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ABSTRACT Polyphosphoinositides are among the most highly charged molecules in the cell membrane, and the most
common polyphosphoinositide, phosphatidylinositol-4,5-bisphosphate (PIP2), is involved in many mechanical and biochemical
processes in the cell membrane. Divalent cations such as calcium can cause clustering of the polyanionic PIP2, but the origin
and strength of the effective attractions leading to clustering has been unclear. In addition, the question of whether the ion-medi-
ated attractions could be strong enough to alter the mechanical properties of the membrane, to our knowledge, has not been
addressed. We study phase separation in mixed monolayers of neutral and highly negatively charged lipids, induced by the addi-
tion of divalent positively charged counterions, both experimentally and numerically. We find good agreement between exper-
iments on mixtures of PIP2 and 1-stearoyl-2-oleoyl phosphatidylcholine and simulations of a simplified model in which only the
essential electrostatic interactions are retained. In addition, we find numerically that under certain conditions the effective attrac-
tions can rigidify the resulting clusters. Our results support an interpretation of PIP2 clustering as governed primarily by electro-
static interactions. At physiological pH, the simulations suggest that the effective attractions are strong enough to give nearly
pure clusters of PIP2 even at small overall concentrations of PIP2.
INTRODUCTION
The concentration of the lipid phosphatidylinositol-4,5-bi-
sphosphate (PIP2) in the cell membrane is only of ~1%,
yet it plays an outsized role in many critical processes,
including cell division (1), endocytosis and exocytosis (2),
and cell motility (3). Evidence exists that PIP2 forms
clusters (4) at the submicron scale in vitro, and it has been
speculated that similar domains might form under roughly
physiological conditions. It has been conjectured that
this clustering is crucial to its function at such low concen-
tration (5,6).

Various mechanisms for the clustering have been
proposed, including PIP2-protein interactions (7,8), exclu-
sion from cholesterol-enriched ordered domains (4,9), and
hydrogen bonds (10,11). However, recent experiments
showed that PIP2 clusters can also be induced simply by
adding calcium or other divalent ions (4,12). This raises
the question of whether a purely electrostatic, ion-mediated
mechanism could cause PIP2 clustering.

A counterion-mediated mechanism would seem unlikely
because such attractions are typically quite weak. Biomol-
ecules such as DNA (13) and actin (14) aggregate into
large bundles in the presence of multivalent ions, but
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they each carry a net charge of (~�102–103e) while PIP2
lipids carry a much smaller net charge (~3e). Moreover,
divalent cations are not sufficient to induce aggregation
in bulk aqueous DNA or actin solutions, and the estimated
attraction mediated by trivalent or tetravalent species is at
most of ~0.1 kBT per basepair (15). This small magnitude
is not surprising because counterion-mediated attractions
vanish in the mean-field approximation (16) and are the
collective result of a near-cancellation of repulsive and
attractive interactions between like and unlike charges,
respectively. We note that the near-cancellation implies
that the geometry of the charge configuration is likely
to be important so that attractions mediated by small
ions such as calcium can behave very differently from
those mediated by extended cationic molecules such as
spermidine (17).

In this article, we show that ion-mediated attractions in
low-charged objects such as lipids are surprisingly strong,
so that phase separation not only occurs but can be nearly
complete at physiological values of the PIP2 charge. We
conduct simulations on a model designed to retain only
the most critical features of the electrostatics and compare
the results to experiments on Langmuir monolayers of
a mixture of PIP2 with neutral lipids with added divalent
salts. We find semiquantitative agreement between simula-
tions and experiments, suggesting that divalent-ion-
mediated attractions are responsible for the observed
clustering. The strength of these interactions depends
strongly on the net charge of the lipid, which in turn has
doi: 10.1016/j.bpj.2011.09.039
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been shown to depend sensitively on ionic strength and on
pH within a physiological range (18).

In addition, the simulations provide, to our knowledge,
new insight into the mechanical properties of ion-mediated
clusters: at moderate PIP2 charge, they are like two-
dimensional liquids in which lipids can diffuse around as
usual, but at sufficiently high PIP2 charge they form rigid,
gel-like clusters upon exposure to divalent ions.
MATERIALS AND METHODS

Experiments

We look for phase separation using visual analysis of both epifluorescence

micrographs and atomic force micrographs of mixed lipid monolayers

prepared in a Langmuir trough (Kibron, Helsinki, Finland). L-a-phosphati-

dylinositol-4,5-bisphosphate (PIP2) and 1-stearoyl-2-oleoyl phosphatidyl-

choline (SOPC) were purchased from Avanti Polar Lipids (Alabaster,

AL). In the epifluorescence studies, part of the PIP2 (equal to 0.5 mol %

of the total lipid content) is replaced by a fluorescently labeled analog

(BODIPY FL-PIP2), purchased from Echelon (Salt Lake City, UT).

The lipid mixture, consisting of SOPC with a total molar PIP2 fraction

of fPIP is dissolved in a 2:1 chloroform/methanol mixture. A lipid mono-

layer is formed on a buffered subphase (10 mM HEPES, 100 mM EDTA,

5 mM DTT) by addition of the lipid solution to the air-water interface.

The surface pressure is kept at 20 mN/m, corresponding to an initial area

per lipid of ~90 Å2.

In the fluorescence studies the monolayer is imaged on an inverted

epifluorescence microscope, using the 10� objective. We verify that there

are at most two bright spots, likely due to nonspecific insoluble aggregates

or contaminants, in a field of view at this stage. The divalent salts CaCl2 or

MgCl2 are then added at 1 mM to the subphase, followed by gentle mixing

to avoid disrupting the monolayer. We allow up to 2 h for domains to

coarsen before imaging again.

For the AFM studies, sample preparation is identical with the exception

that the buffer in this case contains only 1 mM EDTA. Monolayer samples

are transferred from the trough onto a glass coverslip, both before and after

addition of divalent salt. These films are imaged on a NanoScope III atomic

force microscope (Digital Instruments, Tonawanda, NY) in tapping mode.

We perform these procedures for a range of fPIP-values and several pH

values: 3, 4.5, 6, 7.4, and 9. At these values of the pH, qPIP is roughly

�1.5, �2.7, �3.2, �4.2, and �5.0, respectively, based on acid dissociation

constants from Levental et al. (18). However, the ionization state of PIP2
may be influenced by various geometric and chemical factors (18,19), so

we do not assume that these qPIP values are exact. We collect the results

in a phase diagram for each experiment: The fluorescence measurements

are the most direct visualization of domains, but might miss the smallest

domains because of limited resolution, while the AFM images provide

a more detailed picture at smaller length scales.
Simulations

We retain only the competition between electrostatic interactions and

excluded volume repulsions by adopting a model in which both lipids

and small ions are represented as charged spheres (radius Ri) with an

excluded volume interaction given by the purely repulsive (truncated at

its minimum and shifted) Lennard-Jones potential (the WCA potential

(20)). Parameterized by an energy scale ε ¼ kBT h 1 (our unit of energy)

and length scale sij ¼ Ri þ Rj, this potential is given by

VWCA;ij

�
rij
� ¼ 4e

��
sij

rij

�12

�
�
sij

rij

�6

þ 1

4

�
;

for rij < 21/6 sij, and V(rij) ¼ 0 otherwise, where rij is the center-to-center

distance. Note that sij is the distance at which the potential equals kBT. N ¼
1600 lipid particles are confined to the z ¼ 0 plane, to mimic the effect of

the hydrophobic interaction that keeps them at the air-water interface. We

use Ri ¼ RL ¼ 3 Å for the lipids and Ri ¼ RCI ¼ 2 Å for the small cations

that can explore the entire simulation box. In a study of the dependence of

the clustering on cation size, we vary it between 0.5 Å% RCI % 2.5 Å. The

box is periodic in x- and y-directions (size Lx¼ 320 Å� Ly¼ 320 Å and has

hard walls at z ¼ 0 and z ¼ Lz ¼ 200 Å. The typical distance between lipids

in the monolayer at z ¼ 0 is therefore 8 Å.

In addition, the charged spheres interact via the Coulomb interaction,

VC,ij ¼ qiqjlB/rij, where we measure charges q in units of the proton charge.

In room temperature water the Bjerrum length lB z 7 Å.

We run molecular-dynamics simulations using LAMMPS (21), with a

Nosé-Hoover thermostat (22) and PPPM for the long-range Coulomb inter-

actions (23).

The strong Coulomb attraction between the anionic lipids and the small

cations allows them to bind at a distance of roughly sij. The essence of ion-

mediated attractions is that these bonds are strong and long-lived enough so

that one or two counterions can draw together two lipids and be bound to

both simultaneously (24,25). Due to its coarse-grained nature, our model

underestimates the binding energy of such bonds. The main source of

this effect is that the distance between the lipid particle and the Ca2þ in

our model is much larger than the distance between a real phosphate group

and a Ca2þ ion in real PIP2. This common side-effect of coarse-graining is

typically compensated by adjusting the dielectric constant (see, e.g.,

Marrink et al. (26)). To find the required correction, we compare the PIP2
charge required for clustering as calculated from the numerical model

and as measured in our experiments, at PIP2 fraction fPIP ¼ 0.25. Experi-

mentally we find the threshold pH at this PIP2 fraction to be between 3 and

4.5, which corresponds to a charge of roughly qPIP z �2 (18). The

dielectric constant required in our model to match this threshold is ~27

(a factor-three lower than that of water). We then use this value of the

dielectric constant to obtain the rest of the phase diagram.

Thus, we have a coarse-grained model in which lipids are replaced by

spheres of the appropriate charge and simulated with explicit counterions

using an adjusted dielectric constant. This simplification enables us to

explore a large parameter space with modest computations. Of course,

this coarse-graining approach is not quantitatively precise, but neither are

calculations using typical approximations such as a uniform dielectric

constant of 80 for water surrounding highly charged objects. We note

that despite the simplicity of our model, it gives surface pressures of

~20–50 mN/m, which is of the same order as in the experiments. Both in

the experiments and in the simulations, the surface pressure drops by

a few percent at low fPIP, and between 10% and 30% at fPIP ¼ 0.25,

upon addition of Ca2þ.
These simulations were performed for a range of PIP2 charges qPIP and

PIP2 fractions fPIP. To study the mobility of lipids within clusters and the

cluster rigidity, we performed additional simulations at fPIP ¼ 1.

RESULTS

Phase behavior: experiments and simulation

Fig. 1 shows our experimental results: phase diagrams and
snapshots of AFM (Fig. 1 a) and fluorescence (Fig. 1 b)
studies of calcium-induced domain formation. At high PIP2
charge, cluster formation is readily observed, for example at
pH 7.4 in either experiment, where qPIP z�4.2 (Fig. 1, a 2,
a 3, and b). Fig. 1 b shows epifluorescence micrographs,
taken both before (left) and after (right) transferring the
sample to a glass coverslip, at 25% PIP2 and pH 7.4. In
these images, bright spots mark regions where PIP2 is
concentrated. In the phase diagram, conditions for which
Biophysical Journal 101(9) 2178–2184



10 m100 m

0 nm

10 nm

0.0 0.2 0.4 0.6
9

8

7

6

5

4

3

2

0.0 0.2 0.4 0.6
9

8

7

6

5

4

3

2
a

1

2 4

AFM Experiment

5 5
5

b

3
1 µm

2 mol%, pH 7.4

2 
1 µm

25 mol%, pH 7.4

3 
1 µm

2 mol%, pH 6.0

1 

1 µm

50 mol%, pH 7.4, =35 mN/m

4 
1 µm

50 mol%, pH 7.4, =40 mN/m

4
*

FIGURE 1 Phase diagrams (pH versus PIP2
fraction) and snapshots of experiments on mixed

lipid monolayers (containing SOPC and PIP2)

exposed to divalent salt. (a) Phase diagram.

(Shaded coexistence region) Where clustering

was observed, obtained from AFM studies. (Open

disks) Parameter values where no clustering was

observed. (Shaded disks are too close to the

boundary to determine their behavior with

certainty.) The AFM snapshots 1, 2, and 3 represent

the conditions indicated by the corresponding

points in the diagram: At fPIP ¼ 0.02, there is no

cluster formation at pH 6 but clusters are clearly

present at pH 7.4. Larger domains are obtained

for fPIP ¼ 0.25. Domains persist when the surface

pressureP is increased to 35 or 40 mN/m (panels 4

and 4*). (b) A very similar cluster formation phase

diagram is obtained using epifluorescence with

labeled PIP2. Snapshots are shown for fPIP ¼
0.25. (Left snapshot) Taken directly in the Lang-

muir trough. (Right snapshot) Taken after transfer-

ring the sample to a glass coverslip. We note that

the apparent area fraction in the image is <0.25

because many of the PIP2 domains are too small

to detect optically.
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these bright spots are seen are marked with solid disks.
Cases that did not show signs of clustering are marked
with open circles.

We note that domains usually appear within minutes, but
we allow coarsening for up to 2 h before concluding there
is no clustering. Thus we obtain the boundaries of the param-
eter region that lead to domain formation (shaded in the
phase diagram). Fig. 1 a shows AFM images of the trans-
ferred samples. These images show a clear distinction
between conditions that lead to domain formation (panels
a 2 and a 3) and conditions in which the AFM image is flat
(panel a 1). Control AFM images of sampleswithout divalent
salt did not show any sign of domain formation either.
Domains persist when the surface pressure is increased to
35 or 40 mN/m (panels a 4 and a 4*, respectively).

Although the two experimental approaches probe the
system on different length scales, both of them give the
same phase diagram. The exception is one data point,
at pH 4.5 and qPIP ¼ 0.5, which showed clustering in the
fluorescence experiments, but which were not as clearly
clustered as the other data points in the AFM experiments
(marked with a shaded dot in the phase diagram). We note
that, in general, the AFM images are less noisy and therefore
lead to a more clear-cut distinction between clustering and
nonclustering conditions.

The simulation snapshot in Fig. 2 c, obtained after simu-
lating for 3.5 ns using 25% PIP2 with charge qPIP ¼ �4,
shows still-growing clusters at a scale of ~10 nm. As
expected, the positions of the condensed calcium ions
(red disks in Fig. 2 c) clearly indicate their role in binding
Biophysical Journal 101(9) 2178–2184
the charged lipids (green disks) together. To map out the
phase diagram in the simulations, we follow the coarsening
dynamics by keeping track of the static structure factor of
the charged lipids,

SðkÞ ¼ 1

N

XN
i; j

exp
�
ik ,

�
ri � rj

�	
;

k h jkj, a maximum in this function at k ¼ kpeak indicates

where N is the number of PIP2 particles. As a function of

that the PIP2 positions are developing structure at a length
scale 2p/kpeak. For the more pronounced cases of cluster
formation (deep in the phase-separated regime), we
followed this peak as a function of time and verified that
it scales with time as kpeak ~ t�1/3, consistent with the
general theory of coarsening of a binary fluid mixture
(27). Thus, even though the counterion-mediated origin of
phase separation yields irregularly shaped clusters instead
of circular ones, this does not seem to affect the kinetics
of coarsening. In the phase diagram in Fig. 2 a, all parameter
values (fPIP, qPIP) for which an appreciable peak appears
that approaches kpeak¼ 0 in S(k) for long times were marked
as cluster-forming (within the coexistence region). Both in
the experiment and simulation, we found that divalent
cations cause phase separation when the lipid charge is
high enough (pH 4.5 or higher in experiment, qPIP % �2
in simulation). Monovalent cations were never seen to
induce clusters.

Larger divalent ions than Ca2þ should mediate weaker
attractions, because larger binding distances imply lower
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FIGURE 2 Phase diagram (charge versus PIP2-fraction) and snapshots

from simulation of charged-neutral mixed lipid monolayers exposed to
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was observed. (Open circles) Mixed samples. (Gray disks are too close to
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0.25, and divalent ion radius RCI ¼ 2 Å) after 3.5 ns of coarsening. Charged

and neutral lipids are dark green and light gray discs, respectively, and diva-

lent ions that are close to the lipid monolayer are indicated with smaller

dark red dots. (d) Strength (shaded contours) and direction (streamlines)

of the electric field around a stringlike domain taken from the simulation,

illustrating that further growth of the domain is likely to occur at the end.
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Coulomb energies. This effect should manifest itself in a
higher charge on the PIP2 needed to obtain cluster formation
with larger ions. We verified this in experiments at
qPIP ¼ 0.25 using Mg2þ, which has a larger hydrated radius
than Ca2þ, although the precise values are uncertain (note
that the reported hydrated radii vary, mainly due to different
methods to determine them, but Mg2þ is consistently larger
(3–7 Å) than Ca2þ (2.6–6.3 Å) (28–30)). We find that Mg2þ

only induces clusters if pHR6 while Ca2þ already does it at
pH 4.5. In agreement with this observation, the ability of
divalent cations to drive cluster formation in our simulations
also decreases with increasing ion size (Fig. 2 b).
Cluster morphology

The morphology observed in the early stages of coarsening
in the simulations illustrates some particular features
of ion-mediated attractions. The PIP2-rich clusters (see
Fig. 2 c) are often irregularly shaped, and even stringlike.
This occurs because the attraction, of the order of a few
kBT, is the net result of strong attractions (PIP2-Ca

2þ)
and strong repulsions (PIP2-PIP2 and Ca2þ-Ca2þ) that can
each be several tens of kBT.

In the earliest stages of coarsening, most domains are
stringlike, because for very small clusters such linear
arrangements have the lowest Coulomb energy. As the
domains grow, compact shapes become energetically favor-
able but are difficult to reach for two kinetic reasons: First,
once there is a stringlike cluster, the electric field in its
neighborhood is focused toward the end of the string (see
Fig. 2 d), making it more likely for the next lipid to bind
at the end, thus extending the string. Second, any
rearrangement of the lipids requires the nearby counterions
to move aside, which involves energy barriers of the order
of the bare (tens of kBT) interactions. As a result, the evolu-
tion toward more compact shapes is severely hindered kinet-
ically, and irregularly shaped domains, which have also
been seen experimentally (4,7), can persist even in the later
stages of coarsening (Fig. 2 c). This observation also
strongly suggests that irregularly shaped clusters are gel-
like because diffusion of lipids within the cluster should
be hindered by the same energy barriers.
Cluster rigidity

For those PIP2 charges at which cluster formation was
observed, additional simulations at qPIP ¼ 1 provide in-
formation on cluster rigidity or gelation. As shown in
Fig. 3 a, we find from the mean-square displacement that
at qPIP % �3.5, the PIP2 do not diffuse over the course of
the simulation (corresponding to 3.5 ns), indicating that
clusters are mechanically rigid on that timescale. At
qPIP R �2.5, on the other hand, the lipids diffuse around
freely, indicating that the clusters are fluid. These curves
are averaged over five runs with identical parameters but
different initial random conditions. At qPIP ¼ 3, the system
appears to be marginally rigid on the timescale of our runs;
the lipids diffuse in some runs but not in others.

Within a rigid cluster, each lipid has a well-defined
average position about which it fluctuates thermally. What
keeps them in place can be described as an effective interac-
tion between nearby PIP2 molecules, mediated by the diva-
lent counterions. The strength of this effective interaction is
obtained from the matrix of displacement correlations U,
defined via

Uij ¼


uiðtÞujðtÞ

�
t
; (1)

where ui(t) is the deviation of coordinate i from its average

value at time t. Hence, U is 2N � 2N for our two-dimen-
sional system. When these deviations are small they explore
the effective potential energy Veff around its minimum, so
we can describe it by a second-order Taylor expansion.
Biophysical Journal 101(9) 2178–2184
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This allows extraction of the dynamical matrix K of the
system as the inverse of the correlation matrix,

v2Veff

vuivuj
hKij ¼ kBT

�
U�1

�
ij
; (2)

which can be obtained directly from the partition function
(31). The elements of the dynamical matrix then provide
the stiffness of the effective spring that acts between two
neighboring PIP2. The result is shown in Fig. 3 b: The
tangential stiffness of the effective interaction between
neighboring PIP2 is negligible, indicating that the effective
interaction does not prevent particles from sliding past
each other, while the normal effective stiffness is ~4 kBT/
Å2 when qPIP % �4.
DISCUSSION

The two experiments yield nearly identical phase diagrams,
showing clustering of PIP2 for pHR 4.5 at PIP2 fractions at
~25%, a threshold which approaches pH 7.4 at PIP2 frac-
tions as low as 2%.

The phase diagram of our numerical model compares
surprisingly well with the experiments. The only parameter
we introduce is the dielectric correction factor, a usual
necessity in coarse-grained simulations. It is fixed by com-
paring clustering at one packing fraction (fPIP ¼ 0.25), after
which the rest of the phase diagram is reproduced without
any free parameters.

It should be noted that, although hydrogen bonds between
the PIP2 molecules exist and may play a role when the
charges are small (10), our work strongly suggests that
they do not play a dominant role in multivalent ion-induced
clustering—if they did, having a higher PIP2 charge would
make it harder to form clusters, rather than easier, as we
report in Figs. 1 a and 2 a.

One might ask how relevant our results are to biological
membranes. Most of our measurements are taken at
a relatively low surface pressure of 20 mN/m to prevent
barrier leakage of the lipids. However, the formation of
domains persists when surface pressure is increased up
Biophysical Journal 101(9) 2178–2184
to 35 or 40 mN/m (see Fig. 1 a 4), and between 20 and
35 mN/m the typical domain size even grows with surface
pressure. This is a characteristic signature of domain forma-
tion driven by electrostatic correlations, because a denser
aggregate containing charged lipids will attract more
divalent ions. We also observed domains by AFM in mono-
layers containing 1% PIP2 at 35 mN/m over subphases
containing 150 mM KCl, pH 7.4, suggesting that even at
roughly physiological conditions, Ca2þ-induced clustering
can be relevant (Y.-H. Wang and P. A. Janmey,
unpublished).

As for the use of monolayers instead of real membranes,
we first note that PIP2 in the cell membrane only resides on
the inner leaflet. In addition, the use of monolayers will not
significantly affect the electrostatics because distances
between opposite charges are much smaller than the thick-
ness of the low-dielectric layer of a membrane. However,
an important limitation of monolayers in both experiment
and simulation is that membrane curvature is not allowed.
There might be changes in the exact concentrations or
charges at which domains first form when membrane curva-
ture is allowed, and indeed the cation-driven changes in
surface pressure we measure on the PIP2-containing leaflet
might be enough to trigger local curvature in a bilayer.

Because the interactions in our model have been stripped
down to the bare minimum of electrostatics and steric repul-
sion, the only attractive interaction in the simulations is the
Coulomb attraction between PIP2 and Ca2þ. Therefore, the
observed phase separation must be due to counterion-
mediated attractions. In both DNA solutions and in PIP2,
the negative charges come from phosphate groups and are
typically several Å apart. For PIP2, however, the net binding
energy per lipid in 30-lipid clusters with Ca2þ is 6 kBT for
qPIP z �3, which is much stronger than in DNA (15).
(This binding energy is calculated with respect to a
reference state of 15 lipid dimers, neutralized with Ca2þ,
so that the cluster is charge-neutral and monopole terms
do not dominate the result.) This large difference must orig-
inate from rather subtle differences in the packing geometry
of charges in the two cases. Chain connectivity of DNA
prevents the charges from organizing in the low-energy
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configurations that our lipids take (see Fig. 2 c), but instead
forces both negative and positive charges into roughly linear
arrangements (33), increasing repulsive contributions to the
electrostatic energy and thereby weakening the effective
attraction.

Although the binding energy between lipids in a cluster is
a collective effect and can only be estimated with respect to
a chosen reference state, the linearized effective interaction
between neighboring PIP2 is always well defined. One can
think of this as the potential of mean force between PIP2
that is left after integrating out the positions of the calcium
ions, expanded around the average distance between the
PIP2 molecules involved. We determined the stiffness of
the effective calcium-mediated bond between PIP2
molecules to be ~4 kBT/Å

2 for the case of gel-like clusters
of highly charged PIP2 (qPIP % �4). This is approximately
an order-of-magnitude lower than the stiffness with which
a single Ca2þ is bound to a PIP2 in our simulations, consis-
tent with the notion that ion-mediated attractions are the
result of near-cancellation of much stronger attractive and
repulsive interactions. Yet at qPIP % �4 the ion-mediated
attractions are still strong enough to lead not only to phase
separation, but also to mechanical rigidity in PIP2-rich
domains.

Whether or not this rigidifying effect could be noticeable
in living cells is questionable. First, we note that the time-
scale of our simulations is of the order of nanoseconds;
more highly negative values of qPIP would be needed to
achieve rigidity at longer timescales relevant to experiments
and to biological processes. Second, other effects that were
not included in our simulations—such as active processes
(e.g., from molecular motors) and increased disorder
(because real lipids are not spheres in a plane)—also act
to drive the threshold value of qPIP for rigidity beyond the
physiological value of qPIP z �4. We note that a similar
calcium-induced gelation effect has been observed experi-
mentally in polymer amphiphile systems (34). In that
context, gelation is less surprising because the total charge
per molecule is much higher for the polymer amphiphiles
than for PIP2.
In summary, we have presented experiments and coarse-

grained simulations on lipid monolayers that demonstrate
the clustering of PIP2 inmixedmonolayers via calcium-medi-
ated electrostatic attractions. Furthermore, we detected
a transition from fluid to gel domains as the charge on the
PIP2 increased, and obtained the conditions for cluster
rigidity from the simulations. Between PIP2 charges of �2
and �4, the strength of ion-mediated attractions is highly
sensitive to the PIP2 charge; they become strong enough to
make long-lived cross-links between lipids when qPIP z
�4, as illustrated by the interaction stiffnesses in Fig. 3.

In all, our results suggest that at physiological pH the
effective calcium-mediated attraction can drive the forma-
tion of fluid clusters of PIP2 even at PIP2 mole fractions
of 2% or lower. In the cell, other factors such as the presence
of other polycationic ligands, i.e., polyamines and protein
domains, can also affect PIP2 distribution; however, the
clustering effect of Ca2þ is likely to remain a significant
influence on PIP2 distribution.
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