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On power-boundedness of interval matrices 
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Abstract: In a recent paper by G. Mayer [8] the convergence of the sequence {[A]” ) of the powers of an interval 
matrix [A] to the nullmatrix was investigated. In this note we give some conditions for the boundedness of the 
sequence { k-a[,4]k }. where (Y is a nonnegative number. The connection to the cl-stability of the set [A] is discussed. 

Kep,ords; Power-boundedness, interval matrix. a-stability. Kreiss condition. 

1. Introduction 

Let II(R) be the set of the bounded. nonempty real intervals and let M,,(O([W)) be the set of the 
II x n matrices over O(R). called inrerual vtratrices. We represent intervals and interval matrices by 

their endpoints, e.g. we write [a] := [a. zl]= { CJ E [w I_ a G a d ii} for [CI] E O([w) and represent 
[A] E M,,(O(Iw)). [A] = ([(I,,]). by [A] = [A, A] with 4 = (a,,). A= (G,,). We consider the space of 
the real !I x II matrices endowed with the natural (componentwise) partial ordering and define 
[A] > 0 and [A] < 0 if b z 0 and A< 0. respectively. for [A] E M,,(O(Iw)). 

The arithmetical operations + and . (subtraction and division will not be used in the sequel) on 
ll([w) and M,,(O([w)) are defined as usual (e.g. [l. Chapters 1 and lo]): 

[u] +[/?I := [g+_h. cr+h]. 

[u] .[ b] := [min( &. $7. tib. 277;). max{ &. &. $7. &}I, 

for [a] = [g. is]. [h] = [_h. h] E lJ([w): 

PI +IW=([u,,] +[h,,]). 

I4 -PI := (L-b 1,,1 I[/> ,,,, 1). 111 
for Ml = @,,I). PI = (lb,,] I E M,,OWW. 

For [A] E M,,(O(Iw)) the powers [A]’ = ([u::‘]) = ([gii’, 5::) I). k=l.2.3 ,..., are defined by 
[A]’ := [A], [Alk := [A]‘-’ . [A]. k = 2. 3.. . . Note that the so defined powers differ in general 
form the powers ‘[A] defined by iterative multiplication by [A] from the left: ‘[A] := [A], 
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‘[A]:= [A].‘-‘[A]. The width d and the absolute value 1.1 of interval matrices are defined by 

d(M):=(q-a,,). l[AlI:=~~,~~~,Ia,,j~ 8, I/ 

for [Al = ([a,,]) = ([a,, a,,,]) E f4,UWW). 
For properties of both functions ccnsult for example [l, Chapters 2 and lo]. For later 
convenience we only state here the following properties: 

ILWI I G IL4 I IPI 19 
d([A])I[BjI~d([A][B]) for’A1”BIEM”(n(IW)). 

(1) 
(2) 

Let 11 .I1 be any norm on M,,(O(R)) which is monotone, i.e. 

IL4 I G I[4 I * IIM II G WI II 
for all [A], [B] E M,,(O(R)), 

or equivalently [9], 

II M II = II I [Al Ill for all 14 E M,(WW. 
Then it follows by [9] that 

IIM II =,4yPl14. (3) 

This implies that all monotone norms on M,(ll(lR)) are equivalent. 

An interval matrix [A] is called an a-stable set [3], (Y 3 0, if there exists a constant c such that 

I/ k-^Ak I/ < c forall A E [A], k=l, 2.3 ,..., (4) 

hold: for (Y = 0, [A] is called a sfable set [7]. The concept of stability of the numerical schemes for 
solutions of partial differential equations is closely connected with the concept of stable sets 
[7.10] and it seems that c-u-stable sets are related to the concept of weakly stable numerical 
schemes [2.7]. These necessary and sufficient conditions for stability were given by Kreiss in [7] 
and one necessary and sufficient condition for a-stability by Friedland in [3]. Their conditions, 
however. are hard to verify in the general case and hence difficult to apply. In this paper we give 
a simple sufficient and an easy necessary and sufficient condition for the a-stability of an interval 
matrix. We remark that the application of these conditions is not merely restricted to the interval 
matrices since each bounded. nonempty set S of real n X II matrices can be enclosed in an 
interval matrix. viz. the matrix [inf S, sup S]. We note that Lemma 1 and Theorems 1 and 2 of 
this paper remain true if matrices with complex discs as entries (cf. [I, Chapters 5. 6 and IO]) are 
considered. If each entry of such a matrix has the origin as midpoint and positive radius then the 
matrix satisfies the assumptions (i)-(iv) of [4]. 

We extend the concept of power-boundedness to the sequences of the powers of interval 
matrices. By (3) and the inclusion monotonicity of the interval arithmetical operations (cf. [l, p. 
61) we obtain the following lemma. 

Lemma 1. Let [A] E M,,(O(R)). Then 

Ilk-“[A]XII <c, k=l,2,3 ,...) 

impliesthat IIkmnAAIj <c, k=l,2,3,..., foralfAE[A], i.e.[A] isan a-stableset. 

(5) 
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2. Results 

Theorem 1. Let [A] E M,,(O(R)). Then /I k-” [[A] 1’ /I d c‘. k = 1. 2. 3.. _. . implies 11 k-“[ A]’ I/ d c. 

k=l.2,3 ,... . 

Proof. By (1) and the monotonicity of the interval matrix norm 

Ilk-“[A]? = Ilk-“I[#III d lWnl[Al I’ll 
holds from which the assertion follows. 0 

By the Perron-Frobenius theory (see [5]), ][A] I h as a nonnegative eigenvalue Y equal to its 

spectral radius. If Y = 0 then from the Cayley-Hamilton theorem it follows that I[A] I ‘I = 0. 
Hence a reverse statement of Theorem 1 is true in this case. Another reverse statement is given in 
the following theorem. Because all monotone norms on M,,(ll(R)) are equivalent we may choose 
the interval matrix norm here and in the sequel as the following monotone norm 

II[Alll=,y& $[~,,]I for[Al=([u,,])E~,,(O(a)). 
I- 

Theorem 2. Let [A] E M,,(ll(R)) and let I [ A] I fulfill the followYng two cwjditiom: 
(i) I [ A] I has an eigenvector x corresponding to its Perron root r ti’ith a positive compot~em s,, 

such that there is an entry [ a:fl’] of [A]” bvith d([uhC’]) > 0; 
(ii) for euety eigencdue A of I [A] 1 u’ith I X I = r all the elementaq* diclisors of I [A] I corresporld- 

ing to h are linear. 
Then there exists a constant c such that 

Ilk-*[A]XII <c. k=1.2.3 . . . . 

if and only if there exists u constunt c’ such thut 

Ilk-“[[A] 1’11 GC’. k=l. 2. 3 ._.. 

(6) 

(7) 

Proof. It is no restriction that we assume in the following that r > 0. 
By Theorem 1. it suffices to show that (6) implies (7). We suppose (6). By repeated application 

of (2) we obtain for k = 1, 2. 3.. . . 

((sup[ A] k-t’ - inf[ A] i+“)x)P = (d( [ A] ‘-“).Y),~ 

>(d([A]P)IIA] I”~~),=ri(d([A]:‘)s),,~r”djjcr:~’])z,,. 

Now, by (3), it follows that for k = 1. 2. 3.. . 

r”d([a$‘])xP< II(su~[A]~+“-- inf[A]l‘+“)sl/ 

~2l([A]“+~ II ll*~ll alL4l”ll IIW II IId. 

Thus, by (6) 

0 < r/‘ < 6k”, where6:=2cll[A]“II Ii~~lli,~~,d([cr:i:‘])i-‘. (8) 
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From assumption (ii) it follows by [6. Section 2.31 that there exists a (multiplicative) matrix norm 
I] . 11. such that /I ][A] 1 11 l = r. hence 

IlI[A]I”II*~lJI[A]II/:=r’. k=l.2,3 . . . . . (9) 

Because all norms on the set of the real )I X n matrices are equivalent, there is a constant c” > 0 
such that 

c”]] ][A] IA]] d ]]][A] lx]]*. k=l,2,3 . . . . . (LO) 

The assertion follows now by (8)-(10). 0 

Remark 1. Condition (ii) is fulfilled if ([A] I is diagonalizable or possesses a positive Perron 
eigenvector (cf. [5, p. 1041). particularly if ][ A] I is irreducible. If ][A] I has a positive Perron 
eigenvector condition (i) is always fulfilled for each [A] with d([A]) f 0. 

Remark 2. Condition (i) is always fulfilled if [A] contains at least one nondegenerate interval in 
each column. In [S] a useful graph theoretical criterion is given which .allows one to decide 
whether a power [A]” and a row index p exist such that d([ub{‘]) > 0 for fixed column index V. 

Remark 3. We recall two examples given in [S] to show that condition (i) can not be dropped. 

Example 1. Let 

Then A is irreducible and A’ = 0. Hence the degenerate interval matrix [A] fulfills (5) for all 

(Y 2 0. Taking absolute values. 

Because of jl I A 1’ // = 2’ the sequence { lip” I A I A } is not uniformly bounded for any (Y >, 0. 

Example 2. Let 

1 -1 0 \ 

[A]:= 1 -1 0 

0 0 [o, 0.51 ; 

Then 

10 0 0 
[/+2-k 0 0 0 

I 

. k=2.3.4 . . . . . 

\ 0 0 [o, I] 

which shows that [A] satisfies (5) for all (Y 2 0. Again, we have I] ([A] 1’ II = 2’. The eigenvalues 
of I[ A] I are 0, 0.5. 2, hence I[ A] I is diagonalizable and (ii) is fulfilled. The eigenvectors 
corresponding to the Perron root are the vectors (x. X, O)T. Because the only nondegenerate entry 
of [A]’ is the entry [aif’], condition (i) is not met. 
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Corollary. Ler n = 2. [A] E M2(O(R)) and let conditiorl (i) of Theorem 2 be fulfilled. Then (6) and 

(7) are equivalent . 

Proof. It suffices to show that (6) implies (7). W.1.o.g. we may assume that [a?,]. [a,?] = 0 since 
otherwise Theorem 2 applies. Furthermore, it suffices to consider only the case [aI,] = 0 and 
[a,?] # 0. If I[a,,] 1 # I[aJ 1 then Theorem 2 applies. so we may restrict ourselves on interval 

matrices [A] with 

][A] ] = [i f) with/3>0. 

It suffices to consider only r = 1. Thus, we get 

II I[Al Ikll = 1 +bk. 
From assumption (i) it follows that d([a,,]) > 0. In the sequel we choose an interval matrix [I?], 

in such a way that [B] c [A] and the asymptotic behaviour of I] [ l?]’ )I is the same as (11). Since 

by (3) 

IIWII G IIMXII G IIIM IAIL 
the assertion will then follow. Because of d([a,,]) > 0 there is a positive number c < 1 such that 
the interval matrix [B] with 

(I) [b,] = [f? 11 or (II) [h,] = [ -1, -61. 

(a) h, = I or (b) b,= -1. 

is contained in [A]. As it will be clear from the following there is no restriction to assume that 
h2 = /?. The powers of [B] are given by 

We first consider the case (I, a): Here we have. setting [E. 11’ := 1, 

hence 

II~~~XII=~+~~=III~~iI“ll. 

In the case (I, b) we obtain 

k-l 
[@‘I =p c (_I)k-‘-“+, ,]nl, 

,,I = 0 
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therefore for k >, 4 

II[B]“II=l+pmax ii 
-k,+~211_t:~2 , k,_c1-c2”4 I I 1 -c2 

, 

wherek,:= [F], k,:= [?I, k,:= [L+L], k_.= [$I_ 

The cases (II, a) and (II, b) can be reduced to (I, b) and (I. a), respectively, and the proof is 

completed. LI 

Remark 4. As it can be seen by choosing 

M:=(; ;+ q-)5] jv 
condition (i) can not be dropped in the Corollary. 

We have already noted that the existence of a constant c with (5) implies that [A] is an 
a-stable set. However, the converse is not true in general (for a partial relaxation see below) even 
if ][A] ( is irreducible: Let 

I I-( A :_ [O.% 11 -1 

1 1 -1 . 

By Theorem 2 and the above Example 1 there is no constant c such that [A] fulfills (5) for any 
(Y 2 0. However, each A E [A] has a spectral radius less than 1. Hence lim, _ %A’ = 0 for all 
A E [A] which implies that [A] is an a-stable set for all CY > 0. 

Now, we consider a class of interval matrices for which (6) is equivalent to a-stability. We say 
that an interval matrix [A] has D-sign pattern, if D is a signature matrix, i.e. D = diag( S,, . . . , 6,) 
with 6, = +l for i = l(l)n, and if D[A]D > 0. ’ Then we define for two real n x )I matrices B, C 

the n x n matrix B&C by 

(B&C),j:= 
i 

b,j if 8; = Sj, 

if 6, Z aJ, 
i, j = l(l)n. c 

‘J 

For example, if [A] 2 0 (choose D as the identity matrix) then 1 &A= 4 and x&A = x If [A] 

or -[A] possesses a D-sign pattern then the endpoints of [A]“ can be calculated only by using 
powers of 1 &A and x&A: 

Lemma 2. Let [A] E M,(O(R)). Zf [A] has D-sign pattern then 

if - [A] has D-sign pattern fhen for k = 1, 2, 3,. . . 

[A]‘” = [(&4)2”&(&q2’, (&~)2’&(%4)2’]. 

[Al 2k+1 = [(&Lq2k+1&(‘T&4)2k+‘, (A&A)2~+‘&(A&~)2~+‘]. 

’ Because (D[ A])D = D([ AID) we may suppress brackets. 
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Proof. By induction noting that (B& C)&( C&B) = B. 0 

Theorem 3. Ler [A] E M,( II(R)) have D-sign pattern. Then the following three statements are 

equivalent 

(i) Ilk-“[A]“11 <C, k=l,2,3 ,... . 

(ii> II~-“A’JI <c. k=l,2,3 ,..., foraflAE[A]. 

(iii) Ijk-“(X&A)‘ll <C, k= 1, 2. 3 . . . . . 

Proof. By Lemma 1, (i) = (ii) and because x&A E [A] it follows that (ii) * (iii). Thus it suffices 

to show that (iii) * (i). One shows by induction that 

]X&ll”= ](A&&“], k=l,2,3 ,..., (12) 

holds. We assume (iii). Then by (12) 

]]k-“(A&l)“]] = ]]k-“](X&4)“]II = ]lk-*]A&&j 

= I] k-” I [A] 1’ II < c. 

The assertion (i) follows now by Theorem 1. q 

Remark 5. An analogous statement holds if -[A] has D-sign pattern. Then (iii) has to be 
replaced by ]I k-*(4&2) I( < c, k = 1, 2, 3,. . . 

We conclude with two remarks on the uniform boundedness of the sequence { kmak[ A]}. 
Example 4 in [8] shows that there may be a constant c’ such that ]I kea’[ A] II G c’, but no 
constant c satisfying (5) for (Y >, 0 and vice versa. Observing that (k[A])T = ([AIT)‘, we state a 
result which is analogous to Corollary 4 in [8]. 

Theorem 4. Let [A] E M,,(O(R)). Th en there is a constant c such that II keak[ A] II < c, k = 
1,2,3,..., ifthereexistsaconstantc’such that Ilk-“([AIT>‘l)I GC', k=l,2,3,... . 

As can readily be confirmed, we have ‘[A] = [All‘, k = 1. 2. 3,. . . , if [A] has D-sign pattern. 
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