Appendix A,

〈σ vMøl E 〉 = 1

8m4
e T 2 K 2

2(me/T )

∞∫
4m2

e

ds σ
(
s − 4m2

e

)√
s

×
∞∫

√
s

dE+ e−E+/T E+

√
E2+
s

− 1 (11)

where the cross section is:

σ = 4π

3
α2ε2 1

s3

(
s + 2m2

e

)2
. (12)

Numerically solving Eq. (4) with the above inputs (i.e. numerically
solving the integrals Eq. (10) and Eq. (11) at each temperature
step), we find that1

ε 	 8.5 × 10−10
(

x f

0.3

)2

(13)

where x f is the final value (T → 0) of x = T ′/T . In Fig. 1, we plot
the evolution of T ′/T , for ε = 8.5 × 10−10.

In deriving this result we have made several simplifying ap-
proximations. The most significant of these are the following:

1 For simplicity we have neglected the effect of heating of the photons via e+e−
annihilations. Note that the same effect occurs for the mirror photons which are
heated by the annihilations of e′+e′− , so that x f is approximately unchanged by
this effect.
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(a) Using Maxwellian statistics instead of Fermi–Dirac statistics
to simplify the estimate of 〈σ vMøl E 〉. Using Fermi–Dirac statistics
should decrease the interaction rate by around 8% as discussed in
Appendix A. (b) We have neglected Pauli blocking effects. Includ-
ing Pauli blocking effects will slightly reduce the interaction rate
since some of the e′± states are filled thereby reducing the avail-
able phase space. We estimate that the effect of the reduction of
the interaction rate due to Pauli blocking will be around � 10%.
(c) We have assumed that negligible ν ′

e,μ,τ are produced via mirror
weak interactions from the e′± . Production of ν ′

e,μ,τ will slightly
decrease the T ′/T ratio. The effect of this is equivalent to reduc-
ing the interaction rate by around � 10%. Taking these effects into
account, we revise Eq. (13) to:

ε = (1.0 ± 0.10) × 10−9
(

x f

0.3

)2

. (14)

Successful large scale structure studies [7,8] suggest a rough bound
on x f of x f � 0.3. Our result, Eq. (14), then suggests the rough
bound2 ε � 10−9.

Our estimate for the production of mirror e± in the early Uni-
verse is broadly similar to the numerical estimate given in [30,31]
for milli-charged particles. Note however, one cannot translate the
results of Ref. [30] into an evolution equation for T ′/T or even a
bound on epsilon for the mirror model, since the mirror model has
a specific set of particles in thermal equilibrium with temperature
T ′ , which is not equivalent to the production of a single milli-
charged particle species. Furthermore, the analytic equation de-
rived in Ref. [30] is for the interaction rate ne〈σ vMøl〉, however, the
equation one needs is for the mean energy transfer ne〈σ vMøl E 〉,
which we have derived in Eq. (6).

In conclusion, previous work has shown that the mirror dark
matter candidate can explain the DAMA/Libra annual modulation
signal consistently with the null results of the other direct detec-
tion experiments provided that there exists photon–mirror photon
kinetic mixing of strength ε ∼ 10−9. Here we have examined the
implications of this kinetic mixing for early Universe cosmology,
where we showed that it is consistent with constraints from ordi-
nary BBN and CMB/LSS data.

Note added

After completion of the first draft of this Letter, the article [32] appeared. In that
work, they obtained a different conclusion to our result. Unfortunately, since their
work was largely numerical, we couldn’t ascertain the reason for the difference.
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Appendix A

Here we shall examine the quantity 〈σ vMøl E 〉 and derive Eq. (6)
and Eq. (11) used in our analysis. Following Ref. [29], we have:

〈σ vMøl E 〉 =
∫

σ vMøl(E1 + E2)e−E1/T e−E2/T d3 p1 d3 p2∫
e−E1/T e−E2/T d3 p1 d3 p2

(15)

where p1 and p2 are the three-momenta and E1 and E2 the ener-
gies of the colliding particles in the cosmic comoving frame. Recall

2 Note that for ε ∼ 10−9 supernovae will emit around half their energy into mir-
ror particles and thus one can suspect this as a rough supernova limit [31]. This
limit is consistent with our bound from early Universe cosmology.
that E = E1 + E2 is the energy transfer per collision. As elabo-
rated in Ref. [29], evaluation of these integrals can be facilitated
by changing variables to E± ≡ E1 ± E2 and s = 2m2

e + 2E1 E2 −
2p1 p2 cos θ . In terms of these variables the volume element be-
comes

d3 p1 d3 p2 = 2π2 E1 E2 dE+ dE− ds (16)

and∫
σ vMøl E e−E1/T e−E2/T d3 p1 d3 p2

= 2π2
∫

dE+ E+
∫

dE−
∫

ds σ vMøl E1 E2e−E+/T (17)

with integration region |E−| �
√

1 − 4m2
e

s

√
E2+ − s, E+ �

√
s, s �

4m2
e . Performing the E− integration, we have:∫
σ vMøl E e−E1/T e−E2/T d3 p1 d3 p2

= 4π2
∫

ds σ F

√
1 − 4m2

e

s

∫
dE+ e−E+/T

√
E2+ − s E+ (18)

where σ F = σ vMøl E1 E2 and F = 1
2

√
s(s − 4m2

e ). Also, as discussed
in Ref. [29]∫

e−E1/T e−E2/T d3 p1 d3 p2 = [
4πm2

e T K2(me/T )
]2

(19)

where K2 is the modified Bessel function of order 2. Hence we see
that

〈σ vMøl E 〉 = 1

8m4
e T 2 K 2

2 (me/T )

∞∫
4m2

e

ds σ
(
s − 4m2

e

)√
s

×
∞∫

√
s

dE+ e−E+/T E+

√
E2+
s

− 1. (20)

In the me → 0 limit, where σ = 4πα2ε2

3s , and using the dimen-
sionless variable z ≡ E+/

√
s, we find:∫

σ vMøl E e−E1/T e−E2/T d3 p1 d3 p2

= 8π3α2ε2

3

∞∫
0

ds s3/2

∞∫
1

dz e−z
√

s/T z
√

z2 − 1

= 128α2ε2π3T 5 I, (21)

where

I ≡
∞∫

1

√
z2 − 1

z4
dz = 1

3
. (22)

Also,∫
e−E1/T e−E2/T d3 p1 d3 p2

= [
4πm2

e T K2(me/T )
]2

= 64π2T 6 in the me → 0 limit. (23)

Thus we find:

〈σ vMøl E 〉 = 2πα2ε2

. (24)

3T
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Our results for 〈σ vMøl E 〉, Eq. (20) [or Eq. (24) for the me → 0
limit], have assumed Maxwellian distributions for the fermions to
simplify the integrals. In the me → 0 limit, it is possible to evaluate
the integrals for the realistic case of Fermi–Dirac distributions. In
which case, one finds:

〈σ vMøl E 〉 = 4πα2ε2

3T

I1

I2
, (25)

where

I1 =
∞∫

0

dz

∞∫
√

z

dx

√
x2−z∫

0

dy
x

1 + ex+y

1

1 + ex−y
,

I2 =
∞∫

0

dz

∞∫
√

z

dx

√
x2−z∫

0

dy
x2 − y2

1 + ex+y

1

1 + ex−y
. (26)

We find numerically that:

I1 	 0.39, I2 	 0.84 ⇒ I1

I2
	 0.46. (27)

Thus, we see that the approximation of using Maxwellian statistics
overestimates 〈σ vMøl E 〉 by around 8%.
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