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Though the 125 GeV Higgs boson is consistent with the standard model (SM) prediction until now, the 
triple Higgs coupling can deviate from the SM value in the physics beyond the SM (BSM). In this paper, 
the radiative correction to the triple Higgs coupling is calculated in the minimal extension of the SM by 
adding a real gauge singlet scalar. In this model there are two scalars h and H and both of them are 
mixing states of the doublet and singlet. Provided that the mixing angle is set to be zero, namely the SM 
limit, h is the pure left-over of the doublet and its behavior is the same as that of the SM at the tree 
level. However the loop corrections can alter h-related couplings. In this SM limit case, the effect of the 
singlet H may show up in the h-related couplings, especially the triple h coupling. Our numerical results 
show that the deviation is sizable. For λ�S = 1 (see text for the parameter definition), the deviation δ

(1)

hhh
can be 40%. For λ�S = 1.5, the δ(1)

hhh can reach 140%. The sizable radiative correction is mainly caused by 
three reasons: the magnitude of the coupling λ�S , light mass of the additional scalar and the threshold 
enhancement. The radiative corrections for the hV V , hf f couplings are from the counter-terms, which 
are the universal correction in this model and always at O(1%). The h Z Z coupling, which can be precisely 
measured, may be a complementarity to the triple h coupling to search for the BSM. In the optimal case, 
the triple h coupling is very sensitive to the BSM physics, and this model can be tested at future high 
luminosity hadron colliders and electron–positron colliders.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The standard model (SM) has been extensively tested, especially the deviations for the gauge sector are strongly constrained by the 
electro-weak precision measurements from the Large Electron–Positron Collider (LEP) [1], Tevatron and the Large Hadron Collider (LHC). 
However, the Yukawa sector and the scalar sector are two sectors which are still not well probed. Since the discovery of the Higgs boson 
at the LHC in 2012 [2,3], the most important task is to measure the properties of the scalar accurately. The measurements will help us 
understand the nature of the electro-weak symmetry breaking mechanism (EWSB) [4–7]. If there exists new physics beyond the SM (BSM), 
it is believed that it is related with the Higgs couplings more or less. The Higgs boson is a door to the unknown new world.

Current measurements of the Higgs couplings with gauge bosons tend to be the SM values. At the same time Higgs couplings with the 
third generation fermions are inferred from the Higgs production processes at the LHC, which are also consistent with those in the SM. 
Usually for the model construction, the Higgs couplings with fermions and gauge bosons will have the SM limit at the electro-weak scale. 
However the triple Higgs coupling can deviate from the SM value largely in this limit. Such feature of the triple Higgs coupling has been 
studied extensively in the two Higgs doublet model (THDM) [8–10], inert Higgs doublet model (IHDM) [11], Higgs triplet model (HTM) 
[12] and models with an additional heavy neutrino [13].
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Searching for BSM physics is one of the most important goals of high energy physics. The most direct way is to increase the energy 
of the colliders and see whether there are new heavy resonances, while it is always hard or even impossible to construct the very high 
energy colliders because of the limitations from the expanses, technologies and so on. However there are other methods to achieve this 
goal. The new heavy particles will leave footprints at the electro-weak scale through loop effects. We may have indirect signals for the 
BSM through some physical quantities which are sensitive to the heavy particles.

The minimal extension of the SM in the scalar sector is to add a real gauge singlet. The Higgs singlet model (HSM) has been studied 
exhaustively in a lot of papers. For example, Refs. [14,15] studied a model which includes a Z2 symmetry spontaneously breaking real 
Higgs singlet and the author considered the theoretical and phenomenological constraints of this model. Ref. [16] explored the resonant 
di-Higgs production in the 14 TeV hadron collider with an additional intermediate, heavy mass Higgs boson. Ref. [17] considered two 
scenarios: there was (no) mixing between the SM Higgs and the singlet. Then, authors analyzed the constraints from electro-weak pre-
cision observables, LHC Higgs phenomenology and dark matter phenomenology. Ref. [18] analyzed direct and indirect constraints on the 
parameter regions and the prospects for observing the decay of the heavier state into a pair of the 125 GeV Higgs. Refs. [19,20] discussed 
the electro-weak phase transition (EWPT) in this model. Ref. [21] calculated all one-loop scalar vertices in the effective potential approach. 
Ref. [22] emphasized the heavy-to-light Higgs boson decay at the electro-weak next-to-leading (NLO) order. Ref. [23] focused on the one-
loop radiative corrections in the HSM and performed the numerical calculations for the h Z Z , hW W , hf f̄ , hγ γ , hγ Z , hgg couplings, but 
not for triple h coupling, which is the main topic in this paper.

In the following, we will make a careful analysis of the triple h coupling up to one-loop level in this model in the SM limit. There will 
be an universal deviation from the SM predictions for the hV V , hf f̄ couplings arising from the wave-function renormalization constant 
δZh . The numerical results show that the universal correction is small. For the triple h coupling, there are still hH H , hhH H couplings 
(see Appendix A) in this limit. When the mass of the additional scalar is [90, 150] GeV and the coupling λ�S is order one, the radiative 
correction to the triple h coupling can be 40% or even larger in the vicinity of double Higgs production. It may be measured at future 
hadron colliders and electron–positron colliders.

This paper is organized as follows. In Sec. 2, we give a detailed description of the model including the theoretical constraints on the 
parameter space and the radiative correction to the triple h & h Z Z couplings. In Sec. 3, we present the numerical results. Sec. 4 is devoted 
to the conclusions and discussions. Feynman rules, related Feynman diagrams and calculational details are collected in the Appendix.

2. Model

We introduce a real additional gauge singlet S with hyper-charge Y = 0 besides the SM Higgs doublet �. Then, we can write the scalar 
potential V (�, S) as

V (�, S) = −m2
��†� + λ�(�†�)2 + μ�S�

†�S + λ�S�
†�S2 + tS S + m2

S S2 + μS S3 + λS S4. (1)

Evidently, the singlet doesn’t have any Yukawa interactions or gauge interactions with the SM fields. The scalar fields �, S in the unitary 
gauge can be parameterized as

� =
[

0
v+h1√

2

]
(v ≈ 246 GeV), S = h2 + v S .

Without loss of generality, we can set v S to be zero by shifting the S , namely the redefinition of the field. After EWSB, the two tadpoles 
are −Th1 = v(λ�v2 − m2

�), −Th2 = tS + μ�S
2 v2. Th1 , Th2 are the coefficients in front of the fields h1, h2 in the Lagrangian. At tree level, 

Th1 = 0, Th2 = 0. Then m2
� = λ�v2, tS = −μ�S

2 v2. Mass terms of the scalar fields are

Lmass = −1

2

[
h1 h2

][
M2

11 M2
12

M2
12 M2

22

][
h1
h2

]

M2
11 = 2λ�v2, M2

12 = μ�S v, M2
22 = 2m2

S + λ�S v2.

(2)

After diagonalizing the mass matrix, we get the following expressions

Lmass = −1

2

[
h H

][
m2

h 0
0 m2

H

][
h
H

]
,

[
h1
h2

]
=

[
cosα sinα
−sinα cosα

][
h
H

]

m2
h = cos2αM2

11 + sin2αM2
22 − sin2αM2

12, m2
H = sin2αM2

11 + cos2αM2
22 + sin2αM2

12

tan2α = 2M2
12

M2
22 − M2

11

= 2μ�S v

2m2
S − (2λ� − λ�S)v2

.

(3)

In the above expressions, we use mH instead of mS to avoid the confusion with the parameter in the Lagrangian. sα , cα , s2α are the 
simplified notations for sinα, cosα, sin2α. From now on, we will choose the parameters m2

h , m2
H , α, λ�S , λS , μS , v as the inputs. 

According to the definitions of m2
h , m2

H , tan2α in Eq. (2) and Eq. (3), λ� , m2
S , μ�S can be expressed by the new inputs as

λ� = 1

2v2
(c2

αm2
h + s2

αm2
H ),m2

S = c2
αm2

H + s2
αm2

h

2
− 1

2
λ�S v2,μ�S = s2α

2v
(m2

H − m2
h). (4)
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Fig. 1. The allowed parameter space (blue area) of λS , λ�S in the SM limit. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

2.1. Constraints on the parameter space

In the SM limit (α → 0), H will decouple from the fermions and gauge bosons because of the scaling factor sα . Thus, it will evade all 
the present experimental constraints. But the SM Higgs will still couple with H by the interacting vertices hH H , hhH H . And this makes 
great influence on the triple h coupling which is discussed later. All the analyses below will be carried out under the SM limit assumption, 
namely α = 0. When �, S are very large, the scalar potential will become V (�, S) = λ�(�†�)2 + λ�S�

†�S2 + λS S4. It must be bounded 
from below, so we have

λ� > 0, λS > 0, λ�S > −2
√

λ�λS . (5)

Further constraints we should consider are the so-called perturbative unitarity. S-wave amplitude a0 should satisfy the relation 
|Re(a0)| < 1

2 , where a0 is given by a0 = 1
16π s

∫ 0
−s dtM (t). Here, s, t are the Mandelstam variables as usual, and M is the scattering 

amplitude. According to the Goldstone equivalence theorem, massive vector boson is dominated by the longitudinal polarization at high 
energy. So we need only to consider the two-to-two scattering processes with initial and final states: W +

L W −
L , Z L Z L , Z Lh, Z L H , hh, H H , 

hH . Similar analyses have been discussed in many papers [24,25]. This is a 7 × 7 matrix, but it will be reduced into a 4 × 4 matrix in the 
SM limit. A subtlety one may caution is an extra 1√

2
for the same initial and final states, which is often ignored in many papers. After 

some trivial calculations (see Appendix B), we have the constraints from perturbative unitarity

λ� < 4π,λ�S < 4π,3λ� + 6λS +
√

(3λ� − 6λS)2 + 4λ2
�S < 8π. (6)

In the SM limit, λ� = m2
h

2v2 . Together with the bounded constraints in Eq. (5), we get the following parameter space in Fig. 1. The 
interesting feature is that there are no constraints on mH , μ�S .

2.2. One-loop radiative correction to the triple h & h Z Z couplings in the SM limit

We will calculate the deviation of the triple h coupling from the SM value originated from one-loop radiative correction in the SM 
limit. During the calculations, we adopt the conventions from Ref. [26]. There is no doubt that the loop particles must be the additional 
scalar H . To gauge the deviation from the SM value, we define δ(1)

hhh as

δ
(1)

hhh ≡ λ
(HSM)

hhh − λ
(SM)

hhh

λ
(SM,tree)
hhh

. (7)

In the following, we will present the numerical results for δ(1)

hhh for the chosen model parameters.
Similarly, the deviation of the h Z Z coupling from the SM value originated from one-loop radiative correction in the SM limit is defined 

as

δ
(1)

h Z Z ≡ λ
(HSM)

h Z Z − λ
(SM)

h Z Z

λ
(SM,tree)
h Z Z

. (8)

The analytical expressions can be found in Appendix D.

3. Numerical results

In this section, we will do some numerical evaluations of δ(1)

hhh for different model parameters. We set mh = 125 GeV, v = 246 GeV as 
in the SM. The deviation of δ(1)

hhh is mainly determined by λ�S , mH , 
√

p2, where one of the Higgs boson with momentum p is off-shell. 
The dominant contribution is from the triangle diagram which is proportional to λ3 . We choose the allowed value of λ�S = 1, 1.5, 
�S
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Fig. 2. δ
(1)

hhh defined in Eq. (7) as a function of 
√

p2 for mH = 100 GeV, λ�S = 1 (red), 1.5 (blue) respectively. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

Fig. 3. δ
(1)

hhh defined in Eq. (7) as a function of mH for 
√

p2 = 251 GeV, λ�S = 1 (red), 1.5 (blue) respectively. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

Fig. 4. The plot of triple h and h Z Z couplings for 
√

p2 = 251 GeV, mH ∈ [80, 180] GeV, λ�S = 1 (red), 1.5 (blue) respectively. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

respectively, and study the dependence on mH , 
√

p2 using LoopTools [27]. Behaviors of δ(1)

hhh are shown in Fig. 2, Fig. 3. It is easy to see 
that the correction to the triple h coupling is sensitive to λ�S , mH , 

√
p2. If the coupling λ�S can reach order one, the deviation can be very 

large for mH ∈ [90, 150] GeV in the vicinity of double Higgs production (
√

p2 ≈ 250 GeV). For λ�S = 1, the δ(1)

hhh can be 40%. For λ�S = 1.5, 
the δ(1)

hhh can almost approach 140%. The sizable radiative correction is mainly caused by three reasons: order one coupling λ�S , light mass 
of the additional scalar and the threshold enhancement. In this case, the triple h coupling is very sensitive to BSM physics. Experimentally, 
the deviation of the triple h coupling may be probed through gg → h∗ → hh production channel at future hadron colliders [28–32]. The 
model may also be probed through e+e− → Z∗ → Zh∗ → Zhh and e+e− → νe ν̄e W +∗W −∗ → νe ν̄eh∗ → νe ν̄ehh production channels at 
future electron–positron colliders [33–35]. At a low energy electron–positron colliders with 240 GeV or so and high luminosity, δ(1)

hhh can 
also be detected indirectly [36–38].

Additionally, we compare the deviations for the triple h and h Z Z coupling. Numerical results are shown in Fig. 4. We can find that the 
δ
(1)

h Z Z is very small, compared to the triple h coupling. Due to the high precision measurement of h Z Z coupling, it can be complementary 
to the triple h coupling to search for the BSM.
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4. Conclusions

The radiative correction to the triple h coupling is calculated in the minimal extension of the SM by adding a real gauge singlet scalar. 
In this model there are two scalars h and H and both of them are mixing states of the doublet and singlet. Provided that the mixing 
angle is set to be zero, h is the pure left-over of the doublet and its behavior is the same as that in the SM at the tree level. However the 
radiative corrections from the singlet H can alter h-related couplings. Our numerical results show that the deviation δ(1)

hhh is sizable. For 
λ�S = 1, the δ(1)

hhh can be 40%. For λ�S = 1.5, the δ(1)

hhh can reach 140%. The sizable radiative correction is mainly caused by three reasons: 
the magnitude of the coupling λ�S , light mass of the additional scalar and the threshold enhancement. The radiative correction for the 
h Z Z coupling can be a complementarity to the triple h coupling because of the high precision measurement. In the optimal case, the triple 
h coupling is very sensitive to BSM physics, and this model can be tested at future high luminosity hadron colliders and electron–positron 
colliders.
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Appendix A. Related Feynman rules

Appendix B. Perturbative unitarity constraints in the SM limit

In the SM, the perturbative unitarity constraints have been studied in the article [39]. For the HSM, we can write down the 7 × 7
two-to-two scattering matrix in the SM limit similarly. In the basis W +

L W −
L , 1√

2
Z L Z L , h Z L , 1√

2
hh, 1√

2
H H , hH , H Z L , the explicit form is 

shown in the following:

a0 = − 1

16π

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4λ�

√
2λ� 0

√
2λ�

√
2λ�S 0 0√

2λ� 3λ� 0 λ� λ�S 0 0
0 0 2λ� 0 0 0 0√
2λ� λ� 0 3λ� λ�S 0 0√
2λ�S λ�S 0 λ�S 12λS 0 0
0 0 0 0 0 2λ�S 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

We can easily get three eigenvalues: 0, − 1
8π λ� , − 1

8π λ�S . Then, this matrix is reduced into a 4 × 4 matrix in the basis W +
L W −

L , 1√
2

Z L Z L , 
1√
2

hh, 1√
2

H H :

ared
0 = − 1

16π

⎡
⎢⎢⎣

4λ�

√
2λ�

√
2λ�

√
2λ�S√

2λ� 3λ� λ� λ�S√
2λ� λ� 3λ� λ�S√
2λ�S λ�S λ�S 12λS

⎤
⎥⎥⎦

Owing to the special structure of this matrix, we get four eigenvalues:
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− 1

8π
λ�,− 1

8π
λ�,− 1

16π
(3λ� + 6λS ±

√
(3λ� − 6λS)2 + 4λ2

�S)

It is the same as that in Ref. [23].

Appendix C. Tadpole and self-energy of the SM Higgs from the additional scalar

Tadpole of the SM Higgs and the renormalization constant δt:

iTh = iλ�S v

16π2
A0(m

2
H ) , δt = −Th = −λ�S v

16π2
A0(m

2
H )

Self-energy of the SM Higgs and the renormalization constants δm2
h , δZh:

i	h(p2) = iλ�S

16π2
A0(m

2
H ) + iλ2

�S v2

8π2
B0(p2,m2

H ,m2
H )

δm2
h = Re	h(m

2
h), δZh = −Re

∂	h(p2)

∂ p2
|p2=m2

h
= −λ2

�S v2

8π2
D B0(m

2
h,m2

H ,m2
H )

D B0(m
2
h,m2

H ,m2
H ) ≡ dB0(p2,m2

H ,m2
H )

dp2
|p2=m2

h
=

1∫
0

dx
x(1 − x)

m2
H − x(1 − x)m2

h

Appendix D. Calculational details for the one-loop radiative correction

One-loop radiative correction for the triple h coupling:

Assuming the Higgs bosons with momentum p1, p2 are on shell, while the Higgs boson with momentum p is off shell, that is p2
1 = p2

2 =
m2

h , p2 �= m2
h . We can get the following analytical expression for the triple h coupling in the SM limit, which is the deviation from the SM 

prediction.



S.-P. He, S.-h. Zhu / Physics Letters B 764 (2017) 31–37 37
δ
(1)

hhh ≡ λ
(HSM)

hhh − λ
(SM)

hhh

λ
(SM,tree)
hhh

= − λ3
�S v4

6π2m2
h

C0(p2,m2
h,m2

h,m2
H ,m2

H ,m2
H ) + λ2

�S v2

24π2m2
h

[B0(m
2
h,m2

H ,m2
H ) − B0(p2,m2

H ,m2
H )]

− λ2
�S v2

8π2

B0(p2,m2
H ,m2

H ) − B0(m2
h,m2

H ,m2
H )

p2 − m2
h

− λ2
�S v2

16π2

∂ B0(p2,m2
H ,m2

H )

∂ p2
|p2=m2

h

λ
(HSM)

hhh , λ(SM)

hhh are the coefficients in front of the h3 vertex up to one-loop level in the HSM and SM respectively, but λ(SM,tree)
hhh is the tree 

level coefficient in the SM. If there is an imaginary part in δ(1)

hhh , we just extract the real part. Because the imaginary part is not observable 
at this order due to the interference with tree level amplitude.

Similarly, we get the one-loop radiative correction for the h Z Z coupling:

δ
(1)

h Z Z ≡ λ
(HSM)

h Z Z − λ
(SM)

h Z Z

λ
(SM,tree)
h Z Z

= δZh

2
= −λ2

�S v2

16π2
D B0(m

2
h,m2

H ,m2
H ).
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